
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 2

1. LINEAR CLASSIFICATION

1.1 Perceptron

Some of the oldest algorithms in machine learning are, in fact, online. In addition to
the bit prediction method of the last lecture, let us discuss Perceptron (1957). Kernel
methods (for both classification and regression) were introduced by Aizerman, Braverman,
and Rozenoer [ABR64, ABR70] specifically for online updates, right after Novikoff’s proof
(1962) of Perceptron’s finite-step convergence.

Let (x1, y1), . . . , (xn, yn) ∈ Rd × {±1} be labeled training data. We say data are linearly
separable (or, realizable) if there exists a hyperplane that correctly classifies all the examples:

∀t ∈ [n], yt ⟨w∗, xt⟩ > 0. (1)

While we might not be able to identify w∗ in general, we search for some ŵ that also
separates the two classes. This is a linear program (why?) and can be solved by a variety
of known techniques.

The objective we wish to optimize can be written as

f(w) =
n

∑
t=1

1{yt ⟨w,xt⟩ ≥ 0} (2)

which is the cumulative fit to data, or the number of mistakes on the data made by the
half-space. We will call this a batch objective, to distinguish from an online objective, to
be covered later. By our assumption, f(w∗) = 0.

By appending an extra coordinate to all the vectors, we may also cover the non-
homogenous hyperplanes. This is immediate.

By scaling w∗ we obtain many solutions to (1). To fix this problem, we have two options.
One is to fix w∗ to be unit norm and define γ to be the largest amount (called margin) by
which (1) are above zero; or, conversely, posit that

∀t ∈ [n], yt ⟨w∗, xt⟩ ≥ 1 (3)

where w∗ is the smallest-norm vector that guarantees (3). We will opt for the second
version. One may always move between the two assumptions on the objective by rescaling
the problem by γ = 1/∥w∗∥.

The linear program can be solved in various ways, but one that is of particular interest
is the Perceptron recursive update, given below.

Perceptron converges to a solution in a finite number of steps (which depends on ∥w∗∥
and the largest ∥xt∥). This is not really all that surprising if you know convex optimization:
since data are separated by a margin, we only need to get a solution of constant accuracy
(or, O(γ) if we rescale everything; O(1/γ2) is what you would expect from gradient descent
style methods, more on this later).

1



Algorithm 1 Perceptron

Init: t = 1,w1 = 0
while there exists misclassified i ∈ [n] (i.e. yt ⟨wt, xi⟩ < 0) do
wt+1 = wt + yixi
t = t + 1

end while

Let m be the number of corrections made by the Perceptron. Let’s prove that m cannot
be too large. The cosine of the angle between wm and w∗ is

⟨ wm

∥wm∥ ,
w∗

∥w∗∥⟩ ≤ 1, (4)

where ∥ ⋅ ∥ is the Euclidean norm for the rest of this lecture.
Let xt denote the example used to update from step t to t + 1. On the one hand,

⟨wt+1,w∗⟩ = ⟨wt + ytxt,w∗⟩ = ⟨wt,w
∗⟩ + yt ⟨xt,w∗⟩ ≥ ⟨wt,w

∗⟩ + 1 (5)

and thus ⟨wm,w
∗⟩ ≥m. On the other hand,

∥wt+1∥2 ≤ ∥wt∥2 + 2yt ⟨wt, xt⟩ + ∥xt∥2 ≤ ∥wt∥2 +R2, (6)

where R = maxi ∥xi∥2. Hence,
∥wm∥2 ≤mR2.

Putting everything together,

m√
mR∥w∗∥ ≤ ⟨ wm

∥wm∥ ,
w∗

∥w∗∥⟩ ≤ 1, (7)

or,
m ≤ R2∥w∗∥2.

We summarize what we have proved:

Lemma 1. Let (x1, y1), . . . , (xn, yn) ∈ Rd × {±1} and R = maxi ∥xi∥. Denote by w∗ the
vector of smallest norm such that (3) holds. Then Perceptron will terminate in at most
R2∥w∗∥2 rounds.

1.2 Online interpretation

There are two interpretations of Lemma 1. One is online, and one is offline (“batch”). The
online interpretation is as follows. Suppose n is large enough and we do not get to look at
the same data point twice. That is, the data are streaming. Looking at the proof, we see
that nothing changes, and we have a mistake bound : the number of mistakes made on any
sequence (with the margin assumption) is at most R2∥w∗∥2. We will be able to make some
interesting conclusions from this mistake bound, and relate it to mistakes made by our Bit
Prediction method from last lecture. But for now, we leave it, and turn to the “batch”
interpretation.

2



1.3 Batch interpretation

If you know about gradient descent, you may wonder if Perceptron is an instance of this
concept. The step “find a misclassified example” may be replaced by “cycle through the
data until you find a misclassified example”. That is, no update is made for a correctly
classified example. This can be realized as a zero gradient, and naturally leads to the
function

`(w, (xt, yt)) = max{0,−yt ⟨w,xt⟩}
which we will call “hinge at zero” for reasons that will be clear soon. We will call a function
that evaluates a fit of w and (xt, yt) a loss function. As such, 1{yt ⟨w,xt⟩ < 0} is a zero-one,
or indicator, loss function.

Of course, we still have that

n

∑
t=1

max{0,−yt ⟨w∗, xt⟩} = 0

and
∇w`(w, (xt, yt)) = −ytxt ⋅ 1{yt ⟨w,xt⟩ < 0} .

To be precise, it’s a subgradient (see next lecture). The Perceptron update can now be
written as

wt+1 = wt −∇w`(w, (xt, yt)).
This type of update is called gradient descent. As we will see in the next lecture, one would
typically have a “step-size” η (also known as “learning rate”), but here it is not necessary
and can be set to η = 1. Let’s see why. An update ηytxt is equivalent to rescaling xt’s by a
factor η, which changes the norm ∥w∗∥ (since it’s defined as the minimum norm hyperplane)
by exactly the opposite factor, leaving the bound in Lemma 1 unchanged.

1.4 Non-separable case

When there is no perfect separator w∗ for the data at hand, we may still ask whether one
can find a ŵ that has the lowest number of errors:

ŵ = argmin
∥w∥=1

n

∑
t=1

1{yt ⟨w,xt⟩ < 0} . (8)

This problem is known to be NP-hard in general [BBD99]. We could replace this objective
with

n

∑
t=1

max{0,−yt ⟨w,xt⟩},

as we did in the previous section. However, the meaning of the above sum is no longer
related to the number of mistakes in (8). Instead, one opts for surrogate losses – those that
upper bound the indicator loss. One classical example is the hinge loss

`h(w, (xt, yt)) = max{0,1 − yt ⟨w,xt⟩}

Check that
1{yt ⟨w,xt⟩ < 0} ≤ max{0,1 − yt ⟨w,xt⟩}

pointwise. The advantage of the hinge loss over the indicator loss is its convexity. Plus, the
objective forces the hyperplane to make the margin to the points larger. Any point that
is correctly classified, but close to the hyperplane will still incur loss and thus repel the
hyperplane. That is, of course, if we make sure that the norm of w is minimized.

3



References

[ABR64] M.A. Aizerman, E.M. Braverman, and L.I. Roeznoer. The problem of patter
recognition learning and the method of potential functions. Avtomatika i Tele-
mekhanika, (25):1175–1193, 1964.

[ABR70] MA Aizerman, EM Braverman, and LI Rozonoer. The Method of Potential Func-
tions in the Theory of Machine Learning. Nauka, Moscow, 1970.

[BBD99] Peter Bartlett and Shai Ben-David. Hardness results for neural network approx-
imation problems. In Computational Learning Theory, pages 50–62. Springer,
1999.

4


