
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 1

0.1 Preamble

This course will focus on online methods in machine learning. Roughly speaking, online
methods are those that “process one datum at a time.” This is a somewhat vague definition,
but the scope of methods will be clear as we go through the course. We will focus on the
algorithmic aspect (“how it works”) and the theoretical aspect (“why it works”). We will
also discuss applications, and you will get to implement the methods for homework/projects.
For the more application-oriented students there will be plenty of opportunities to try things
out in practice; for the more theoretically-inclined, there will be plenty of new mathematical
ideas and research directions.

We can divide the scope of online methods into those that have to process one datum
at a time because

• there is too much data to fit into memory, or

• the application is itself inherently online.

We will cover both of these and draw many connections between them. While the first
group of online methods is often covered in machine learning classes (e.g. run stochastic
gradient descent on a neural network), the second is more rare. In this second part, we
shall focus on very recent developments in online learning and develop powerful tools for
creating new algorithms (that may or may not look like some form of a gradient descent).
With these new tools we will be able to derive and implement methods for prediction in
social networks, ad placement, and so forth.

0.2 Bit prediction

In 1950’s, David Hagelbarger [Hag56] at the Bell Labs built the so-called “mind reading
machine” to play the game of matching pennies. His colleague and friend, Claude Shannon
[Sha53], built a simplified version (which is currently in the MIT Museum’s storage facility in
Somerville [Pou14]). According to some accounts, the machine was consistently predicting
the sequence of bits produced by untrained players better than 50%. Here is a modern
version of this machine: www.mindreaderpro.appspot.com by Yoav Freund and colleagues.
Try to beat it!

Of course, the only reason the machine might be able to predict the sequence entered by
a human is that these sequences tend to be nonrandom. How can we capture the structure
in the sequence and exploit it to our advantage? (If you’re coming from information theory,
you might be familiar with the close connection between predictability of the sequence and
the ability to compress it. )

Let us try to formalize the problem. Even in this simple setting there will be a few
surprises. Let y = (y1, . . . , yn) ∈ {−1,1} be as sequence of (signed) bits. A deterministic

1



prediction strategy can be written as A = (ŷ1, . . . , ŷn), with ŷt = ŷt(y1, . . . , yt−1) ∈ {−1,1}. If
we employ the deterministic strategy ŷ on (y1, . . . , yn), we make

1

n

n

∑
t=1

1{ŷt ≠ yt}

average number of mistakes. You should be able to convence yourself that for any such
deterministic strategy there exists a sequence on which this strategy makes mistakes all
the time, thus incurring an average loss of 1. This upsetting issue, however, is fixed by
considering randomized strategies, as we show next.

A randomized algorithm will be denoted by A = (q1, . . . , qn), with qt = qt(y1, . . . , yt−1) ∈
[−1,1]. Each value qt is to be understood as parametrizing the mean of a distribution on
{−1,1}. For any sequence y1, . . . , yn, we now consider the expected value of the loss

`(A; y1, . . . , yn) = E [
1

n

n

∑
t=1

1{ŷt ≠ yt}] ,

where the expectation is over the randomization of the algorithm. The value `(A; y1, . . . , yn)
tells us how many mistakes, on average, the randomized algorithm A is expected to make
on the given sequence. An algorithm that guesses randomly will incur the average loss of
1/2 for any sequence, and so there is no longer a single “bad” sequence for the algorithm.

Can `(A; y1, . . . , yn) be always smaller than 50%? That is, can we find a super algorithm
that will predict all the sequences better than a random guess? Let’s take a look. Let
ε1, . . . , εn denote independent Rademacher random variables (unbiased coin flips). Then

1

2n
∑

(y1,...,yn)
`(A; y1, . . . , yn) = Eε1,...,εn`(A; ε1, . . . , εn) =

1

2
.

Convince yourself of all these steps.
Conclusion? Any algorithm will necessarily pay larger expected loss on some sequences

and smaller on the others, so that, on average, the loss is 50%.
This sounds like a simple “negative” result, but we can put a positive spin on it. If we

care about particular sequences (e.g. those produced by humans) we may try to develop an
algorithm A that has small expected number of mistakes on these chosen sequences, and
large number of mistakes on the ones we will not expect to encounter.

Of course, the next question is: how does one construct a good algorithm, given that
we have some idea of the sequences we’ll likely encounter in practice. Let φ(y1, . . . , yn)
denote the target expected value we’d like to achieve on sequence (y1, . . . , yn), and let us
specify the values of φ on all such sequences. We may think of φ as a function on the binary
hypercube {−1,1}n. Let us also posit that φ does not change too fast on nearby vertices:

∣φ(. . . ,+1, . . .) − φ(. . . ,−1, . . .)∣ ≤
1

n
. (1)

If Eφ(ε1, . . . , εn) < 1/2, no algorithm can achieve `(A; y1, . . . , yn) = φ(y1, . . . , yn) for all
sequences. This follows from the previous argument. But the interesting question is whether
we can achieve any φ with Eφ ≥ 1

2 . This simple but somewhat surprising result is stated in
[Cov65].

Lemma 1. Let φ ∶ {±1}n → R be such that (1) holds and Eφ = 1/2 under the uniform
distribution on {±1}n. Then there exists a randomized algorithm A with

∀(y1, . . . , yn), `(A; y1, . . . , yn) = φ(y1, . . . , yn).

2



Proof. Define the following shorthand to ease the proof a bit:

φt(y1, . . . , yt) = Eφ(y1, . . . , yt, εt+1, . . . , εn)

where the expectation is over εt+1, . . . , εn. Showing `(A; y1, . . . , yn) = φ(y1, . . . , yn) is equiv-
alent to exhibiting an algorithm with

E [
n

∑
t=1

1

n
1{ŷt ≠ yt} + φt−1(y1∶t−1) − φt(y1∶t) −

1

2n
] = 0 (2)

(you should check this by simplifying the expression and using the assumptions of the
lemma). To show (2), we start from the end and define algorithm A on round n as

qn ≜ n (φ(y1, . . . , yn−1,−1) − φ(y1, . . . , yn−1,+1)) .

Writing 1{a ≠ b} = 1
2(1 − ab) for a, b ∈ {±1} (a useful representation to keep in mind for the

rest of the course), and using linearity of expectation, the expected loss on round n is

E[1{ŷn ≠ yn}] =
1

2
(1 − qnyn).

We now peel off the last term from the sum in (2):

1

n
E[1{ŷn ≠ yn}] + φn−1(y1∶n−1) − φn(y1∶n) −

1

2n
(3)

= φn−1(y1∶n−1) −
1

2
(φ(y1, . . . , yn−1,+1) + φ(y1, . . . , yn−1,−1)) = 0. (4)

We also remark that the choice of qn equalizes the values of (3) for the possibilities yn = 1
and yn = −1. Such a strategy is called an equalizer. For intermediate steps, the algorithm
takes on the form

qt(y1, . . . , yt−1) ≜ n(φt(y1, . . . , yt−1,−1) − φt(y1, . . . , yt−1,+1)). (5)

Continuing in this fashion from n backwards to t = 1 proves the claim.

We may interpret φ as a potential function. Then the algorithm at time t is saying: The
prediction should be biased towards that label whose potential (under a random evolution
of future) is higher. What is especially interesting, we are justified (by the fact that our
method is optimal) in using coin flips εt+1, . . . , εn for the future even though the sequence
y1, . . . , yt−1 will continue to evolve in reality in an arbitrary way on which we place no
stochastic assumptions. This is a fortuitous consequence of our choice of an equalizer
strategy.

A trivial corollary is:

Corollary 2. For any φ ∶ {±1}n → R, satisfying (1) and Eφ ≥ 1/2, there exists a randomized
algorithm A making (on average over its randomization) the number of mistakes no more
than φ(y1, . . . , yn), for any sequence:

∀(y1, . . . , yn), `(A; y1, . . . , yn) ≤ φ(y1, . . . , yn).

3



Why is this simple result surprising? It tells us that existence of a prediction method
can be verified by simply checking some probabilistic inequality (Eφ ≥ 1/2). In the next
part of the course, we will spend some time learning several techniques for checking (slightly
more complicated) expressions for certifying existence of prediction methods, and for finding
them.

We now have a way of choosing φ that will work well for the problem at hand. For
instance, if we are predicting class labels for nodes of a graph, we may tilt φ towards
“smooth” labelings, expecting homogeneity with respect to the graph structure. Moreover,
this is done is a completely deterministic fashion, without reliance on a probabilistic source
for the data.

Later in the course we will cover more general techniques that do not arise from simply
taking a φ function and defining an algorithm the way we did. But for now we can already try
to construct good φ’s for the problem of predicting sequences generated by humans. One of
the first tools is a method for combining several good predictors into a meta-predictor. After
that, we may define a collection of φ’s that predict human-generated sequences according
to some finite state machines, and create a meta-predictor that does as well as the best of
them on the given sequence. (For those interested, the version of the mind-reader on the
web seems to be using context weighted trees).

Performing as well as a given finite collection of predictors is often called the “experts
setting.” Assume that we have access to predictions of k experts E1, . . . ,Ek, which produce
on round t (in a non-anticipating manner) a number (called advice) Ej(y1, . . . , yt−1) ∈ {−1,1}.
For each j ∈ [k], define

φj(y1, . . . , yn) =
1

n

n

∑
t=1

1{Ej(y1, . . . , yt−1) ≠ yt} ,

the performance of expert j, which is only known at the end. We check that Eφj(ε1, . . . , εn) =
1/2. Of course, we can do as well as a single expert j by following her advice, and also
incurring φj number of mistakes. The question is whether it is possible to do (almost) as
well as the best expert? The first attempt is to take the function

min
j∈[k]

φj(y1, . . . , yn)

as the overall quality function φ(y1, . . . , yn). However, we observe that the expectation of
this function under the uniform distribution is less than 1/2 (prove it!). Luckily, we need
only a small correction:

φ(y1, . . . , yn) = min
j∈[k]

φj(y1, . . . , yn) +

√
c log(k)

n

Homework: find a value of c that ensures Eφ ≥ 1/2 for this function.
Now that we’ve certified Eφ ≥ 1/2, there must exist a method that makes the number

of mistakes no more than the best of the experts, plus a vanishing term. What is the
method? There are several. Of course, the one in (5) works. However, it requires certain
averaging with random signs. There are more efficient methods, and a popular one is called
the Exponential Weights (or, Multiplicative Weights). It can be derived in a principled
manner with the tools we will introduce. Two caveats: the argument in the lemma requires
us to be able to simulate the values of experts on some hypothetical future given by random

4



coin flips, and the experts cannot know future. As we will see, the Exponential Weights
algorithm works even if these two requirements are removed.

We finish this lecture with a concrete example. Suppose you have a hunch that human-
entered sequences tend to have imbalance of 1’s and −1’s. Can we exploit it? Here is what
follows immediately from our previous discussion:

There is a (simple) algorithm that will make at most

min{p̄,1 − p̄} +O(1/
√
n)

mistakes on any sequence with p̄ proportion of 1’s, and the method does not
need to know this proportion.

For example, if the sequence happens to consist of 80% 1’s, the algorithm makes roughly
20%, if n is large enough. This is not a trivial statement, since we do not assume that the
sequence is i.i.d. The conclusion is: we can easily build a prediction method that will win
over any unbalanced sequence entered by a human.

References

[Cov65] Thomas M Cover. Behaviour of sequential predictors of binary sequences. In
Proc. 4th Prague Conf. Inform. Theory, Statistical Decision Functions, Random
Processes, 1965.

[Hag56] DW Hagelbarger. Seer, a sequence extrapolating robot. Electronic Computers,
IRE Transactions on, (1):1–7, 1956.

[Pou14] W. Poundstone. How to Predict the Unpredictable: The Art of Outsmarting Almost
Everyone. 2014.

[Sha53] Claude E Shannon. A mind-reading machine. Bell Laboratories memorandum,
1953.

5


