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ABSTRACT
Financial time series forecasting is challenging due to limited sam-
ple size, correlated samples, low signal strengths, among others.
Additional information with knowledge graphs (KGs) can allow
for improved prediction and decision making. In this work, we ex-
plore a framework GregNets for jointly learning forecastingmodels
and correlations structures that exploit graph connectivity from
knowledge graphs. We propose novel regularizers based on KG
relations to guide estimation of correlation structure. We develop a
pseudo-likelihood layer that can learn the error residual structure
for any multivariate time-series forecasting architecture in deep
learning APIs (e.g. Tensorflow/Keras). We evaluate our modelling
and algorithmic proposals in small sample regimes in real-world
financial markets with two types of knowledge graphs. Our empir-
ical results demonstrate sparser connectivity structures, runtime
improvements and high-quality predictions.
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1 INTRODUCTION
Time series analysis is a problem central to finance and statis-
tics [47]. In this paper, we consider the problem of modeling and
forecasting in multivariate time-series panel data {yt }t ∈[T ] where,
yt ∈ RN is a vector of panel measurements at time t ∈ [T ] :=
{1, . . . ,T }. Our study is motivated by challenging financial time-
series forecasting problems (e.g., volatility, volume forecasting)
characterised by relatively large panel-sizes, limited sample sizes
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and low-signal regimes. There is a rich body of work onmultivariate
time-series in statistics/econometrics for modeling and forecast-
ing purposes mainly using linear modeling approaches. Earlier
work [6, 14, 43] has noted that time-series modeling and forecast-
ing in low-signal-regimes poses outstanding challenges. Common
unregularized time-series models, e.g., vector autoregressive (VAR),
may lead to overfitting and poor out-of-sample performance, there-
fore additional regularization methods (e.g., using sparsity) have
been proposed—see for eg., [14, 43] and references therein.

A powerful parallel body of exciting recent progress includes
Neural Network (NN) based approaches to model nonlinearities in
time-series data e.g. recurrent neural networks (long short-term
memory networks (LSTMs) [28], gated recurrent units [13]), con-
volutional neural networks [25], dynamic graph convolutional net-
works [37, 38, 49, 51] etc. Both these approaches—high-dimensional
linear model based regularization techniques and those based on
NN—have their respective strengths, but are yet to be studied to-
gether under one umbrella. To this end, we present a new frame-
work that brings them together in a flexible and modular fashion.

Knowledge Graph Data. In addition to the time-varying panel
data {yt }t ∈T , we also make use of alternative data in the form of a
Knowledge graph (KG) that contains relevant information regarding
important links/associations among the time-series components.
For example, in the context of finance, KGs may reflect relation-
ships among different entities (e.g. based on industry classification,
supply-chain links, products and competitors, etc). Earlier work has
targeted learning of event/relation-based knowledge graph embed-
dings from textual data for stock prediction/explanation [12, 15].
Others have directly used financial KGs in the form of graph ad-
jacency matrices in the context of graph convolutional networks
(GCNs) [11, 22, 40]. It is worth noting that due to the low-signal
to noise ratio in financial forecasting problems, additional data in
the form of KGs can lead to improved stock prediction as shown by
the aforementioned works. Our proposed framework GregNets 1

extends earlier work on KG-aided forecasting within a systematic
statistical and computational framework.

Simultaneous mean and network learning. Our modeling frame-
work has two key components: (a) the conditional mean function
and (b) the correlation structure of the errors. Both (a) and (b) are
trained jointly; and as we explain below, we use KG to assist the
learning of (b) and/or (a). Specifically, the conditional mean is a
model for the panel and is given by f t := E(yt |Ft−1), where Ft−1
denotes the filtration corresponding to the time-series up to time
point t − 1. The function f t is flexible and modular: for example,
this can be modeled via sparse VAR models [14, 24, 29] to allow
for Granger Causality interpretations or GCNs which directly take

1This stands for Graph Regularized Networked Time Series.
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into account KG-information. GCNs have been conventionally stud-
ied for time-series forecasting in the context of traffic networks
[37, 49, 51] where the number of samples T are 2 orders of mag-
nitude higher than the number of nodes N . We differ in that we
use these models in the context of a joint mean and covariance
learning framework and perform this joint learning in very limited
sample regimes in the context of financial applications. We model
the unexplained residuals ϵt = yt − f t via a multivariate Gaussian
graphical model [27]. We model the precision matrix [34] or partial
correlations of the errors to be sparse—the sparsity structure is
partially (not fully) informed by KGs. Our framework GregNets ex-
tends the framework of [6] in multiple ways: we propose faster
algorithms (100×−250×) for joint training, incorporate flexible GCN
models for the panel component, and use KGs to inform the partial
correlation matrices.

Joint training. Jointly training the conditional mean function and
error correlation structure leads to algorithmic challenges.When f t
is a sparse linear model (e.g., sparse VAR), we present a joint proxi-
mal gradient descent algorithm [8, 42] to simultaneously learn f t
and a sparse partial correlation matrix for ϵt via a pseudolikeihood
approach that results in improvements over the recently proposed
algorithm of [6]. When f t corresponds to a GCN or other generic
temporal (graph) neural networks, we embed the partial correlation
learning into our proposed pseudo-likelihood layer, append it to
the standard temporal graph neural network layers, and train the
time-series parameters as well as the partial correlation simultane-
ously via backpropagation by standard stochastic gradient descent
(SGD) or its adaptive variant methods (e.g., Adam [32]).

Contributions. The key contributions of our work can be sum-
marized as follows: (1) we propose a joint modeling and training
framework GregNets to learn the conditional mean function for
the panels and the error correlation structure for the innovations
— both of these incorporate KGs in the form of structured priors.
(2) Joint training leads to computational challenges. We address this
by developing a pseudo-likelihood layer that incorporates the KG
information and can be easily appended to any existing multivariate
time-series forecasting architecture trainable with (stochastic) gra-
dient method. (3) We demonstrate the usefulness of GregNets for
S&P500 and S&P1500 stock volatilities time-series analysis in terms
of improved prediction, reduced model complexity, faster optimiza-
tion and enhanced interpretability.

2 RELATEDWORK
There is an impressive literature on financial time-series modeling;
we discuss work that is most closely related to the main topic of the
paper. Recall that our goal is to simultaneously learn a model for
f t and a partial correlation structure for the error ϵt within a joint
training framework, using information from KG, in the context of
financial time-series forecasting. Below we discuss related work as
they pertain to the different individual components of our general
model.

The partial correlation learning sub-problem is related to the rich
literature on high-dimensional Gaussian graphical models [27, 34],
and central to the portfolio optimization in finance [39]. Given

a data matrix, common approaches to learn a corresponding ℓ1-
sparse precision matrix are the graphical lasso [23], row-by-row
estimation methods [41], the pseudo-likelihood framework [9, 45].
Recently, [4, 48] propose the MTP2 method to learn a precision
matrix with nonpositive entries. For other methods on covariance
matrix estimation, see [20] for a nice overview. The above methods
focus on learning correlation matrices; and assume that the time-
series panel component f t ≡ 0.

VAR is a popular linear modeling tool for modeling the dynam-
ics of panel time series data, with wide applications in various do-
mains [30, 47]. However, the number of parameters in VAR grows
quadratically with the number of time series components, hence
regularization is called for. Common methods to reduce the com-
plexity of VAR models include ℓ1-regularization [26], canonical
correlation analysis, factor models [10], among others—see [43]
for further discussions. Apart from VAR-based models, there are
some other traditional statistical time series models in financial
econometrics [5, 21, 46]. All of these models learn f t ; but they do
not directly learn the correlation structure of the residuals.

There is a large body of recent literature on GCNs. The funda-
mental GCN idea was formulated by [33] and originally studied
for author citation networks; see [2, 3] amongst others. The idea
has been extended to time-series modelling by combining graph
convolution operation with recurrent/1D convolution architectures
to capture dynamics in [37, 38, 49, 51]. These networks are interest-
ing from ideas’ standpoint and have been primarily explored in the
context of traffic forecasting datasets where the number of samples
is very large compared to number of nodes. Some recent financial
literature uses variation of these modelling ideas in the context of
stock prediction [22, 40]; see also [31] for a nice review of different
applications of deep learning for stock market prediction.

Our work is most related to [6] who consider joint learning of
an ℓ1-sparse VAR model in addition to a sparse partial correlation
matrix of residuals ϵt . However, our work differs in that (i) we
use KG information to aid in the learning of the partial correlation
matrix and/or a NN-based model for f t , (ii) we allow for a GNN
model for f t while [6] considers VAR models, (iii) our proposed
algorithm for joint training is more general; and when specialized
to the specific task considered in [6], our proposed algorithms are
found to be much faster.

Our proposals are evaluated on knowledge graphs, some of
which are close in spirit to those used in financial econometrics
literature. Existing modelling approaches with financial knowledge
graphs have explored different forms of connectivity information
such as industry-sector classification [22] and first and second or-
der relationships from text data [12, 22, 40]. We explore a new
knowledge graph, proposed in [36], constructed on the basis of
aggregated co-search of financial information by analysts, which is
described in more detail in section 5.1. We also consider knowledge
graph created using one type of financial indicator (e.g. returns)
to improve prediction/correlation structure estimation for another
financial indicator (e.g. volatilities).

3 GREGNETS : STATISTICAL FRAMEWORK
We present the general modeling framework for GregNets.
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Model. Given multivariate time-series data {yt }T1 , we consider
the following model

yt = f (yt−1, · · · ,yt−p ) + ϵt , ϵt ∼ N(0,C−1) (1)

where, the conditional mean function f t = E(yt |Ft−1) is given
by f ({yt }

t−p
t−1 ) ∈ R

N which depends upon yt for the past p time-
points; and the error vectors {ϵt }T1 are independent and assumed
to follow a multivariate Gaussian distribution with stationary co-
variance matrix Σ = C−1 ∈ RN×N , whereC denotes the precision
matrix. Both f (·) and C are unknown and need to be estimated
from the data under suitable structural constraints. In addition to
the data {yt }, we will also be using knowledge graphs to inform
the estimation of f andC , as discussed below.

Illustration: We present some examples of the different compo-
nents of (1) that can be addressed by GregNets. The conditional
mean function f can be taken to be a linear model (e.g. VAR) or
some nonlinear NN-based models (e.g. LSTMs, GCNs). We will also
use KGs to incorporate prior information into some of these mod-
els. At the same time, we learn the precision matrixC through the
partial correlation ρ under a pseudo-likelihood framework (See
Section 4.2). This can avoid lack of scalability issues arising from
the likelihood method and is more amenable to joint training with
the deep learning APIs (e.g. Tensorflow [1]). Further details are
presented in Section 4.

As an illustration, we can consider the target variable yt to be
stock returns, stock volatilities, trading volume or bond yields of N
different companies over a certain time horizon2.

KG based regularization: A key challenge in learning model (1)
lies in suitably constraining the number of parameters associated
with f and C , within our joint learning framework. To this end,
we use the structure of KGs to aid in the learning of C . KGs can
also be used to constrain f when it is taken to be a GCN. Figure 1
shows a schematic picture of using KG within our joint learning
framework. Specifically, given a knowledge graphG, we extract a
sparse connectivity information matrix E from G (Section 4.3.1),
and create masking matrices based on E and G (Section 4.3.2).
The masking matrices will be used in some regularizer Ωρ , which
further guides the learning of ρ. In Section 4.3.3, we also discuss
how to extend this to using multiple KGs. At the same time, the
KG can also be used as an input for some graph neural network
architectures to guide the learning of the time series part f . In
the next section, we will provide details of the components of
GregNets and show the details of using the KG information.

4 LEARNING THE MODEL COMPONENTS
A principal challenge in learning model (1) lies in its joint train-
ing. Here, we discuss the details of the individual components: the
mean function f (Section 4.1), the long-term contemporaneous
residual correlation structureC (Section 4.2), KG-based prior regu-
larization (Section 4.3). The joint training algorithm is discussed in
Section 4.4.2.

2As discussed in Section 5, we need to adjust these raw time-series values to remove
common systematic risks associated with either the whole market or a certain market
sectors [6, 19], before appealing to model (1).
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Figure 1: The use of knowledge graph in our model frame-
work. Here, PC denotes partial correlation matrix ρ corre-
sponding toC (see Section 4.2).

4.1 Learning the conditional mean function f
We discuss two major classes of the conditional mean function f :
the sparse VAR model; and the NN models (e.g. LSTMs, GCNs and
their variants).

Sparse Vector Autoregression (VAR). Vector autoregressionmodels
the function as a linear combination of all the time series at different
lags upto p. This can be written as:

f (yt−1, · · · ,yt−p ) = A(1)yt−1 +A
(2)yt−2 + · · · +A

(p)yt−p (2)

The number of parameters in the VAR models are of order n2p and
typically the parameter tensor A := [A(1), · · · ,A(p)] ∈ RN×N×p

is penalized with either ridge or lasso regularizers. If a good pre-
estimator of the tensor is available, then the regularizer can be
modified to the adaptive lasso [27] which takes the form: Ωf (f ) =
λA ∥B ⊙ A∥1, where B is the element-wise reciprocal of the
pre-estimator Â and ⊙ is the element-wise multiplication opera-
tion. The model complexity of the forecasting component f grows
quickly as we consider higher time lags in f with VAR models. This
curse of high-dimensionality, coupled with limited sample sizes
may lead to severe overfitting in high-dimensional VARs (even if
one imposes ℓ1-based sparsity). Knowledge Graphs can help reduce
the large model complexity in VARs in a transparent way with the
use of graph NN-based approaches, as we discuss next.

Graph Convolutional Networks: The knowledge graph informa-
tion can be encoded as adjacency matrices in a different class of
models which are referred to as GCNs [33]. In a special case for time-
series forecasting (single-layered GCN with a linear function on the
graph Laplacian), this family nicely restricts the large number of
parameters associated with higher-order VARs. GCNs process past
time-samples of multivariate time-series with graph operations,
e.g. graph convolutions, before feeding them into a linear model of
significantly reduced model complexity. This model compression
aspect of graph-based linear models over high-dimensional VARs
appears to lead to improved forecasting performance in financial
prediction tasks with large panels and limited data.

A single-layered GCN still falls under the linear model class. We
write the conditional mean function f for GCN as f t = ĜX tw ,
where X t = [yt−1, · · · ,yt−p ] ∈ RN×p is the input data, Ĝ =

D̂
1/2

(G + I )D̂
1/2 is the normalized graph matrix apriori defined

based on the knowledge graph, D̂ii =
∑
j (G + I )i j , and w ∈ Rp

is the weight vector to be estimated. We impose ℓ2 regularization
on w , i.e. Ωf (f ) = λw ∥w ∥22. A single-layered GCN is a highly
structured instance of a high-dimensional VAR model; the model
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complexity for the forecasting component reduces from N 2p for
VAR to p in GCN because of parameter sharing and availability of
additional (weighted) graph connectivity. The limited data sample
scenarios greatly benefit from this model compression as long as
the knowledge graph has informative connectivity structure.

Higher-order Graph Convolutional Network. It has been shown
in literature that higher-order GCNs improve the predictive perfor-
mance inmany classification tasks [2, 3]. These networks learn from
powers of adjacency matrix by combining multiple graph scales.
We consider the N-GCN model given in [2] that feeds each power
of the adjacency matrix into parallel GCN layers and processes the
outputs through a fully connected layer. Both GCN and N-GCN
models can be stacked to form two-layered networks with an inter-
mediate non-linear activation function as done by [2, 33]. Note that
we adapt the GCN and N-GCN architectures to cater to time-series
forecasting, where we use only the previous time-steps as covari-
ates and aggregate loss over the (time) sample dimension. Both
GCN and N-GCN models have very few parameters to learn and
hence they serve as good candidate models to estimate conditional
mean function f in limited sample settings.

Temporal (Graph) Neural Network Models. We consider some
temporal neural network architectures e.g. LSTMs, temporal GCNs
which model the temporal dependence in the time-series. Multivari-
ate LSTMs are good at capturing long short-term dependencies but
lack the capacity to exploit graph-structured information and there-
fore tend to underperform when compared to the temporal GCNs.
There are many temporal graph convolution variants. For instance,
T-GCN follows graph convolution layers by gated recurrent units
[51]; along the same spirit, a multitude of architectures such as dy-
namic graph convolutional networks [38], diffusion convolutional
network [37], spatio-temporal graph convolutional networks [49]
etc. model dynamic dependence with recurrent/convolutional lay-
ers with some intermediate graph convolution operations. All these
models are highly over-parameterized and our empirical investi-
gation showed they don’t work well in the small sample regimes
where T ≤ N and N is even moderate as we consider.

4.2 Learning the error precision matrix
The nonzero pattern of the precision matrixC := ((ci j )) is closely
related to Gaussian graphical model [41], which corresponds to the
nonzero edges of the partial correlation matrix. Specifically, the
partial correlation ρi j between ϵit and ϵjt has the expression:

ρi j = corr(ϵit , ϵjt |{ϵkt : k , i, j}) = −
ci j

√
ciic j j

. (3)

The graphical lasso [23, 50] which considers an ℓ1-regularized neg-
ative log-likelihood criteria, is a popular method to estimate C
under the assumption that it is sparse. However, this leads to a
semi-definite optimization problem, which can be hard to scale for
large panels. Furthermore, as our goal is to jointly learn f (possibly
a GCN) and C , using a deep-learning API, we do not pursue this
approach — instead, we use a pseudo-likelihood-based approach [9]
outlined below.

For a multivariate Gaussian distribution, the conditional distri-
bution of ϵit given {ϵkt : k , i} is given by:

ϵit |{ϵkt : k , i} ∼ N

(∑
k,i

ρik

√
ckk
cii

ϵkt ,
1
cii

)
. (4)

The pseudo-likelihood [9] framework makes use of (4) to approxi-
mate the negative log-likelihood of ϵt in (1) by the following ex-
pression (ignoring constants)

PL(ρ,c) =
∑
t,i

log cii − cii

(
ϵit −

∑
k,i

ρik

√
ckk
cii

ϵkt

)2 . (5)

To learn a sparse ρ (or sparseC), one can use a sparsity inducing
penalty on ρ [27]. Additionally, as we discuss in Section 4.3 we can
also use KG-based information to guide sparsity pattern discovery
in ρ.

Following [6, 45], we consider a slight reformulation of (5) lead-
ing to the weighted loss function

ℓ(ρ, f ,c;ytt−p ) =
N∑
i=1

wi

(
ϵit −

N∑
h=1,h,i

ρih

√
chh
cii

ϵht

)2
, (6)

wherewi ’s are nonnegative weights, and c ∈ RN denotes the diag-
onal vector ofC . When the weightswi are taken to be equal to cii ,
this loss (6) is equivalent to the pseudo-likelihood function (5) when
cii ’s are fixed. Therefore, we provide a statistical interpretation for
(6) as an extension of pseudo-likelihood loss. Following [6], we will
usewi = 1/N for our loss function. With the weighted loss (6), we
reduce the learning ofC to the learning of {ρ,c}. However, since we
learn ρ, c (and f ) at the same time, the optimal solution of {cii }’s to
this formulation does not necessarily maximize the original pseudo-
likelihood loss (5), because of the missing logarithmic terms in (6).
However, according to (4), c−1ii is the conditional variance of ϵit
given ϵ−it . We make use of this relationship in Algorithm 1 while
updating the parameter cii ’s.

4.3 Using knowledge graph information
In a nutshell, KGs provide us useful alternative connectivity/similarity
information across time-series components. This can help in reduc-
ing the number of parameters in model (1) in the form of sparsity-
priors on the components C and f (when f is a GCN). This allows
us to obtain good forecasting for the financial time-series applica-
tions discussed in our experiments especially for a large number of
panels with limited training data.

4.3.1 Nearest neighbors based KGs. Given a KG3, we create a sym-
metric weight matrixG so that each entryGi j measures the strength
of similarity between i and j in the knowledge graph. However, the
weight matrixG given by the knowledge graph is not always sparse.
We use a “K-nearest neighbor” (KNN)-scheme to extract a sparse
connectivity structure E from the dense graph. Specifically, given
a pre-specified neighborhood sparsity-level K , for any company i ,
we can define its neighborhood NK (i), as those companies j’s that
have top K weights Gi j among j , i . We denote by

E = {(i, j) : i ∈ NK (j) or j ∈ NK (i)} ⊆ [N ] × [N ]

3E.g., the KG can denote the symmetric matrix containing the co-searched companies’
(on EDGAR) fractions—with high values implying higher pairwise similarity.
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the set of edges obtained by these K-nearest neighbors induced
by the graph G. In our experimental section (Section 5), we apply
nearest neighbor method to extract important connectivity from
two different graphs—the EDGAR cosearch KG and the returns
partial correlation, and demonstrate the gains of using KGs.

In passing we note that there may be other ways to extract a
sparse-matrix E from G. For example, different clustering tech-
niques can help identify the clusters of companies, and E can be
defined as the set of edges joined by the companies within the
same cluster. In our experience, these methods were found to be
outperformed by the KNN method.

4.3.2 Masking matrices. After we extract the sparse connectiv-
ity structure E fromG, we define two types of masking matrices
(hard/soft) as follows. The hard masking matrix is defined as

Mhard
i j =

{
1, if (i, j) ∈ E

∞, otherwise . (7)

IfGmax denotes themaximum entry ofG , we define the softmasking
matrixMsoft as follows

Msoft
i j =

{
Gmax
Gi j
, if (i, j) ∈ E

∞, otherwise
. (8)

These masking matrices — M ∈ {Mhard,Msoft} — are used to
impose modified regularization penalty on ρ. As the masking entry
becomes larger, the penalty imposed on the corresponding entry of
ρ increases. A large entry essentially zeros out the corresponding
element in ρ, reducing model complexity. With these additional
masking weights, we re-define our new masked regularizers as
follows:

Lasso: Ωρ (ρ) = λρ


M ⊙ ρ




1

Adaptive Lasso: Ωρ (ρ) = λρ


M ⊙ r ⊙ ρ




1 ,

(9)

where r is the element-wise reciprocal of the prior knowledge/pre-
estimator of ρ.

In our experience, the masked regularizers were found to be
very promising candidates from the perspective of learnability in
small sample settings. The model complexity for partial correlation
only grows as O(KN ) as opposed to O(N 2)without any knowledge
graph. This reducedmodel complexity for ρ becomes evenmore cru-
cial when the conditional mean function f is over-parameterized.
The reduced parameter space forC leads to improvements in pre-
dictive performance and sparsity of the network structure induced
byC—as we consistently observe in our empirical results.

4.3.3 Using multiple knowledge graphs. Sometimes we may have
multiple KGs encoding complementary side-information on the
panel components.We present a simple but useful strategy to extend
GregNets to handle multiple knowledge graphs. For simplicity,
we assume that we have weight matricesG(1) andG(2) from two
knowledge graphs. Let E(k ) be the sparse structure extracted from
G(k ), k = 1, 2, and G̃(k ) be the graph matrix of G(k ) restricted to
the edges E(k ), i.e. for (i, j) ∈ E(k ), G̃

(k )
i j = G

(k)
i j ; for (i, j) < E(k ),

G̃
(k )
i j = 0. For a given weight α ∈ (0, 1), we define the new graph

matrixG as the convex combination of the restricted matrices, i.e.
G = (1 − α)G̃

(1)
+ αG̃

(2), and we define the sparse structure E as
the union of E(1) and E(2). With the new graphG and the sparse

structure E, we can create the soft and hard masking matrices
and their corresponding masked regularizers induced by the new
graph. Note that hard masking matrix only looks at the union of
the individual components; and remains the same for all α ∈ (0, 1).
The soft masking matrix considers a weighted combination of the
constituent graphs, and changes with α . In the experiments section
(Section 5), we demonstrate that the combined EDGAR cosearch
KG and return PC graph outperforms either of them individually.

4.4 Joint Training
Finally, we present the joint training algorithm. This is given by
the following optimization problem:

min
ρ, f ,c

L(ρ, f ;c) := 1
T

T∑
t=1
ℓ(ρ, f ;c,ytt−p ) + Ωf (f ) + Ωρ (ρ) (10)

where, the optimization variables are (ρ, f ,c), with

ℓ(ρ, f ,c;ytt−p ) =
N∑
i=1

1
N

(
yit − fi (yt−1, . . . ,yt−p ) (11)

−

N∑
h=1,h,i

ρih

√
chh
cii

(
yht − fh (yt−1, . . . ,yt−p )

) )2
,

and Ωf ,Ωρ are regularizers that control the model complexity of
the conditional mean and the partial correlation structure. Ωf can
be an explicit regularizer (e.g., ℓ1-penalty) as in the case of VAR
model or an implicit regularization (e.g. dropout) in the context of
GCNs. Ωρ are regularizers with/without KG-based masking that
induce the sparsity structure of ρ (i.e. that of C). We first outline
our algorithm for joint optimization when the conditional mean
function is taken to be the pth-order VAR and the partial correlation
regularizers are taken to be as those in (9). We denote this model as
VAR-PC (VAR with partial correlation). In Section 4.4.2, we describe
our joint optimization setup when conditional mean function is
any multivariate time-series forecasting model with deep learning
APIs via the implementation of a pseudo-likelihood layer.

4.4.1 Proximal Gradient Descent Algorithm for optimizing VAR-PC.
We develop a custom algorithm for (10) when f is a VAR model (2)
parameterized by the tensor A ∈ RN×N×p , and the correspond-
ing Ωf (f ) becomes ΩA(A). In brief, our algorithm is alternately
updating w = (A, ρ) by proximal gradient descent [8, 42] and a
model-based update for c (in line 5 of Algorithm 1). For the latter,
we make use of the fact that each cii is the reciprocal of the con-
ditional variance of ϵit given ϵ−it (see (4); and also Section 4.2 for
further details). The algorithm is detailed in Algorithm 1.

It is important to highlight here that the VAR-PCmodel is consid-
ered in [6] and constitutes a special case of the modeling framework
without any KG input. They propose a generalized active shooting
algorithm to solve the joint optimization problem with VAR fore-
casting component. Their optimization algorithm is not scalable for
even moderate number of multivariate time-series. In fact, our ex-
perimentationwith their available nets package4 in R demonstrates
our algorithm is 100×−250× faster than their solver in optimizing
the VAR-PC problem for N = 403 firms in SP500 and T = 504

4https://cran.r-project.org/web/packages/nets/index.html

https://cran.r-project.org/web/packages/nets/index.html
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Algorithm 1 Algorithm for optimizing VAR-PC

Require: Learning rate γ , InitializationA[0], ρ[0],C[0]

1: for k = 0, 1, 2 . . . do
2: Updatew[k+1] = (A[k+1], ρ[k+1]) by solving

min
A,ρ

γ

2 ∥w − w̃ ∥2 + ΩA(A) + Ωρ (ρ),

where w̃ = w[k] − γ∇wL(A[k ], ρ[k ],c[k ])

3: Compute ϵ [k+1]it = yit − fit (yt−1t−p ;A[k+1])

4: Compute u[k+1]it = ϵ
[k+1]
it −

∑
j,i ρ

[k+1]
i j

√
c [k ]j j

c [k ]ii

ϵ
[k+1]
jt

5: Compute c[k+1]ii = 1/Var(u[k+1]it )

6: end for

samples5, and their final objective values are about 1%− 17% higher
than the objective values obtained by our algorithm.

4.4.2 Joint optimization with Pseudo-Likelihood Layer in Keras (or
Tensorflow). For joint learning of a general multivariate time-series
NN forecasting model e.g. GCNs along with the error correlation
structure, we define a pseudo-likelihood layer that has two sets
of trainable parameters {ρ,c} to learn the correlation structure.
The layer takes the prediction f , the response variable y, and the
knowledge graph masking matrixM and sums the weighted loss ℓ
given in (11) with the knowledge-graph based regularization Ω(ρ).
This loss is backpropagated to the conditional mean function f
as training proceeds. However, this loss definition alone is not
sufficient to arrive at the interpretable correlation matrix with
backpropagation as there is a non-identifiability problem with the
correct scales of c in the loss (11). We again use the fact that cii
is the reciprocal of the conditional variance of ϵit given ϵ−it and
use this to update the vector c during backpropagation stage of
the algorithm and let the deep learning API update the partial
correlation via the backpropagated gradients. This ensures the
interpretation of the two components isn’t lost during training. This
allows use of any SGD optimizer and its variants to jointly estimate
both the conditional mean and the error correlation structure.

There are some caveats in using the SGD for joint optimiza-
tion that need to be addressed to ensure the partial correlation
structure is both symmetric and sparse at the conclusion of the
optimization procedure. Without any explicit symmetry constraint
on the partial correlation structure, small numerical differences
in auto-differentiation for ρi j and ρ ji can cause a small drift in
the symmetry of the partial correlation structure. Therefore, we
impose a symmetry constraint on the partial correlation elements
by symmetrizing the matrix ρ after each gradient update via ρ(k ) =
0.5(ρ(k ) + (ρ(k ))⊤). It is known that although SGD methods with
Lasso regularizers shrink the parameters during training, they don’t
precisely produce sparse parameters. This means the true sparse
structure of the partial correlation is not recovered. Therefore at
convergence of the stochastic optimization algorithm for the joint
optimization, we set the parameters for the conditional mean func-
tion f and vector c as non-trainable and apply a proximal gradient
5For one hyperparameter setting (λA, λρ ), our algorithm takes a few seconds to one
minute, while theirs takes at least an hour

descent on the matrix ρ to recover the sparse solution. This allows
us to compare the gains in the sparsity with the KG-based regular-
izers over the vanilla lasso regularizer for better interpretation.

5 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of GregNets on a real-
world financial application, and demonstrate the benefits of using
knowledge graph information. In Section 5.1, we first introduce
the time series data sets and the associated KGs. All the datasets
used in our experiments are available in the public domain. We
then introduce the experimental setup in Section 5.2 and discuss
the results in Section 5.3.

5.1 Data
Stock Volatilities Time-Series. We evaluate the combination of

time-series predictionwith KG-information in the context of market
volatilities. The particular empirical application has been studied
by multiple works [6, 16–18]. We consider two different financial
markets S&P500 and S&P1500 and define the daily volatility, as
given in [6, 16, 44], using the daily high and low stock prices:

σ̃ 2
it = 0.361(logphighit − logplowit )2 (12)

where phighit and plowit denote the maximum and minimum price of
stock i on day t . There are some valuable insights in a large body of
literature regarding the influence of common factors in the network
on the sparsity level of correlation structure. In summary, [7] shows
that it is necessary to remove the market-wide and sector-wide
volatility factors to evaluate the idiosyncratic behavior in terms
of correlation of firms. Following [6], we condition on the corre-
sponding market index: S&P500 or S&P1500 and 9 sector indices6.
This reduces the number of companies to 403 for S&P500 and 1, 072
for S&P1500 markets. Our target variable y is the idiosyncratic
volatility residuals computed via least squares adjustment.

Knowledge Graph using EDGAR Cosearch. We follow [36] to gen-
erate a KG between firms by collecting cosearch of peer firms by
users of the EDGAR website (https://www.sec.gov). Analysts collec-
tively search for financial data on economically-related or similar
firms. [36] explored how the cosearch of peer firms by users of
EDGAR explains a degree of similarity between firms, which is su-
perior to standard industry classification of peer firms in the context
of cross-sectional regression of monthly stock returns. This moti-
vates us to use cosearch to extract meaningful information about
graph connectivity and construct a knowledge graph. Specifically,
for each pair of firms (i, j), the number of unique users searching
for both firms i and j is used to define a daily co-search proportion,
which we aggregate annually. Although these search peers may not
reflect judgement of an individual user, they reflect the collective
view of similarity between firms across all users. We evaluate the
effectiveness of this KG within the context of GregNets when used
to learn (a)C using KG-guided masked regularizers and (b) f via
GCNs with KG-guided adjacency matrices.

6Consumer Discretionary (XLY), Consumer Staples (XLP), Energy (XLE), Financials
(XLF), Health Care (XLV), Industrials (XLI), Materials (XLB), Information Technology
(XLK), and Utilities (XLU).

https://www.sec.gov


Knowledge Graph Guided Simultaneous Forecasting and Network Learning for Multivariate Financial Time Series KDD MLF 2021, August, 2021,

Returns partial correlation graph as KG (PC KG):. In addition
to the EDGAR co-search KG, we test our GregNets framework
using another KG created from open-source data. This is based on
a different financial time series—the stock return, defined as

rit = p
close
it /pclosei,t−1 − 1, (13)

wherepcloseit denotes the close price of stock i on day t . Following the
same procedure used for processing of volatilities, we remove the
market-wide and sector-wide factors of returns to get the idiosyn-
cratic return residuals. We then compute the Ledoit-Wolf estimator
of the covariance matrix [35], take the inverse, and get the partial
correlation matrix via (3). We expect the conditional correlation
structure of idiosyncratic return residuals may provide some in-
formation into the structure of volatility residuals. Therefore, we
consider this as our second example of KG.

5.2 Experimental Setup
Our experimental setup considers two financial markets S&P500
and S&P1500, using daily stock volatilities residuals from 2013-2016.
This period was selected because EDGAR cosearch data is only
publicly available till 2017 second quarter. We set 2013-2014 as the
training period, 2015 as hyperparameter validation period and 2016
for final model evaluation. There are 504 days in the training period
(as compared to the 403 companies for SP500 and 1,072 companies
for SP1500) to evaluate our proposed methodology on small sample
size regime. We evaluate our modelling approach in terms of R2
performance and sparsity of partial correlation structure. We follow
similarR2 definition as used in [6] where the computation ofR2 uses
zero-mean prediction in the denominator (as the market and sector
factors have been accounted for). However, we consider the joint
R2 of the conditional mean and the partial correlation structure.

We evaluate the utility of KG-based regularizers (constructed
from two different knowledge graphs, in particular EDGARCosearch-
based KG and returns PC KG) by comparison with various regu-
larizers that do not use additional knowledge graph connectivity
information. We perform the optimization for VAR-PC using the
algorithm proposed in Section 4.4.1 and in this case the baseline sce-
nario refers to non-masked regularized VAR-PC model optimized
via our own algorithm. We also evaluate the effectiveness of the
joint learning framework for NN-PC with Knowledge graphs in
the context of general multivariate time-series models (e.g. LSTMs,
GCNs, N-GCNs, T-GCNs) with Keras using the optimization strat-
egy outlined in section 4.1.

5.3 Discussion of Results
VAR-PC using cosearch graph. We present our results for dif-

ferent regularizers in Table 1 for prediction of daily volatilities’
residuals defined in Section 5.1. We compare the joint learning
framework with the two stage approach with VAR-ridge, followed
by Ledoit-Wolf estimator for precision matrix on the residuals. We
see large gains in R2 with the joint framework over this baseline.
We also compare our proposed KG-based regularizers with their
vanilla lasso/adaptive lasso counterparts. We observe that KG-based
7Ωρ (ρ) denotes the type of regularizers specified in (9).
8Two-stage algorithm with ridge penalty on VAR and Ledoit-Wolf estimator [35]
applied on the residuals.

Table 1: Evaluating different KG-masked regularizers for
VAR-PC in predicting daily volatilities for S&P1500.

Model KG Mask Ωρ (ρ) 7 R2(%) nnz(ρ)(%)

VAR-Ridge8 N/A Ledoit-Wolf 20.97 100.0
None 38.63 7.45

VAR-PC Hard Lasso 38.90 7.38
Soft 39.45 4.91
None 37.61 4.72

VAR-PC Hard Adaptive 38.05 3.37
Soft Lasso 38.58 3.14
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Figure 2: Test R2 and nonzeros of partial correlation ρ with
varying nearest neighbors K for VAR-PC Lasso with soft
masking of the cosearch graph for S&P1500 volatilities.
Dashed lines correspond to Lasso without KG information.
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Figure 3: Sparsity patterns (binarymatrix) of partial correla-
tion ρ with sector blocks, illustrated on a submatrix formed
by 40% random companies from S&P1500. Left panel: Lasso
with softmasking of cosearch graphwithK = 75; right panel:
Lasso without any KG information.

regularizers outperform both in terms of improvement in R2 and
sparsity of the estimated error correlation structure.

In Fig. 2, we display the test R2’s of VAR-PC with soft masking
of the cosearch graph with different number of nearest neighbors
K , as well as the sparsity of the learned partial correlation ρ for
S&P1500. The dashed lines correspond to VAR-PC Lasso without
using any KG. We note that we start to see improvement in R2 by
using KG from K = 75; also, the KG-masked partial correlation
structure is much sparser than the one learned with vanilla Lasso.

Moreover, in Fig. 3, we show the sparsity patterns of partial
correlation along with the blocks of 9 sectors for two different
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algorithms, with/without use of cosearch KG information. For il-
lustration purpose, we sample 40% random companies in S&P1500
from each sector (433 companies in total) to plot the heatmap. The
figure indicates that even after removal of market and sector trends,
the volatility residuals still tend to have more partial correlation
connections within the sectors. In Fig. 5, we compare the test R2 for
each sector for both VAR-PC and N-GCN-PC models, and compare
these R2 under the two cases of using and not using KG information
for correlation estimation. We also include the two-stage baseline
model VAR-Ridge for comparison.

VAR-PC using the combined graphs. In Fig. 4, we present the test
R2 of VAR-PC using convex combination of returns PC graph and
the cosearch graph, as well as some properties of the combined
graph. In the plot, we take α ∈ {0, 0.1, 0.2, . . . , 0.9, 1} to show the
performance of the different weighted graphs with both hard and
soft masking matrices, where α = 0 corresponds to the return PC
graph, while α = 1 corresponds to the cosearch graph. For both
S&P500 and S&P1500 markets, we see a flat curve for hard masking
when α ∈ (0, 1), above the R2 of both end points, which implies
using the union of the sparse structure helps improve the perfor-
mance. For the soft masking case, the best combination (α = 0.9)
outperforms the test R2 from hard masking. For S&P500, the test R2
is 35.90%, which is even better than any results using the cosearch
graph alone. For S&P1500, the test R2 using the combination with
K = 75 is comparable to the cosearch graph masking with K = 125.
Compared to soft masking on cosearch graph, soft masking with
α = 0.9 may have almost the same effect on the edges from the
cosearch graph, but it also allows for the edges from the return PC
graph (with high penalties). Therefore, the superior performance of
the combined graph over the cosearch graph implies that the strong
partial correlation connections are mainly from the cosearch graph,
but the return PC graph contains some important weak connections
that can help improve the prediction.

Multivariate (Graph) Neural Networks with partial correlation
using KGs. We present GregNets results for the joint learning
framework for various multivariate time-series models with partial
correlation in Table 2. For each model, we display the two cases
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Figure 4: Test R2 of our model using different convex combi-
nation of the cosearch graph and returns’ PC graph for Lasso
with soft masking and K = 75. α = 0 corresponds to cosearch
graph; α = 1 corresponds to the returns’ PC graph. “hard”
and “soft” denote different masking strategies.

Table 2: Evaluating multiple forecasting models for joint
learning with knowledge-graph based regularizers for

daily volatilities for S&P1500.

Model KG-mask R2(%) nnz(ρ)(%)
VAR-PC None 38.63 7.45
VAR-PC Hard/Soft 39.46 4.91
LSTM-PC None 34.96 38.95
LSTM-PC Hard/Soft 35.62 24.71
T-GCN-PC None 34.68 36.65
T-GCN-PC Hard/Soft 36.44 18.36
GCN-PC None 42.75 28.71
GCN-PC Hard/Soft 44.38 10.58
N-GCN-PC None 43.25 28.75
N-GCN-PC Hard/Soft 44.83 13.47

corresponding to whether KG-based masking is used or not in defin-
ing the regularizer. We consistently see a gain in performance in
terms of R2 and sparser precision-matrix estimates with the use of
KG-based regularizers. We also highlight that VAR-PC models out-
perform both LSTM-PC and temporal graph convolution networks
(T-GCN-PC) perhaps due to over-parameterization in these recur-
rent NN architectures; hence these models tend to overfit severely
when there are few samples to learn from. We see significant gains
in predictive performance with simpler graph convolution architec-
tures such as GCNs and N-GCNs. This confirms the effectiveness
of EDGAR cosearch graph as an adjacency matrix in the context of
stock volatility prediction with GCNs. We similarly observe better
predictive performance by learning from graph scales with N-GCN
as observed in other applications (e.g. citation datasets [2, 3]).

6 CONCLUSION
In summary, we propose a general framework GregNets for jointly
learning multivariate time-series models (e.g. VARs, GCNs, LSTMs
etc.) with their correlation structures using knowledge graphs with
our proposed pseudo-likelihood layer. Based on empirical evidence,
our approach leads to improved prediction, reduced model com-
plexity, computational efficiency and interpretability.
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Figure 5: Sector-wise R2 in predicting daily volatilities for
S&P1500.
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