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Chance Optimization
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 Success: a set defined in terms of design parameters and probabilistic uncertainties.



Chance Optimization
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Success Set

Design parameters

Uncertain parameters with given probability distributions             

Polynomials

Polynomials

Chance Optimization 
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• Assets with uncertain rate of return 𝜔𝜔𝑖𝑖~𝑝𝑝𝑝𝑝𝑖𝑖(𝜔𝜔), 𝑖𝑖 = 1, … , 4

• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = Achive a return higher than "𝑝𝑝∗"
Return = {𝜔𝜔1𝑥𝑥1 + 𝜔𝜔2𝑥𝑥2 + 𝜔𝜔3𝑥𝑥3 + 𝜔𝜔4𝑥𝑥4 ≥ 𝑝𝑝∗}

• 𝑥𝑥𝑖𝑖 invested money in asset 𝑖𝑖

Chance Optimization 

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒙𝒙𝟒𝟒

𝝎𝝎𝟏𝟏 𝝎𝝎𝟐𝟐 𝝎𝝎𝟑𝟑 𝝎𝝎𝟒𝟒

𝝎𝝎𝟏𝟏𝒙𝒙𝟏𝟏 + 𝝎𝝎𝟐𝟐𝒙𝒙𝟐𝟐 + 𝝎𝝎𝟑𝟑𝒙𝒙𝟑𝟑 + 𝝎𝝎𝟒𝟒𝒙𝒙𝟒𝟒

Example: Portfolio Selection Problem
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Invested Money 

Return• Total investment: 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 ≤ 𝑥𝑥∗
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Chance Constrained Optimization:
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Chance Optimization Success Set
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Chance Constrained Optimization:
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Chance Constrained Optimization 

Chance Optimization Success Set

Success Set Acceptable risk level
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 These problems are, in general, nonconvex and computationally hard.

 Existing Methods For Chance (Constrained) Optimization:

• Sampling based Approaches

e.g., Linear Chance Constraints with Gaussian Uncertainties 

• Particular Classes of Constraints and Uncertainties

Chance (Constrained) Optimization

 Multivariate integral
 In general, It does not have any analytical solution

• e.g., 
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 In this presentation, we develop an approach to address a general class of Chance 
(Constrained) Optimizations.

We look for convex relaxations in the form of Semidefinite Programs.

• Theory of Measure and Moments
• Theory of Sum-Of-Squares Polynomials
• Duality of Conic Programs 

• Ashkan Jasour, "Convex Approximation of Chance Constrained Problems: Application in Systems and Control", School of Electrical Engineering and 
Computer Science, The Pennsylvania State University, 2016. 

• Ashkan Jasour, Necdet S. Aybat, and Constantino Lagoa, ”Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets”, SIAM 
Journal on Optimization, 25(3), 1411–1440, 2015.

• Ashkan Jasour, "Risk Aware and Robust Nonlinear Planning", Course Notes for MIT 16.S498, rarnop.mit.edu, 2019.

Chance (Constrained) Optimization

To obtain convex relaxations, we leverage on:
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• All function and constraints are polynomial functions.

• Sets are Compact (Archimedean1).

Assumptions:

To satisfy Archimedean, we can add the (redundant) polynomial 𝑀𝑀 − 𝑥𝑥 2 where 𝑀𝑀 ≥ 0 such that the set 
{𝑥𝑥:𝑀𝑀 − 𝑥𝑥 2 ≥ 0} contains the set. 

Chance (Constrained) Optimization

Chance Optimization: Chance Constrained Optimization:

1: For more information: rarnop.mit.edu, 2019 Lecture 3, pages 58-59
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Step 1: Infinite-dimensional LP
• We treat deign variables 𝑥𝑥 as random variables. 
• Instead of looking for “𝑥𝑥”, we look for its probability distribution (probability measure).

Step 2: Infinite-dimensional SDP
• Instead of looking for measures, we look for the moment sequence (i. e. E 𝑥𝑥𝛼𝛼 ,𝛼𝛼 = 0, … . ,∞)

of the measures.

Step 3: Finite SDP
• Truncate matrices of SDP of Step 2 (truncated moments)

Measure and Moment based Chance Optimization - Overview

Infinite LP
in measure space

Infinite SDP
in moment space

Finite moment SDP

Step 4: We extract the solution of the original chance optimization by looking at the moments.
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Measure and Moment based Chance Constrained Optimization - Overview

• We look at the dual optimization of moment SDP of the chance optimization. 

• Deterministic Optimization:

• We obtain Sum-Of-Squares optimization whose solution, (e.g.,              ) approximates the feasible 
set of chance constrained optimization.

• We obtain inner and outer approximation of the chance constrained set.
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Measure and Moment 
based 

Chance Optimization
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• Unknown Probability measure of Design parameters: 𝑥𝑥~𝜇𝜇𝑥𝑥
• Given Probability measure of uncertain parameters: 𝜔𝜔~𝜇𝜇𝜔𝜔

• We treat deign variables 𝑥𝑥 as random variables. 
• Instead of looking for “𝑥𝑥”, we look for its probability measure.
• Two sets of probability measures:

 We obtain the equivalent optimization in terms of 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝜔𝜔.

Step 1: Infinite-dimensional LP
Reformulate Chance Optimization problem in terms of measures

vsOPT-MIT-2020
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•

Given Success Set in 𝑥𝑥,𝜔𝜔 Space: Given Feasible Set:

Step 1: Infinite-dimensional LP
Reformulate Chance Optimization problem in terms of measures

vsOPT-MIT-2020
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•

Infinite dimensional Linear Program in Measures

(Upper bound measure)

Step 1: Infinite-dimensional LP
Reformulate Chance Optimization problem in terms of measures

𝜇𝜇: Slack Measure
𝜇𝜇𝑥𝑥: Probability  Measure Assigned to 𝑥𝑥
𝜇𝜇𝜔𝜔: Known Probability  Measure of 𝜔𝜔
𝜇𝜇𝑥𝑥 × 𝜇𝜇𝜔𝜔: joint measure of 𝑥𝑥 and 𝜔𝜔

(volume of measure 𝜇𝜇 )

vsOPT-MIT-2020
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𝑥𝑥 𝜔𝜔

Measure space

pr(𝜔𝜔)

(𝒙𝒙,𝝎𝝎) sapce

𝜔𝜔

𝑥𝑥

Interpretation of Measure LP:

• Measure 𝜇𝜇𝑥𝑥 with pdf pr 𝑥𝑥
• Measure 𝜇𝜇𝜔𝜔 with pdf pr 𝜔𝜔

pr(𝑥𝑥)

vsOPT-MIT-2020
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𝑥𝑥
𝜔𝜔

Measure space

pr(𝑥𝑥)
pr(𝜔𝜔)

• Suppose that measure 𝜇𝜇𝑥𝑥 assigned to the 𝑥𝑥 is given:

• We want to calculate the probability of success in terms of the 
probability measures 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝜔𝜔.

vsOPT-MIT-2020
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𝑥𝑥
𝜔𝜔

Measure space

pr(𝑥𝑥)
pr(𝜔𝜔)

• Suppose that measure 𝜇𝜇𝑥𝑥 assigned to the 𝑥𝑥 is given:

• We want to calculate the probability of success in terms of the 
probability measures 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝜔𝜔.

• From the definition of the probability:

Joint probability measure of (𝑥𝑥,𝜔𝜔)

𝑥𝑥
𝜔𝜔

pr(𝑥𝑥)pr(𝜔𝜔)

pr(𝑥𝑥)
pr(𝜔𝜔)
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𝑥𝑥
𝜔𝜔

pr(𝑥𝑥)pr(𝜔𝜔)

pr(𝑥𝑥)
pr(𝜔𝜔)

 Probability of success in terms of 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝜔𝜔

• This is a multivariate integral over the (nonconvex )set

• Such integral, in general, does not have a closed form solution.

vsOPT-MIT-2020
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𝑥𝑥
𝜔𝜔

pr(𝑥𝑥)pr(𝜔𝜔)

pr(𝑥𝑥)
pr(𝜔𝜔)

 Probability of success in terms of 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝜔𝜔

• This is a multivariate integral over the (nonconvex )set

• Such integral, in general, does not have a closed form solution.

𝑥𝑥
𝜔𝜔

• To calculate this integral, we introduce a slack measure 𝜇𝜇 .
• Measure 𝜇𝜇 is supported in the set
• Measure 𝜇𝜇 is equal to measure 𝜇𝜇𝑥𝑥 × 𝜇𝜇𝜔𝜔 in the set 
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𝑥𝑥
𝜔𝜔

pr(𝑥𝑥)pr(𝜔𝜔)

pr(𝑥𝑥)
pr(𝜔𝜔)

 Probability of success in terms of 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝜔𝜔

• This is a multivariate integral over the (nonconvex )set

• Such integral, in general, does not have a closed form solution.

𝑥𝑥
𝜔𝜔

• To calculate this integral, we introduce a slack measure 𝜇𝜇 .
• Measure 𝜇𝜇 is supported in the set
• Measure 𝜇𝜇 is equal to measure 𝜇𝜇𝑥𝑥 × 𝜇𝜇𝜔𝜔 in the set 
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𝑥𝑥
𝜔𝜔

pr(𝑥𝑥)pr(𝜔𝜔)

pr(𝑥𝑥)
pr(𝜔𝜔)

 Probability of success in terms of 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝜔𝜔

• This is a multivariate integral over the (nonconvex )set

• Such integral, in general, does not have a closed form solution.

𝑥𝑥
𝜔𝜔

• To calculate this integral, we introduce a slack measure 𝜇𝜇 .
• Measure 𝜇𝜇 is supported in the set
• Measure 𝜇𝜇 is equal to measure 𝜇𝜇𝑥𝑥 × 𝜇𝜇𝜔𝜔 in the set 

 To construct such measure 𝝁𝝁, we solve the following optimization
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𝑥𝑥
𝜔𝜔

pr(𝑥𝑥)pr(𝜔𝜔)

pr(𝑥𝑥)
pr(𝜔𝜔)

 Probability of success in terms of 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝜔𝜔

• This is a multivariate integral over the (nonconvex )set

• Such integral, in general, does not have a closed form solution.

𝑥𝑥
𝜔𝜔

• To calculate this integral, we introduce a slack measure 𝜇𝜇 .
• Measure 𝜇𝜇 is supported in the set
• Measure 𝜇𝜇 is equal to measure 𝜇𝜇𝑥𝑥 × 𝜇𝜇𝜔𝜔 in the set 

 To construct such measure 𝝁𝝁, we solve the following optimization

Optimal Solution
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 To maximize the probability of success ,at the same time, we look for 
measure 𝝁𝝁 and measure 𝝁𝝁𝒙𝒙.

𝑥𝑥
𝜔𝜔

pr(𝑥𝑥)pr(𝜔𝜔)

pr(𝑥𝑥)
pr(𝜔𝜔)

𝑥𝑥
𝜔𝜔
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•

Infinite dimensional Linear Program in Measures

𝑥𝑥
𝜔𝜔

pr(𝑥𝑥)pr(𝜔𝜔)

Step 1: Infinite-dimensional LP
Reformulate Chance Optimization problem in terms of measures

vsOPT-MIT-2020
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Theorem: The original chance optimization and measure-LP are equivalent in the following sense :

Theorem 3.1 : A. Jasour, N. S. Aybat, and C. Lagoa ”Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets”, SIAM Journal on Optimization, 25(3), 1411–1440, 2015.

 The optimal values are the same, i.e.

vsOPT-MIT-2020
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Theorem: The original chance optimization and measure-LP are equivalent in the following sense :

Theorem 3.1 : A. Jasour, N. S. Aybat, and C. Lagoa ”Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets”, SIAM Journal on Optimization, 25(3), 1411–1440, 2015.

 The optimal values are the same, i.e.

 If 𝝁𝝁∗ is an optimal solution of measure-LP , then any 𝒙𝒙∗ ∈ 𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔(𝝁𝝁∗) is an optimal solution of the original chance optimization. 

vsOPT-MIT-2020
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Theorem: The original chance optimization and measure-LP are equivalent in the following sense :

Theorem 3.1 : A. Jasour, N. S. Aybat, and C. Lagoa ”Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets”, SIAM Journal on Optimization, 25(3), 1411–1440, 2015.

 The optimal values are the same, i.e.

 If 𝝁𝝁∗ is an optimal solution of measure-LP , then any 𝒙𝒙∗ ∈ 𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔(𝝁𝝁∗) is an optimal solution of the original chance optimization. 

 If                  is unique global optimal solution of the original problem, 

Then                         is unique optimal solution of  measure -LP.
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Theorem: The original chance optimization and measure-LP are equivalent in the following sense :

Theorem 3.1 : A. Jasour, N. S. Aybat, and C. Lagoa ”Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets”, SIAM Journal on Optimization, 25(3), 1411–1440, 2015.

 The optimal values are the same, i.e.

 If 𝝁𝝁∗ is an optimal solution of measure-LP , then any 𝒙𝒙∗ ∈ 𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔(𝝁𝝁∗) is an optimal solution of the original chance optimization. 

 If                  is unique global optimal solution of the original problem, 

Then                         is unique optimal solution of  measure -LP.

 If                                                are “𝑝𝑝” global optimal solution of the original problem,

Then                                                                             is unique optimal solution of optimization in measures.

vsOPT-MIT-2020
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Equivalent Problem in the measure space:

Chance Optimization 1

2

Infinite dimensional LP

Equivalent Problem in the moment space:3

• We need to write the objective function and constraints of the measure-LP in terms of the moments.

• Instead of looking for measures, we look for the moment sequence (i. e. E 𝑥𝑥𝛼𝛼 ,𝛼𝛼 = 0, … . ,∞)
of the measures.

vsOPT-MIT-2020
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Let                                                                                     be a semialgebraic (Archimedean).

Sequence      has a representing measure with support contained in the set       , if and only if, it satisfies:

Necessary and Sufficient Moment Condition

Localizing MatrixMoment Matrix

• Chapter 3: Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009.

vsOPT-MIT-2020
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Let                                                                                     be a semialgebraic (Archimedean).

Sequence      has a representing measure with support contained in the set       , if and only if, it satisfies:

Necessary and Sufficient Moment Condition

Localizing MatrixMoment Matrix

Example: Moment matrix of order 𝑑𝑑 = 2 of a measure in 

vsOPT-MIT-2020
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Let                                                                                     be a semialgebraic (Archimedean).

Sequence      has a representing measure with support contained in the set       , if and only if, it satisfies:

Necessary and Sufficient Moment Condition

Localizing MatrixMoment Matrix

Example: Localizing matrix for moments up to order 4 of a Measure      in         and polynomial 𝑔𝑔 𝑥𝑥 = 𝑎𝑎 − 𝑥𝑥12 − 𝑥𝑥22

Example: Moment matrix of order 𝑑𝑑 = 2 of a measure in 

vsOPT-MIT-2020
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Let                                                                                     be a semialgebraic (Archimedean).

Sequence      has a representing measure with support contained in the set       , if and only if, it satisfies:

Necessary and Sufficient Moment Condition

Localizing MatrixMoment Matrix

(nonnegative)measure

vsOPT-MIT-2020
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Equivalent Problem in the measure space:2

Moment Representation of Measures:3

Moments:

Measure: Moments:

Measure:

Measure: Moments:

moments of joint measure 𝜇𝜇𝑥𝑥 × 𝜇𝜇𝜔𝜔(nonnegative) measure moments of 𝜇𝜇

vsOPT-MIT-2020
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Equivalent Problem in the measure space:

Chance Optimization 1

2

Infinite dimensional LP

Equivalent Problem in the moment space:3

• Lemma 3.2 : A. Jasour, N. S. Aybat, and C. Lagoa ”Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets”, SIAM Journal on Optimization, 25(3), 1411–
1440, 2015.

Equivalent

Equivalent

Infinite dimensional SDP

vsOPT-MIT-2020

http://epubs.siam.org/doi/abs/10.1137/140958736


37

Equivalent Problem in the moment space:3

Finite SDP in moments:4

Infinite dimensional SDP

Truncated moment SDP

Relaxation

in terms of moment up to order 2𝑑𝑑

vsOPT-MIT-2020
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Equivalent Problem in the moment space:3

Finite SDP in moments:4

Infinite dimensional SDP

Truncated moment SDP

Relaxation

• Theorem 3.3 : A. Jasour, N. S. Aybat, and C. Lagoa ”Semidefinite Programming For Chance Constrained Optimization Over Semialgebraic Sets”, SIAM Journal on Optimization, 25(3), 1411–
1440, 2015.

in terms of moment up to order 2𝑑𝑑

Theorem: 

monotonically converges

 Optimal solution of the finite SDP converges to the optimal solution of the original SDP as 𝑑𝑑 → ∞

 For all 𝑑𝑑 ≥ 1 Upper bound of optimal objective function of chance optimization

vsOPT-MIT-2020
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Equivalent Problem in the measure space:

Chance Optimization 1

2

Infinite dimensional LP

Equivalent Problem in the moment space:3
Equivalent

Equivalent

Finite SDP in moments:4

Infinite dimensional SDP

Truncated moment SDP

Relaxation

vsOPT-MIT-2020
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Extraction of the Solution from the moments: 

• We are going to identify the Dirac measures by looking at the moments of 𝑥𝑥 obtained by solving finite SDP. 

• We extract the solution by looking at the support of the Dirac measures.

vsOPT-MIT-2020
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Extraction of the Solution from the moments: 

• We are going to identify the Dirac measures by looking at the moments of 𝑥𝑥 obtained by solving finite SDP. 

• We extract the solution by looking at the support of the Dirac measures.

Sequence                                        is the moment sequence of a Dirac measure if and only if:

Dirac Measure:

 To extract the support (solution): 

vsOPT-MIT-2020
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Extraction of the Solution from the moments: 

• We are going to identify the Dirac measures by looking at the moments of 𝑥𝑥 obtained by solving finite SDP. 

• We extract the solution by looking at the support of the Dirac measures.

Sequence                                           is the moment sequence of linear positive combination of 𝑝𝑝 Dirac 
measure (𝑝𝑝 -atomic representation) if and only if

(𝑀𝑀𝑑𝑑 is a flat extension of 𝑀𝑀𝑑𝑑−1)

𝒓𝒓 -atomic measure:

 To  extract the support (solution): 
we need to solve a linear algebra ( relies on moment matrix factorization Md y = VVT ) .1

1:   Algorithm 4.2 : Jean Bernard Lasserre, “Moments, Positive Polynomials and Their Applications” Imperial College Press Optimization Series, V. 1, 2009.

⋯

vsOPT-MIT-2020
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Moment Relaxation (SDP)

As 𝑑𝑑 → ∞

Chance Optimization 

Finite SDP of order 𝑑𝑑: 

 If obtained solution       satisfies rank condition

 Otherwise, increase 𝑑𝑑 and solve new SDP.

vsOPT-MIT-2020
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Example 1
𝑥𝑥

𝜔𝜔

(𝒙𝒙,𝝎𝝎) sapce

𝒔𝒔 𝒙𝒙,𝝎𝝎 ≥ 𝟎𝟎

vsOPT-MIT-2020
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Moment SDP of Order 4:

Example 1
𝑥𝑥

𝜔𝜔

(𝒙𝒙,𝝎𝝎) sapce

𝒔𝒔 𝒙𝒙,𝝎𝝎 ≥ 𝟎𝟎

vsOPT-MIT-2020
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Obtained result:

Upper bound of probability of success

eigenvalues =0.0046, 1.2512
eigenvalues = 0.0046, 0.7011, 1.4022

Rank ≈ 1 

Rank Test:

𝑥𝑥∗ = 𝑦𝑦𝑥𝑥1 = 𝐸𝐸[𝑥𝑥] = 0.5

Moment of Dirac probability 
measure 𝜇𝜇𝑥𝑥 = 𝛿𝛿𝑥𝑥∗

𝑥𝑥

𝜔𝜔

0.5

(𝒙𝒙,𝝎𝝎) sapce
 As relaxation order 𝑑𝑑 increase 𝑦𝑦(1) converges to the true probability 

𝑦𝑦(1)

𝑑𝑑

0.506

0.66

𝒔𝒔 𝒙𝒙∗,𝝎𝝎 ≥ 𝟎𝟎

vsOPT-MIT-2020
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Example: 2 

𝑥𝑥

𝜔𝜔

d=5

𝑥𝑥2∗ = −0.66, 𝑥𝑥1∗ = 0.66

≈ 2
Rank Test:

0.66

-0.66

0

https://github.com/jasour/rarnop19/tree/master/Lecture7_ChanceOptimization/Example_2_Moment_ChanceOpt

vsOPT-MIT-2020
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Measure and Moment based Chance Optimization
Dual Optimization

vsOPT-MIT-2020
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Chance Optimization 

Finite Moment SDP:

 We find the dual optimization of Moment-SDP. (Duality of Conic Program)

vsOPT-MIT-2020
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Dual Optimization:

Moment SDP

Dual SDP
• Sum-Of-Squares (SOS) optimization

vsOPT-MIT-2020
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Interpretation of the dual problem 

Dual optimization:

• Minimizes scaler 

• is upper bound of 

•

•

vsOPT-MIT-2020
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Interpretation of the dual problem 

Dual optimization:

• Minimizes scaler 

• is upper bound of 

•

• For a given design variable 𝑥𝑥∗: 

•

is an upper bound polynomial approximation of the indicator
function of

( success set for a given 𝑥𝑥∗)
is an upper bound of probability of success for given 𝑥𝑥∗
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Interpretation of the dual problem 

Dual optimization:

• Minimizes scaler 

• is upper bound of 

•

• For a given design variable 𝑥𝑥∗: 

•

is an upper bound polynomial approximation of the indicator
function of

( success set for a given 𝑥𝑥∗)
is an upper bound of probability of success for given 𝑥𝑥∗

Upper bound probability of success as a function of 𝑥𝑥
• 𝛽𝛽: Upper bound of maximum probability of success.
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Example: Dual Optimization

https://github.com/jasour/rarnop19/tree/master/Lecture7_ChanceOptimization/Example_1_Dual_ChanceOpt

𝑥𝑥

𝜔𝜔

(𝒙𝒙,𝝎𝝎) sapce

𝒔𝒔 𝒙𝒙,𝝎𝝎 ≥ 𝟎𝟎

𝑥𝑥∗ = 𝑦𝑦𝑥𝑥1 = 0.5
Moment SDP:

https://github.com/jasour/rarnop19/tree/master/Lecture7_ChanceOptimization/Example_1_Dual_ChanceOpt
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Dual Optimization (SOS) 𝒅𝒅 = 𝟓𝟓:

= 0.506

https://github.com/jasour/rarnop19/tree/master/Lecture7_ChanceOptimization/Example_1_Dual_ChanceOpt

Example: Dual Optimization 𝑥𝑥

𝜔𝜔

(𝒙𝒙,𝝎𝝎) sapce

𝒔𝒔 𝒙𝒙,𝝎𝝎 ≥ 𝟎𝟎

𝑥𝑥∗ = 𝑦𝑦𝑥𝑥1 = 0.5
Moment SDP:

vsOPT-MIT-2020

https://github.com/jasour/rarnop19/tree/master/Lecture7_ChanceOptimization/Example_1_Dual_ChanceOpt


56

= 0.506

Upper bound on probability

Dual Optimization (SOS) 𝒅𝒅 = 𝟓𝟓:

Example: Dual Optimization 𝑥𝑥

𝜔𝜔

(𝒙𝒙,𝝎𝝎) sapce

𝒔𝒔 𝒙𝒙,𝝎𝝎 ≥ 𝟎𝟎

𝑥𝑥∗ = 𝑦𝑦𝑥𝑥1 = 0.5
Moment SDP:
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= 0.506

Outer approximation of

Dual Optimization (SOS) 𝒅𝒅 = 𝟓𝟓:

Example: Dual Optimization 𝑥𝑥

𝜔𝜔

(𝒙𝒙,𝝎𝝎) sapce

𝒔𝒔 𝒙𝒙,𝝎𝝎 ≥ 𝟎𝟎

𝑥𝑥∗ = 𝑦𝑦𝑥𝑥1 = 0.5
Moment SDP:
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Chance Constrained Set: 

Outer Approximation :

Outer Approximation :

• J. B. Lasserre, Representation of Chance-Constraints With Strong Asymptotic Guarantees, IEEE Control Systems Letters , Volume: 1 , Issue: 1, 2017. 

Modified Formulation:
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Upper bound on probability

d=5

d=10

Example 1: Modified SOS Program for Chance Constrained Set

Probability curve obtained by Monte-Carlo
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Upper bound on probability

d=5

d=10

Example: Modified SOS Program for Chance Constrained Set

Probability curve obtained by Monte-Carlo
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Upper bound on probability

d=5

d=10

Example: Modified SOS Program for Chance Constrained Set

Probability curve obtained by Monte-Carlo

Outer approximation :
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Chance Constrained Set: Inner Approximation 

We can apply same methodology to the Complement Set (failure Set)

• Outer approximation:• Chance Constrained Set:

• Inner approximation of 

vsOPT-MIT-2020
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Inner approximation of                                                         : 

Example: Inner approximation

Probability curve of the Success set obtained by Monte-Carlo

: Upper bound of probability of failure
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SOS Programing for Chance Constrained Set

Chance Constrained Optimization 

Outer approximation :

As polynomial order 𝑑𝑑 → ∞
Convergences to the true chance constrained set

Inner approximation :

As polynomial order 𝑑𝑑 → ∞
Convergences to the true chance constrained set

Chance Constrained Set

Deterministic Opt

complement set

vsOPT-MIT-2020
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 For more details, examples, codes, applications in uncertain dynamical systems and robotics:

rarnop.mit.edu,
Ashkan Jasour, "Risk Aware and Robust Nonlinear Planning(rarnop)", 
Course Notes for MIT 16.S498, Fall, 2019.

 Related Publications: jasour.mit.edu/publications

65vsOPT-MIT-2020

http://rarnop.mit.edu/
https://jasour.mit.edu/publications
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