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Overview 

 

This talk:  

 

• Statistical graphical model selection 

• Complication: latent variables 

• Rank/sparsity decomposition, and generalizations 

• Convex optimization formulation 

• Identifiability, underlying geometry  

• Convergence, sample complexity 

• Examples and algorithms  

 



Statistical model selection 

Principal component 
analysis 

Time series 

Manifold 
learning 

Graphical 
models 



Our Problem 

• What if some variables are not observed? 

– Don’t know how many latent variables 

– Don’t know relationship between observed and 
latent variables 

 

 



Gaussian graphical models 
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• Graphical model: Variables x are Markov on 
graph given by K 

Concentration matrix 

Covariance matrix 
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K 



Latent variable graphical models 
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Xi indep. of Xj cond. 
on other vars. 

Concentration matrix 



Latent variable graphical models 

Xi indep. of Xj cond. 
on other vars. 
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Sparse Low-rank 

Concentration matrix 



Proposal for modeling 

• Decompose concentration matrix into sparse 
and low-rank components 

– Sparse component for conditional graphical model 

– Low-rank component for latent variables 

 



Sparse / Low-rank matrix decomposition 

+ 

Unknown Low-rank Matrix 
 

  Unknown rank, eigenvectors 

Unknown Sparse Matrix 
 

 Unknown support, values 

Given 
Composite 

matrix 

Task: given C, recover A*  and  B* 

? ? 

= 

Chandrasekaran et. al (2009) 



Applications of sparse/low-rank decompositions  

Statistical model selection 
– Sparse matrix  sparse graphical model 
– Low-rank matrix  effect of unobserved latent variables 

 
Matrix rigidity 

– Change as few entries as possible to make matrix low-rank 
– Related to problems in communication complexity 

 
Composite system identification 

– Sparse matrix  sparse impulse response system 
– Low-rank matrix  low model order system 

 
Also, “Robust PCA”, face recognition, (Candès-Li-Ma-Wright 2009), 

etc. 
 
 

 



Sparse/Low-rank decomposition 

Let                         , where        is sparse and        is low-rank. 
A possible approach: 

• combinatorial, NP-hard in general. Cannot solve this efficiently! 

 

Also,  

 

• not known how to choose        

 

• when does this exactly recover  ? 



Convex relaxations 

• Bad nonconvex problem -> Convexify! 

 

 

nonconvex 
function 

convex 
envelope 



Natural convex relaxation 

Convex program  (in fact, an SDP). 
 
Sufficient conditions for recovery (Chandrasekaran et al. 2009,      
Candès et al. 2009). 

Propose: 



Consider sparsity minimization 

• Geometric interpretation 

 

 

• Take “sparsity 1” variety 

• Intersect with unit ball 

• Take convex hull 

 

L1 ball! (crosspolytope) 

Inducing sparsity: L1 



Inducing low-rank: Nuclear norm 

• Same idea! 

 

 

• Take “rank 1” variety 

• Intersect with unit ball 

• Take convex hull 

 

 

Nuclear ball! 

 



• What is common to these two cases?  
Can this be further extended? 

 

• Generalize notions of rank to other objects (e.g., tensors, 
nonnegative matrices, etc.) through secant varieties and 
atomic norms. 

 

• Many nice properties (e.g., number of measurements), some 
technical difficulties (varieties may not be closed, norms may 
not be polytime computable). 

 

More details in Ben Recht’s talk (Wednesday) 

Beyond rank and sparsity 



Proposal for modeling 

• Decompose concentration matrix into sparse 
and low-rank components 

– Sparse component for conditional graphical model 

– Low-rank component for latent variables 

• Learn sparse graphical model conditioned on a  
few additional hidden components 

• Blend of dimensionality reduction (low-rank) 
and graphical modeling (sparse) 

• Do this in a statistical meaningful way 

 



Gaussian graphical model framework 

• Everything observed 

 

• Some variables not observed 

– Interactions appear very dense 

– Graph seems fully connected 

– Sparse modeling not useful 

 

• How to learn a simple model? 



• Given sample covariance of n samples of 
observed variables: 

 

• Estimate true covariance via maximum-likelihood 

• Structure via regularization 

 

• For instance, in sparse graphical modelling 

 

 

        Banerjee et al. (2006), Ravikumar et al. (2008), … 

 

Covariance estimation via optimization 



• Given sample covariance of n samples of 
observed variables: 

 

• Regularized maximum-likelihood 

Model selection via convex optimization 

Negative log-likelihood Regularization 

Rank/sparsity 
tradeoff 



Model selection via convex optimization 

• Strictly convex optimization 

• Typically, large-scale 

• Want to understand  

– consistency properties (do we get the “right” model?) 

– sample complexity (how many samples do we need?) 

 

 



Graphical model selection 

Under suitable identifiability conditions, and parameters, 
the estimate given by the convex program yields the 
correct sign and support for Sn, and the correct rank 
for Ln. Explicit rates estimates are available. 

 

Geometric conditions, related to curvature of rank 
varieties. 



Convex Optimization 

• Unlike EM-based methods we have 

– Convex program 

– Unique optimum 

– Consistency guarantees 

 

• Parallels with usual sparse graphical modeling 

 

 

 

 

 

 



Analysis setup 

• (S*,L*) true sparse/low-rank components of 
model from which samples are drawn 

– S* conditional graphical model 

– L* effect of latent vars. 

• p – # observed vars. 

• n – # samples 

• h – # latent vars. (unknown) = rank(L*) 

• High-dimensional scaling 

– (p,h,n) allowed to grow simultaneously 



Assumptions - Identifiability 

•                = max. degree of cond’l graphical model 

•                                                               

– Small value  effect of latent vars. is spread out 
over many observed vars. 

• Main condition for identifiability 

Depends on Fisher information 
at true model (S*,L*) 



Assumptions – Sample complexity 

• # samples 

 

• Min. nonzero entry of S* 

 

• Min. nonzero singular value of L* 

 

• Choose 



• Theorem: Under conditions of previous slides 

– With probability 

– Support/sign-pattern of        and        are the same 

– Rank of        and         are the same 

– Error            between                 and                  

 

• Consistently recover cond’l graphical model of 
observed vars., and # latent vars. 

 

High-dimensional consistency 



Scaling regimes 

Let (p,h) be the number of observed and latent variables, and n the 
number of samples. Different regimes for coherent estimation: 

 

• Bounded degree: 
   

                                   d = O(1),   h = O(p),   n = O(p) 

 

• Polylogarithmic degree:   

                

          d = O((log p)q),   h = O(p/(log p)2q),  n = O(p polylog p)  
 

 



Bounded-degree scaling regime 

• Suppose 

– rank(L*) = h 

– Effect of latent vars. on most observed vars. 

• Suppose  

– Cond’l graphical model has bounded-degree 

• Scaling for consistency:                         

# samples # obs. vars. # latent vars. 



Algorithms 

Convex, nondifferentiable, special structure.  
 
 
 
 

• Possible approaches: 
– Interior-point methods logdet/SDP (e.g., SDPT3) 
– Newton CG primal proximal point algorithm (Wang-Sun-Toh 

09). Implemented in LogDetPPA 
 

• Adapt others methods from low-rank/sparse opt? 
– Alternating directions (Yuan-Yang) 
– Augmented Lagrangian schemes (Lin et al.) 

 

 



Example 1: synthetic data 

 

• 36-cycle 
among 
observed 
variables 

• Each 
hidden 
variable 
connected 
to 80% 
observed 
variables 



Example 2: Stock returns 

Gaussian graphical 
model conditioned 
on 5 latent variables 
 
# parameters: 639 
KL divergence: 17.7 

Gaussian graphical 
model without 
latent variables 
 
# parameters: 730 
KL divergence: 44.4 

Monthly returns 
of 84 companies 
listed in S&P 100 

# samples: 216 
(1990 to 2007) 

Strongest edges: 
AT&T – Verizon 
Intel – TI 
Apple – Dell 



Thank you! 

Want to know more?  Details below, and in references therein: 

 

• V. Chandrasekaran, P.A. Parrilo, A. Willsky, Latent variable 
graphical model selection via convex optimization, 
arXiv:1008.1290, 2010. 

 

• V. Chandrasekaran, S. Sanghavi, P.A. Parrilo, A. Willsky, Rank-
Sparsity Incoherence for Matrix Decomposition, 
arXiv:0906.2220, 2009.  

 

 

 

 Thanks for your attention! 


