
February 15, 2006 22:41 International Journal of Control FoRM˙IJC

International Journal of Control

Vol. 00, No. 00, DD Month 200x, 1–25

Parametric Optimization and Optimal Control

using Algebraic Geometry Methods

Ioannis A. Fotiou∗,1 , Philipp Rostalski∗, Pablo A. Parrilo† and Manfred Morari∗

∗Automatic Control Laboratory

Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland.

†Laboratory for Information and Decision Systems

Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA.
(v2.0 released February 2006)

We present two algebraic methods to solve the parametric optimization problem that arises in nonlinear model predictive control. We
consider constrained discrete-time polynomial systems and the corresponding constrained finite-time optimal control problem. The first
method is based on cylindrical algebraic decomposition. The second uses Gröbner bases and the eigenvalue method for solving systems of
polynomial equations. Both methods aim at moving most of the computational burden associated with the optimization problem off-line,
by pre-computing certain algebraic objects. Then, an on-line algorithm uses this pre-computed information to obtain the solution of the
original optimization problem in real time fast and efficiently. Introductory material is provided as appropriate and the algorithms are
accompanied by illustrative examples.

1 Introduction

Model predictive control is a very active area of research with broad industrial applications (Qin and
Badgwell, 2003). It is among the few control methodologies that provides a systematic way to perform
nonlinear control synthesis under state and input constraints. This ability of dealing with constraints is
one of the main reasons for the practical success of model predictive control (MPC) (Garcia et al., 1989).

MPC uses on-line optimization to obtain the solution of an optimal control problem in real time. This
method has been proven most effective for applications. Typically, the optimal control problem can be
formulated as a mathematical program, whose solution yields a sequence of control moves. Based on the
system model, the system evolution over a finite number of future time steps (the prediction horizon) is
predicted and a performance criterion over the same time period is minimized. Out of these control moves
only the first is applied, then the prediction horizon is shifted forwards and the procedure is repeated. This
is called receding horizon control (RHC). The specific form of the corresponding mathematical program
can be a linear program (LP), a quadratic program (QP) or a general nonlinear program (NLP).

Technology and cost factors, however, make the direct implementation of receding horizon control diffi-
cult, or in some cases impossible. In the standard linear MPC case, where the system model is linear, the
corresponding optimization problem is a convex QP with linear constraints. In this case, an alternative
approach to the solution of the optimal control problem is to compute the control law off-line, by solving
the corresponding mathematical program parametrically (Bemporad et al., 2002). That is, the explicit
formula giving the solution of the mathematical program (control inputs) as a function of the problem pa-
rameters (measured state) is computed. The optimal control law is then implemented on-line as a look-up
table, which greatly increases the computational efficiency of the controller.

1 Corresponding author. Email: fotiou@control.ee.ethz.ch

International Journal of Control

ISSN 0020-7179 print/ ISSN 1366-5820 online c©2005 Taylor & Francis Ltd

http://www.tandf.co.uk/journals

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

2 I.A. Fotiou, P. Rostalski, P. A. Parrilo and M. Morari

In the case of polynomial systems and constraints, the formulation of the MPC problem gives rise to
a polynomial optimization problem (polynomial program). However, as opposed to the linear MPC case,
a simple closed form expression for its solution may not exist (because it may involve implicit algebraic
functions). While this might be the case, we stress the fact that an off-line partial precomputation of
the optimal control law is still feasible using algebraic techniques (Fotiou et al., 2006a, 2005, 2006b).
The punchline of this approach is that most of the computational burden associated with solving the
optimization problem is moved off-line, leaving thus an easier task for the on-line controller implementation.

In this paper, we present the algebraic tools that help us perform polynomial parametric optimization
for optimal control problems arising in model predictive control. These include Gröbner bases, cylindrical
algebraic decomposition and the eigenvalue method for solving systems of polynomial equations. We focus
on the optimization of a polynomial cost function subject to polynomial (semi-algebraic) constraints.

The rest of the paper is structured as follows. In Section 2 we introduce the class of systems and the
problem under study. In Section 3 we present the CAD-based algorithm and provide illustrative examples.
Subsequently, in Section 4, we introduce Gröbner bases and show how the generalized companion matrices
can be employed in parametric optimization. Finally, the paper is concluded and future research directions
are outlined.

2 Constrained finite-time optimal control and parametric optimization

In this section we define the class of systems under consideration and describe the constrained optimal
control problem arising in model predictive control. Finally, we pose the parametric optimization problem
to be subsequently studied.

2.1 Polynomial dynamical systems

Consider the class of discrete-time nonlinear systems that can be described as constrained polynomial
systems of the following form:

x(k + 1) = f(x(k), u(k)) , (1)

subject to the inequality constraints

g(u(k), x(k)) ≤ 0, k = 1, . . . , N , (2)

where x = [x1(k), · · · , xn(k)]T ∈ R
n is the continuous state vector, u = [u1(k), · · · , um(k)]T ∈ R

m is the
continuous input vector, N is the prediction horizon and f ∈ R[x1, . . . , xn, u1, . . . , um] is a real polynomial
function in x and u. The real-valued vector polynomial function g ∈ R[x1, . . . , xn, u1, . . . , um]q defines the
constraints of the system in the joint state-input space R

n+m. The subset of R
n+m defined by g(x(k), u(k))

has the property of being semi-algebraic, the definition of which follows:

Definition 2.1 (Semi-algebraic set) A subset S of R
n is semi-algebraic if it can be constructed by finitely

many applications of the union, intersection and complementation operations, starting from sets of the
form

{x ∈ R
n | F (x) ≤ 0} ,

where F is an element of R[x1, . . . , xn], the ring of real polynomials in n variables.

In other words, a semi-algebraic set can be roughly thought of as one defined by a finite number of
polynomial inequalities. Examples of semi-algebraic sets include the interior of an ellipsoid and the set
of points of a curve embedded in the n-dimensional Euclidean space. Both can be described by means of
polynomial inequalities.

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

Parametric Optimization and Optimal Control using Algebraic Geometry 3

Lemma 2.2 A semi-algebraic set S ⊆ R
n can be written as a finite union of intersections of basic (semi-

algebraic) sets s of the form {g(x) ≤ 0} and {g(x) < 0}, where g ∈ R[x1, . . . , xn], i.e. there always exist
polynomials {gij(x)} such that

S =
ñ
⋃

i=1

ni
⋂

j=1

sij ,

where the sets sij are of the form {gij(x) ≤ 0} or {gij(x) < 0}.

Proof : It follows immediately from definition 2.1 and the fact that every statement in logic consisting of
a finite combination of union, intersection and complementation operations can be written in disjunctive
normal form (Chandru and Hooker, 1999). �

2.2 Constrained finite-time optimal control

We consider the problem of regulating system (1) to the origin. Assuming that the origin is a stable
equilibrium point, we introduce a cost function that penalizes the deviation of the state and control action
from zero:

J(u, x0) = LN (x(N), u(N)) +
N−1
∑

k=0

Lk(x(k), u(k)) , (3)

where Lk ∈ R[x1, . . . , xn, u1, . . . , um] are polynomial functions in x and u, called stage costs, whereas LN

is called terminal state cost. The vector u := [u(0)T , . . . , u(N − 1)T]T ∈ R
mN is the optimization vector

consisting of all the decision variables (control inputs) for k = 0, . . . , N − 1. The parameter x0 = x(0)
= [x1(0), . . . , xn(0)]T ∈ R

n is the initial state of the system. Obtaining the optimal control moves over
the prediction horizon is then equivalent to solving the following constrained finite-time optimal control
(CFTOC) problem:

min
u

J(u, x0)

s.t.

{

x(k + 1) = f(x(k), u(k))

g(u(k), x(k)) ≤ 0, k = 0, . . . , N .

(4)

Example 2.3 Consider the linear time invariant system

x(k + 1) =
1

2
x(k) + u(k) , (5)

with x, u ∈ R and prediction horizon N = 2, subject to the constraints

‖x(k + j)‖∞ ≤ 5 ∀j = 1 . . . N .

Define the cost function

J(u, x0) = x(N)2 +
1
∑

k=0

x(k)2 + u(k)2 .

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

4 I.A. Fotiou, P. Rostalski, P. A. Parrilo and M. Morari

Using state update equation (5), it can be expressed as a function of the initial state x0 and the input
control sequence {u(0), u(1)}:

J(u, x0) = 2u(1)2 +
1

2
x0u(1) + u(0)u(1) +

21

16
x2

0 +
5

4
u(0)x0 +

9

4
u(0)2 .

The resulting CFTOC problem is formulated as

min
{u(0),u(1)}

{

2u(1)2 + 1
2x0u(1) + u(0)u(1) + 21

16x2
0 + 5

4u(0)x0 + 9
4u(0)2

}

s.t.

x(1) − 5 = 1
2x0 + u(0) − 5

−x(1) − 5 = −1
2x(1) + u(0) − 5

x(2) − 5 = 1
2x(1) + u(1) − 5 = 1

2

(

1
2x0 + u(0)

)

+ u(1) − 5
−x(2) − 5 = −1

2x(1) + u(1) − 5 = −1
2

(

1
2x0 + u(0)

)

+ u(1) − 5

≤ 0 .
(6)

The above optimization problem (6) is an instance of a parametric convex quadratic minimization
problem that has been extensively studied in the literature (Bemporad et al., 2002; Grieder et al., 2004). A
closed form expression for problem (6) can be computed that gives the optimal solution and corresponding
optimizer as a function of the parameter x0. It turns out that for linear systems with constraints this
function is a piecewise affine (PWA) map. For the more general class of polynomial systems we study in
this paper, however, such a closed form expression does not always exist. In contrast to the linear MPC case
(Bemporad et al., 2002), no ”simple” expression of the optimal solution is possible, as it necessarily involves
implicit algebraic functions. Nevertheless, while a closed form expression is not possible, a parametrization
of the optimal solution is still possible by combining a precomputation stage using algebraic techniques
and the on-line solution of univariate polynomial equations or eigenvalue computations.

In the following, with a slight abuse of notation, we will rename x0 to x, because by using state update
equation (1) every other x(k) can be substituted as a function of u an x0. Problem (4) is written in the
more compact form

min
u

J(u, x) s.t. g(u, x) ≤ 0 , (7)

where J(u, x) is a polynomial function in u and x, u ∈ R
r (with r = mN) is the decision variable vector

and the initial state x = x(0) ∈ R
n is the parameter vector.

2.3 Parametric optimization

Let u ∈ R
r be the decision-variable vector and x ∈ R

n be the parameter vector. The class of optimization
problems that this paper deals with can generally assume the following form:

min
u

J(u, x) s.t. g(u, x) ≤ 0, (8)

where J(u, x) ∈ R[x1, . . . , xn, u1, . . . , ur] is the objective function and g ∈ R[x1, . . . , xn, u1, . . . , ur]
q is a

vector polynomial function representing the constraints of the problem. By parametric optimization, we
mean minimizing the function J(u, x) with respect to u for any given value of the parameter x in the
region of interest. Therefore, the polynomial parametric optimization problem is finding a computational
procedure for evaluating the maps

u∗(x) : R
n −→ R

r

J∗(x) : R
n −→ R ,

(9)

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

Parametric Optimization and Optimal Control using Algebraic Geometry 5

where

u∗ = arg min
u

J(u, x)

J∗ = min
u

J(u, x) .
(10)

For the sake of simplicity, we assume that the feasible set defined by g(u, x) is compact, and thus the
minimum is attained. Also, in order for (9) not to be point-to-set maps, we focus our attention to one
(any) optimizer.

3 Cylindrical algebraic decomposition and parametric optimization

In this Section, we first introduce the notion of cylindrical algebraic decomposition (CAD). Because of its
intrinsic complexity, we choose an example-driven approach towards illustrating it, rather than giving the
full mathematical details - for that, refer to Caviness and Johnson (1998). In the sequel, we show how it
can be used to perform parametric optimization and conclude with an example.

3.1 General description

Given a finite set P ⊂ R[y1, . . . , yn] of multivariate polynomials in n variables, a CAD is a special partition
of R

n into components, called cells, over which all the polynomials have constant signs. The algorithm for
computing a CAD also provides a point in each cell, called sample point, which can be used to determine
the sign of the polynomials in the cell.

To get some insight into the CAD, consider a nonempty subset of R
n. We call such sets regions.

Definition 3.1 For any subset X of R
n, a decomposition of X is a finite collection of disjoint regions

whose union is X.

For a region R, the cylinder over R, written Z(R), is the cartesian product R × R
n. A section of Z(R)

is a set s of points (a, f(a)), where a ranges over R and f is a continuous, real-valued function on R. In
other words, s is the graph of f . We call such a graph the f -section of Z(R). A sector of Z(R) is a set ŝ of
all points (a, b), where a ranges over R and f1(a) < b < f2(a) for continuous, real-valued functions f1, f2,
with f1 < f2 for all points in R. The constant functions f = +∞ and f = −∞ are also allowed. Such an
ŝ is the (f1, f2)-sector of Z(R). Continuous real-valued functions f1 < f2 < · · · < fk , k ≥ 0, defined on R,
naturally determine a decomposition of Z(R) consisting of the following regions: (1) the (fi, fi+1)-sectors
of Z(R) for 0 ≤ i ≤ k, where f0 = −∞ and fk+1 = +∞ and (2) the fi-sections of Z(R) for 1 ≤ i ≤ k. We
call such a decomposition a stack over R (determined by f1, . . . , fk) (Caviness and Johnson, 1998).

Definition 3.2 A decomposition D of R
n is cylindrical if either

(i) n = 1 (region R is one dimensional) and D is a stack over R
0, or

(ii) n > 1 and there is a cylindrical decomposition D′ of R
n−1 such that for each region R of D′, some

subset of D is a stack over R.

Definition 3.3 A decomposition is algebraic if each of its regions is a semi-algebraic set.

Clearly, a cylindrical algebraic decomposition is one which is both cylindrical and algebraic. To perform
optimization, a CAD is associated with a Boolean formula. This Boolean formula can either be quantified or
quantifier-free. By a quantifier-free Boolean formula we mean a formula consisting of polynomial equations
{fi(y) = 0} and inequalities {fj(y) ≤ 0} combined using the Boolean operators ∧ (and), ∨ (or), and →
(implies). In general, a formula is an expression in the variables y = (y1, ..., yn) of the following type:

Q1y1...Qnyn F(f1(y), ..., fφ(y)) (11)

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

6 I.A. Fotiou, P. Rostalski, P. A. Parrilo and M. Morari

where F(f1(y), ..., fφ(y)) is assumed to be a quantifier-free Boolean formula and Qi is one of the quantifiers
∀ (for all) and ∃ (there exists) (Munro, 1999).

Example 3.4

∃ y1

[

y2
1 + ay1 + b ≤ c

]

is a quantified formula, whereas the following equivalent one is quantifier-free:

[

4c + a2 ≥ 4b
]

.

Tarski showed in (Tarski, 1948) that for every formula including quantifiers there is always an equivalent
quantifier-free formula. Obtaining the latter from the former is called quantifier elimination. The CAD
associated to (11) depends only on its quantifier free part F(f1(y), ..., fφ(y)) and can be used to perform
quantifier elimination on (11) (Brown, 2003).

3.2 Constructing the CAD

Generally speaking, the construction of the CAD involves three phases. The first, the projection phase
computes successive sets of polynomials in n − 1, n − 2, . . . , 1 variables. The main idea is, given the set of
polynomials {fi(y)} in (11), in each step k = 1, . . . , n − 1 a new set of polynomials Pk(fi(y)) is obtained
by eliminating one variable at a time. That is, the new set of polynomials at every step depends only on
n− k variables {y1, y2, . . . , yn−k}. Of course, the elimination order does matter and a good choice leads to
lower computational complexity. The implementation of the projection phase uses sophisticated routines
(Collins, McCallum, Hong or Lazard projection operators, for instance) and their description goes beyond
the scope of an introductory exposition.

The second phase is the base phase and it constructs a decomposition of R, at the lowest level of
projection, after all but one variable have been eliminated. The last phase is the extension phase where
the R-decomposition is successively extended to a decomposition of R

2, R
2 to R

3,...,Rn−1 to R
n. In this

way, a decomposition of the full R
n-space is obtained.

Additionally, along with every set of polynomials Pk(fi(y)), the CAD construction algorithm returns a
special set of polynomials attached to each projection level d, called the projection level factors denoted
by {Ld

i }i=1..td
. The set of the real roots of these polynomials contains critical information about the

CAD, defining the boundaries of its cells. These roots can be isolated points in R
n, curves, surfaces or

hypersurfaces, depending on the dimension of the projection space. The level factor polynomials, also
called level factors, play a central role in parametric optimization.

Remark 1 Truth evaluation. Every cell c in every projection level of a CAD has an associated truth value
v(c). The truth value of a cell is “true” if F(f1(y), ..., fφ(y)) in (11) is true in that cell and “false” otherwise.
To determine the truth values of the cells, the CAD algorithm proceeds as follows. If first evaluates the
truth value v(c) of the cells in the space of all the variables R

n by evaluating F(f1(y), ..., fφ(y)) for their
corresponding sample points (s1, . . . , sn) ∈ R

n. Then, it propagates this truth downwards by taking into
account the type of quantifiers Qi’s in (11) (Caviness and Johnson (1998), p. 176). This way, the CAD
construction algorithm attaches a truth value v(c) to each cell of every projection level. Schematically, the
procedure followed is

• Projection phase from Rn to R
n−1 ... R,

• Base phase, where sample points for the R-decomposition are computed,

• Extension phase, where sample points for R, R
2, ... R

n are computed,

• Truth evaluation at uppermost level R
n,

• Truth propagation down to R.

The truth value of the cells play an important role in determining the solution J∗ of the optimization
problem.

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

Parametric Optimization and Optimal Control using Algebraic Geometry 7

3.3 A simple CAD

Let us look at the CAD of the following set of polynomial inequalities

{

u4 − 10u2 + u + 1 ≤ γ
−7u + 17 ≤ −γ

}

. (12)

The direction of the inequalities in (12) is relevant to the construction of the CAD only as far as the truth
value of the cells is concerned. The projection phase has as input a set of polynomials – inequalities are
irrelevant. The starting set of polynomials, for this example, is

{

u4 − 10u2 + u − γ + 1
7u − γ − 17

}

, (13)

i.e. the polynomials obtained if we move all the terms in (12) to the left-hand side and ignore the inequality
signs. By projecting variable u in (13) first, the level factors obtained for system (12) are

Level 2:
L2

1(γ, u) = u4 − 10u2 + u − γ + 1

L2
2(γ, u) = 7u − γ − 17

Level 1:
L1

1(γ) = 256γ3 + 12032γ2 + 133728γ − 149989

L1
2(γ) = γ4 + 68γ3 + 1244γ2 + 934γ − 49857 .

(14)

Note that the level-two factors are the polynomials as they appear in (13). This is always the case with
the last (uppermost) projection level, since no variable has yet been eliminated (projected). We observe
that L1

1(γ) is the discriminant Disu(L2
1) of L2

1 with respect to u and L1
2 is the resultant Ru(L2

1, L
2
2) of L2

1

and L2
2 with respect to u.

The set of real roots of the level-one factors L1
i (γ) in (14) will partition the γ-space into zero- and

one-dimensional cells. These roots can clearly be seen in Figure 1: lines parallel to the u axis mark their
position. These positions correspond to points where the two polynomials intersect or the tangent to them
becomes parallel to the u axis (critical points).

For this simple low-dimensional example, it is transparent how the intersection and critical points of
system (13) are computed – i.e. by means of simple resultant and discriminant operations. As already
mentioned, for more complicated settings the projection phase is implemented using special projection
operators that eliminate one variable at a time. They can be though of as a very systematic way of
computing with resultants for doing real elimination (elimination over the field of real numbers R).

Accordingly, the root set of the level-two factors, together with the one of the first level, define the
boundaries of the cells in the joint (γ, u)-space. The regions in the (γ, u)-space where system (12) is true
are the true cells of R

2 and are specially marked on Figure 1. In optimization, for a specific choice of
parameter x, the union of these regions correspond to the feasible region of the problem.

Remark 2 The CAD construction algorithm has undergone important improvements since its initial con-
ception in 1975 by Collins. One such improvement is the construction of a partial CAD instead (Caviness
and Johnson (1998), p. 174). The descriptions in this paper are generic and hold for both cases. In practice,
however, one would be better off – from a computational point of view – using the partial CAD.

3.4 Posing the problem

Suppose we have to solve problem (8). We associate with problem (8) the following boolean expression:

(g(u, x) ≤ 0) ∧ (γ − J(u, x) ≥ 0) . (15)

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

8 I.A. Fotiou, P. Rostalski, P. A. Parrilo and M. Morari

We then compute the CAD defined by the polynomial expressions in (15). The signs of the polynomials
appearing in (15) as well as of Pk(fi(x)) resulting from the projection steps are determined in each cell.
These signs, in turn, determine wether (15) is true or false in each particular cell – see Remark 1. To
perform optimization, it is enough that we calculate the truth value of only the full-dimensional cells in
every projection level. In example (12), the full-dimensional cells of R

2 are depicted in Figure 1 as two-
dimensional regions. The curves form the one-dimensional cells and the points are the zero-dimensional
cells. A point embedded in R, for example, is not full dimensional, since its dimension is zero, less than
one, the dimension of the ambient space. On the other hand, a line segment embedded in R qualifies as
full-dimensional. The sample points in the full-dimensional cells can always be chosen as rational numbers
(as opposed to algebraic) and the computations associated with them are much easier than in the general
case.

All the information we need to solve problem (8) is the level factor polynomials associated with the
CAD of system (15), the sample points, and the truth value of the cells.

We now present an algorithm which constitutes an efficient computational procedure to evaluate the
map from x ∈ R

n to u∗ ∈ R
r and J∗ ∈ R. The CAD for system (15) associated to the optimization problem

is first constructed off-line. Then, an on-line algorithm uses this precomputed information to efficiently
evaluate the maps (9), i.e. perform nonlinear parametric optimization.

Note that the variables we deal with are {x1, . . . , xn, γ, u1, . . . , ur}, implicitly appearing in (15). The
projection phase of the (off-line) CAD construction algorithm first eliminates ur, moving from the end of
the list to the beginning. An overview of the on-line algorithm is presented in the next Section, followed
by an instructive example.

3.5 The algorithm

The on-line algorithm consists of three steps:
First step (Initialization) We determine the cell in the x-space in which the given parameter x lies. We
denote this unique cell with Cx ⊆ D.
Second step (Finding J∗) By considering the cylinder over cell Cx in the joint (x, γ)-space - see also
Figure 2 - the optimal cost J∗ is determined.
Third step (Finding u∗) To determine the optimizer u∗ ∈ R

r we have to lift the (x, γ) ∈ R
n+1 point

to the space of the decision variables. This is done by considering the sequence of all stacks above point
(x, γ).

It has to be emphasized that the proposed algorithm, when implemented on-line, only needs to perform
the traversal of a tree (see Figure 7) and solve univariate polynomial equations. All other information
needed is precomputed off-line when the CAD is constructed.

Example 3.5 To illustrate the proposed method let us look at the following parametric minimization
problem

min
u

u4 + x1u
2 + x2u + 1 , (16)

with x = [x1, x2] being the parameter. For the sake of clarity, we chose an unconstrained example. The order
of elimination is chosen as x1 ≺ x2 ≺ γ ≺ u. That means the projection phase of the CAD construction
algorithm first eliminates u, then γ and so on. The corresponding boolean expression associated with
problem (16) is

(

γ − (u4 + x1u
2 + x2u + 1)

)

≥ 0 . (17)

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

Parametric Optimization and Optimal Control using Algebraic Geometry 9

-3 3.4

-30

50

True

True

True
L2

1(γ, u) = 0

L2
2(γ, u) = 0

γ

u

Figure 1. CAD of the polynomials in (12). The (u, γ)-space is
decomposed into sections and sectors defined by the

corresponding level factor polynomials.

False

False

True

x1

x2

x

γ

Lm+1
1 (x, γ)

Lm+1
2 (x, γ)

Lm+1
3 (x, γ)

r1r1

r2
r2

r3r3

Cx

Rn

g1

g2

g3

xk

Figure 2. Lifting to the γ space. The optimal cost γ∗ lies
among roots {r1, r2, r3}. The Figure is based on Christopher

Brown’s ISSAC 2004 CAD tutorial slides.

x1

x2

L1
1(x1) = 0

L2
1(x1, x2) = 0

L2
1(x1, x2) = 0

L2
2(x1, x2) = 0

(x1, x2)-space partition

Figure 3. Level factors partitioning the x space of problem
(16).

(1,1)

(1,3)

(1,5)

(1,7)

(3,1)

(3,3)

(-10,1)

(3,2)

-10

1 sample point

x1

x2

L1
1(x1) = 0

L2
1(x1, x2) = 0

L2
1(x1, x2) = 0

L2
2(x1, x2) = 0

Determining cell Cx

3632
211

−3632
211

⊙

Figure 4. Point (−10, 1) lies in cell (1, 5). The sample point of
this cell is labelled with a ⊙ sign. The level factor polynomials

define the boundaries of the cells.

After the construction of the CAD, we obtain the following level factors:

L4
1(x1, x2, γ, u) = u4 + x1u

2 + x2u − γ + 1

L3
1(x1, x2, γ) = 256γ3 + 128x2

1γ
2 − 768γ2 + 144x1x

2
2γ

+16x4
1γ − 256x2

1γ + 768γ + 27x4
2 + 4x3

1x
2
2

−144x1x
2
2 − 16x4

1 + 128x2
1 − 256

L2
1(x1, x2) = 27x2

2 + 8x3
1

L2
2(x1, x2) = x2

L1
1(x1) = x1 .

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

10 I.A. Fotiou, P. Rostalski, P. A. Parrilo and M. Morari

(1,5,1)

(1,5,3)

(1,5,5)

(1,5,2)

2

-1.5 1
0.5

u

γ

True False

r1

r2

r3

L4
1(γ, u) = 0

-30

50

-3 3.5u

γ

True

False

γ∗

Figure 5. On the left side, sample point (−1, 1
4
) is lifted to the (γ, u)-space. On the right side, point (−10, 1) is lifted to the same

space. It is easily observed that the two figures are topologically the same. This is because both points (−1, 1
4
) and (−10, 1) lie in the

same cell Cx.

We note that the uppermost level factor is the input formula of the Boolean expression (17). The factor
polynomials of the first two levels partition the (x1, x2)-space as seen in Figure 3. In the following, the
algorithm is presented step by step, for the particular choice of x1 = −10 and x2 = 1.

Input: Let us choose x1 = −10 and x2 = 1.

First step: (Determining Cx) The level factor L1
1 partitions the x1 space into two (full-dimensional)

cells, namely, (−∞, 0) and (0,∞). The given value of x1 belongs in the first cell, which is indexed by 1.
The root of L2

2(−10, x2) = 0 is readily x2 = 0 and that of L2
1(−10, x2) = 0 is x2 = ±3632

211 . That means, for
the specific value of x1, the x2 space is partitioned in four (full-dimensional) cells, which are part of the
cylinder Z((−∞, 0)). As shown in Figure 4, where all the cells of interest have been labelled with their
indexes, the given x point lies in cell (1, 5), because 0 < 1 < 3632

211 .

Second step: (Finding J∗) We now use the sample points to facilitate the optimal cost computa-
tion as follows. Once cell Cx is determined, its sample point is obtained from the CAD. For cell (1, 5) it
is (−1, 1

4) and it is marked on Figure 4 with a ⊙ sign. We then consider the cylinder above the cell Cx in
the (γ, u)-space, an operation called lifting. The level factors partition the (γ, u)-space into sections and
sectors, as depicted in the left part of Figure 5. Lifting point (x1, x2) produces similar results as shown in
the right part of Figure 5.

We observe that both parts of Figure 5 are topologically equivalent. This is always the case. The topology
of the stack of cells built upon a point x depends only on cell Cx, not on its actual coordinates. By topological
equivalence, we mean that we can obtain the stack over one point by deforming, twisting and stretching
the stack over the other (sample) point. Tearing, however, is not allowed. This property is closely related
to a central quality of CAD called delineability (Caviness and Johnson, 1998).

Based on this topological equivalence, the lifting for the sample points of all the cells the x space is
decomposed into, is done off-line. From this operation, we construct a function M that maps every cell Cx

to the index iγ that corresponds to the cell labelled (ix1
, . . . , ixn

, iγ), which is the “lowest” true cell of R
n+1

in the cylinder above x – see also Figures 2 and 6. We denote this cell with G. If no such cell exists, we set
iγ = −1 to denote infeasibility of the problem. If the cell exists but is unbounded from below, then for the

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

Parametric Optimization and Optimal Control using Algebraic Geometry 11

x1

x2

g1

g2

g3

g4

γ∗

γ

x Cx

Figure 6. Determining γ∗. Point x is lifted to the (x, γ)-space
and the “lowest true” cell G is identified.

cell(1) cell(3)x1 = 0

x2 = 0
−∞ +∞

(x1, x2) space

(x1, x2, γ) space
(x1, x2, γ, u) space

cell (1, 5, 3, 2)

Figure 7. Traversing the cell tree. Once cell Cx has been
identified, function M dictates the way the tree has to be
traversed to reach the optimal solution. The indexes in the

figure correspond to example (16).

given value of x, the problem is unbounded (from below). In all other cases the minimum is attained and
its value J∗ is the minimum value that γ takes in the set G, once the value of the parameter x is fixed.

Remark 3 The function M can be extended to the u-space, giving the corresponding index information
for the optimizer u∗. Thus, we obtain the following map:

M : Cx 7−→ (iγ , iu1
, . . . , iur

) ∈ N
r+1 . (18)

The indexes iu1
to iur

are used by the third step of the algorithm, when the optimizer u∗ is determined.

Specifically in this example, iγ = 3. Cell (1, 5, 3) is clearly marked on the left part of Figure 5. It is
also represented in Figure 6, where it is the three-dimensional cell on which segment g2 lies. By solving
the equation L3

1(−10, 1, γ) = 0 we obtain three real roots γ ∈ {−26.25,−21.78, 1.03}. The minimum cost
J∗ is among these roots. Since the function M gives the index iγ = 3, we know that γ∗ is the first root,
namely the smaller one – see also Figure 5.

Third step: (Finding u∗) To determine the optimizer u∗ ∈ R
r we have to lift the (x, γ) ∈ R

n+1

point in the space of the decision variables. First, we substitute the values of x and γ∗ in the level
factors {Ln+2

i (x, γ, u1)}i=1...tn+2
. What we obtain is tn+2 univariate polynomials in u1 which we denote by

{s1
i (u1)}i=1...tn+2

. We solve them to calculate their real roots set A1. We then use the precomputed CAD
cell information together with the level factor signs of each cell, i.e. function M , to determine which root
in A1 corresponds to the optimizer u∗

1. This root will be part of the optimizer vector u∗ = (u∗
1, . . . , u

∗
r).

This can be formalized as follows:

Level n+2: {Ln+2
i (x, γ∗, u1)} ≡ {s1

i (u1)}

{s1
i (u1)} = 0

CAD
=⇒ u1 = u∗

1 .

Similarly, we now substitute optimizer u∗
1 in the level factors {Ln+3

i (x, γ, u1, u2)}i=1...tn+3
to obtain the

polynomials {s2
i (u2)}i=1...tn+3

. By solving them we similarly obtain the next optimizer u∗
2. Same procedure

is followed until we have calculated all optimizer elements up to ur.
Specifically, substituting x and γ∗ in L4

1 and solving equation L4
1(−10, 1,−26.25, u1) = 0 gives

U1 = {−2.26}. We readily conclude that the optimizer is u∗
1 = −2.26. It also happens that the algebraic

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

12 I.A. Fotiou, P. Rostalski, P. A. Parrilo and M. Morari

multiplicity of this root is two. This is in agreement with Figure 1, where line γ = γ∗ is tangent to the
univariate polynomial u4 − 10u2 + u + 1. If it happens that we have more than one real roots, then we
accordingly use the index information (18) to select the correct one.

Return. Finally, following values are returned: J∗ = −26.25 and u∗ = −2.26.

We repeat the above procedure for various values of x1 and x2. The optimizer u∗ as a function of
(x1, x2) is shown in Figure 8. We observe that the optimizer is discontinuous along the line x2 = 0.
Such discontinuities are characteristic of nonlinear parametric optimization problems. A summary of the
illustrated approach can be seen in Algorithm 1.

The off-line computations in this example have been carried out with the help of the software tool
QEPCAD B (Brown, 2003).

Algorithm 1 (On-line) The CAD level factors, cells and function M have already been computed and
are available.
Input: Value of the parameter x (state measurement taken in real time).
Output: Optimal cost J∗ and optimizer u∗.

1: Determine cell Cx

2: Specialize parameter x in level factor polynomials {Ln+1
i } and solve resulting univariate equations to

obtain roots {rk}
3: using CAD information iγ select the root that corresponds to the optimal solution J∗

4: for all j = 1, . . . , r do

5: specialize x and solve Ln+1+j
i = 0 to obtain candidate optimizers

6: using CAD index information iuj
select u∗(j)

7: end for

8: return: optimal cost J∗ and optimizer u∗ = [u∗
1, . . . , u

∗
r]

T

Remark 4 The on-line algorithm is in effect the traversal of the cell tree shown in Figure 7 modulo the
solution of univariate polynomial equations. This tree is the instance of the more generic “roadmap” the
algorithm constructs based on the CAD information. This “roadmap” is used by the algorithm to evaluate
maps (9). Following the same line of reasoning, the function

M : Cx 7−→ (iγ , iu1
, . . . , iur

) ∈ N
r+1

segments in effect the continuous space of x into discrete components (the cells), converting the continuous
optimization problem into a discrete decision problem plus solving univariate polynomial equations. Once
it is determined in which component we start, the indexes (iγ , iu1

, . . . , iur
) serve as “road signs” towards

the optimal solution and optimizer of the original problem (8). This segmentation of the parameter space
into regions is in analogy with the polytopic region partition that occurs in the linear off-line MPC case
(Bemporad et al., 2002).

Remark 5 It should be stated that although the proposed algorithm is extremely general and can in prin-
ciple be applied to a wide variety of problems, its application is limited by the computational cost of the
CAD procedure. Unless algorithmic breakthroughs take place or more efficient methods for CAD construc-
tion are implemented, the practical relevance of the proposed scheme will be restricted to problems with a
relatively small number of variables. Nevertheless, current research aims at exploiting the structure of the
problem to render the algebraic manipulations in the proposed approach more efficient, thus significantly
extending the practical relevance of the algorithm.

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

Parametric Optimization and Optimal Control using Algebraic Geometry 13

-50
0

50
100

-50

0

50

100

-6

-4

-2

0

2

4

6

x1x2

u∗

Figure 8. Optimizer for problem (16). Discontinuities with
respect to the parameter are characteristic of nonlinear

parametric optimization problems.

-100

-50

0

50

100

150 -100

-50

0

50

100

150

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

x1
x2

γ∗

Figure 9. Optimal value for problem (16).

4 The eigenvalue method and parametric optimization

In this section we choose a different angle of attack of the same problem. Firstly, we present some fun-
damental concepts, namely ideals, varieties, Gröbner bases and related ideas. Secondly, we derive the
Karush-Kuhn-Tucker (KKT) optimality conditions for the optimal control problem of a polynomial sys-
tem. Furthermore, we show how we can use the eigenvalue method for solving systems of polynomial
equations to parametrically solve the resulting KKT system and thus perform parametric optimization.
The same method has also been used in control for model reduction (Hanzon et al., 1998). Finally, the
method is illustrated by means of an application example.

4.1 Posing the problem

The new approach is based on the fact that the foundation of continuous constrained optimization are the
KKT conditions. In our case, they demand that any local and global minima for problem (8) (satisfying
certain constraint qualifications) occur at the so-called “critical points” (Boyd and Vandenberghe, 2004),
namely the solution set of the system

∇uJ(u, x) +
∑q

i=1 µi∇ugi(u, x) = 0
µigi(u, x) = 0

µi ≥ 0
g(u, x) ≤ 0 ,

(19)

where J(u, x) and g(u, x) are as in (8), gi(u, x) ∈ R[x1, . . . , xn] for i = 1, . . . , q being the polynomial
elements of the constraint vector g(u, x). The Lagrange multipliers are denoted in (19) with µi ∈ R+ for
i = 1, . . . , q. Therefore, performing parametric optimization for optimal control can be reduced to, roughly
speaking, solving system (19) parametrically modulo a search over the solution set.

For the class of systems we consider, the two first relations of system (19) form a square system of poly-
nomial equations. Various methods have been proposed in the literature for solving systems of polynomial
equations, both numerical and symbolic (Sturmfels, 2002), (Parrilo and Sturmfels, 2000), (Manocha, 1994).
Related work can also be found in (Nie et al., 2005). Here we consider symbolic methods since our aim is
to solve the optimization problem parametrically, i.e. for any given value of the parameter x in the region
of interest. It should be mentioned again that the underlying philosophy is moving as much as possible of
the computational burden of solving the nonlinear program (8) – and as a consequence KKT system (19)–
off-line, leaving an easier task for the on-line implementation.

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

14 I.A. Fotiou, P. Rostalski, P. A. Parrilo and M. Morari

4.2 Ideals and varieties

Consider a system of n polynomial equations fi in n variables yi

f1(y1, . . . , yn) = 0
...

fn(y1, . . . , yn) = 0

(20)

with coefficients in a field K. A field is a set where we can define addition, substraction, multiplication
and division. Furthermore, a field contains additive and multiplicative inverse and identity for all for of
its elements. Well known examples are the field of the real numbers R and the field of complex numbers
C. Before we look at the object we are interested in, namely the solution of the polynomial system (20) it
is worth describing the concept of algebraically closed fields. If we consider the field of complex numbers
C as opposed to the field of real numbers R, we can define equations with coefficients in the field R that
do not have a solution in this field, for instance

y2 + 1 = 0 . (21)

In the field of complex numbers C this is not possible. The field C is therefore called algebraically closed.
Every field K has an algebraic closure which is the smallest algebraically closed field K containing K.
For example, the algebraic closure of R is C. The reason for which the statements to follow are posed in
the more general framework of any field K (and not specifically C or R), is the fact that later we have to
perform computations in the (more general) field of rational functions in the parameters x1 . . . xn.

Since we are interested in the solution of the polynomial system (20), we can state the following question:
What are the solution points of (20) in the algebraic closure of the field K? We call this set of points the
variety over the algebraic closure K of K and denote it with

V(I) = {s ∈ K
n

: f1(s) = 0, . . . , fn(s) = 0} . (22)

In optimal control, we are interested in a subset of these points, say in the real solutions or the solutions
satisfying certain constraints gi(s) ≤ 0. This is an issue that we address separately – see Section 4.4. If
we now relax the conditions on the properties a field has to fulfill, namely if we do not require multi-
plicative inverse, the resulting algebraic structure is that of a commutative ring. The ring consisting of all
polynomials K[y1, . . . , yn] with coefficients in the field K is an example of such a ring.

An algebraic object of central importance in polynomial system solving is the notion of polynomial ideal.
An ideal I is a subset of polynomials in the ring K[y1, . . . , yn], that is I ⊆ K[y1, . . . , yn], where K denotes
an arbitrary field:

I = 〈f1, . . . , fm〉 := {p1f1 + . . . + psfs : pi ∈ K[y1, . . . , yn] for i = 1, . . . , s} . (23)

All common roots of system (20) in the algebraic closure K, that is all y ∈ V are exactly the points we are
interested in. The set of points for which the polynomials in (20) vanish, i.e. the variety V, is not uniquely
defined by the polynomials fi. It can be also defined by other sets of polynomials. Consider for example
the following system of polynomials:

f1 = y2 − y1y2

f2 = (y2 − 1)(y1 + 2)

= y1y2 + 2y2 − y1 − 2 .

(24)

The associated ideal is

I = 〈f1, f2〉 = {p1(y2 − y1y2) + p2(y1y2 + 2y2 − y1 − 2) : pi ∈ K[y1, y2] for i = 1, 2} .

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

Parametric Optimization and Optimal Control using Algebraic Geometry 15

Another representation of the same set I is given by

I = 〈f̃1, f̃2〉 = {p1(−3y2 + y1 + 2) + p2(y
2
2 − y2) : pi ∈ K[y1, y2] for i = 1, 2} .

In other words,

I = 〈f1, f2〉 = 〈f̃1, f̃2〉 ,

where

f̃1 = −3y2 + y1 + 2

f̃2 = y2
2 − y2 .

We say that both sets of polynomials {fi} and {f̃i} generate the same ideal. Equivalently, we say that
fi and f̃i form a basis of the ideal. Later, we will discuss some particular bases with nice properties (the
Gröbner bases). In the example above, the associated variety V(I) contains two points, namely:

V(I) = V(〈f1, f2〉) = V(〈f̃1, f̃2〉) = { (−2, 0), (1, 1) } . (25)

The variety of an ideal has been defined in (22). One could pose the question now, if the ideal of a
variety can be defined. The answer is affirmative, but one has to pay attention. Consider for example, the
set of solution points of the following polynomial system of one equation:

f1 = y2
1 .

This set is the same as the set of solution points of system

f ′
1 = y1 .

However, the ideal generated by the second system I ′ = 〈f ′
1〉 is different from the ideal defined by the first

system I = 〈f1〉. This is because I ′ contains the polynomial y1 whereas I does not. We define the ideal
of a variety as the largest subset of K[y1 . . . yn] such that all the polynomials of this subset vanish on the
variety. In the example above, the ideal of the variety V = {0} is I ′, since I ′ ⊃ I, and we write I(V) = I ′.
Additionally, we say that an ideal I is radical if I = I(V(I)), equivalently if for every pl ∈ I also p ∈ I.

4.3 Gröbner bases

As seen in the previous Section, the representation of an ideal in terms of a basis is not unique. In order to
find a basis with some nice algorithmic properties, we first have to introduce an ordering on the monomials.

An ordering needs to have the following properties:

- Total ordering: Every two non-equal monomials can always be compared, i.e. one is always “greater”
than the other.

- Compatibility with multiplication: The relative order of two monomials remains the same after multipli-
cation with another fixed monomial.

- Well ordering: Every strictly decreasing sequence of monomials terminates.

In order to introduce the various term orders, we define the multi-index notation

yα = yα1

1 yα2

2 ... yαn

n , where α = (α1, . . . , αn) ∈ N
n
>0 . (26)

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

16 I.A. Fotiou, P. Rostalski, P. A. Parrilo and M. Morari

The notation in (26) induces also an ordering on the variables yi, meaning that by y(1,2) we unambiguously
understand y1y

2
2 and not y2

1y2. Furthermore, we call

d = |α| =
n
∑

i=1

αi (27)

the total degree of the monomial yα. A very important monomial term order is the lexicographic ≻lex

term-order. In this ordering, two monomials yα ≻lex yβ if the leftmost nonzero entry of the exponent
vector difference α − β is positive. For instance,

y1y2 ≻lex y3
2

because the difference of the exponent vectors (also called supports) has a positive leftmost entry:

(1, 1) − (0, 3) = (1,−2) .

In the sequel, we mainly use a different term-order, the so-called graded reverse lexicographic order ≻grevlex.
We say yα ≻grevlex yβ , if

∑n
i=1 αi >

∑n
i=1 βi, or if

∑n
i=1 αi =

∑n
i=1 βi and the leftmost entry of the

difference α − β is negative. For the example above, we have

y1y2 ≺grevlex y3
2 ,

because

|α| = 2 < 3 = |β| .

With the definition of a total ordering of the monomials, we can now define the initial term (or leading
term) in≺(f) = xα for every polynomial f ∈ K[y1, . . . , yn] as the largest monomial xα (with respect to a
give term-order). For example, the underlined term in the polynomials

f1 = −y1y2 + y2

f2 = y1y2 + 2y2 − y1 − 2 ,
(28)

is the leading term with respect to the graded reverse lexicographic term order. The coefficient of the
leading term is called leading coefficient. Moreover, for an ideal I ∈ K[y1, . . . , yn] we can define its initial
ideal as

in≺(I) = 〈in≺(f)〉 , f ∈ I ,

namely the ideal generated by all the initial terms of all the polynomials in the ideal I.
As stated before, the basis of an ideal I is not uniquely defined. Among all possible bases for an ideal I,

there is a class of bases with desired algorithmic properties, the Gröbner bases.

Definition 4.1 A Gröbner basis is a finite subset G = {γ1, . . . , γt} of I with the following properties:

(i) it generates the ideal I, i.e. I = 〈γ1, . . . , γt 〉 , and
(ii) all initial terms of the Gröbner basis generate the initial ideal in≺(I) of I, i.e

in≺(I) = 〈in≺(γ1), . . . , in≺(γt)〉 .

For example (28) with I = 〈−y1y2 + y2, y1y2 + 2y2 − y1 − 2〉, we can see that f1 = −y1y2 + y2 and
f2 = y1y2 +2y2−y1−2 do not form a Gröbner basis. This is because the second condition of Definition 4.1

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

Parametric Optimization and Optimal Control using Algebraic Geometry 17

is not fulfilled: The leading term of the polynomial f = f1 + f2 = −y1 + 3y2 − 2 is −y1, that is y1, belongs
to the initial ideal in≺(I). However, the leading terms of f1 and f2 (−y2y1 and y2y1) cannot generate it,
because it is not divisible by any one of them. Expressed differently, the leading terms do not generate
the initial ideal. The initial ideal of I = 〈f1, f2〉 for graded reverse lexicographic order contains monomials
y2
2, y1 and all monomials that are divisible by any one of them. A (graded reverse lexicographic) Gröbner

basis for ideal I can then be

γ1 = y1 − 3y2 + 2

γ2 = y2
2 − y2 .

(29)

Another Gröbner basis for the same ideal is

γ̃1 = y1 − 3y2 + 2

γ̃2 = y2
2 − y2

γ̃2 = −y1y2 + y2 ,

or any other set of polynomials γ̂i ∈ I containing γ1, γ2. We therefore realize that a Gröbner basis is not
unique, nor does it have any minimality requirement that the word “basis” intuitively invokes. However,
among all previous instances, it becomes clear that (29) has the property that it minimally generates
the corresponding ideal. This property is that the leading coefficients are all one and no trailing term of
any γi lies in the initial ideal in≺(I). We call such a basis the reduced Gröbner basis and it is unique.
Consequently, we have the following definition:

Definition 4.2 A reduced Gröbner basis (with respect to a particular term order) is a Gröbner basis
G = {γ1, . . . , γt} that satisfies the following conditions:

(i) The leading coefficients of all elements γi are equal to one, and
(ii) No trailing (non-leading) term of any element γi lies in the initial ideal in≺(I).

If we now look at the set B of monomials not contained in the initial ideal in≺(I), we come to another
interesting structure, the so called quotient ring K[y1, . . . , yn]/I of an ideal I. For example (28), the only
monomials not contained in in≺(I), and therefore not divisible by any of the leading terms of the Gröbner
basis, are B = {1, y2}. It turns out that any polynomial f ∈ K[y1, . . . , yn] can be uniquely written in the
following form:

f =
l
∑

i=1

piγi + f
G
, γi ∈ G , pi ∈ K[y1, . . . , ym] , (30)

where G is the reduced Gröbner basis. The algorithm that takes the polynomial f and writes it in form

(30) is the division algorithm. The polynomial f
G

lies in K[y1, . . . , yn]/I and is called the remainder of f

with respect to the Gröbner basis G, hence the (·)
G

notation. The remainder f
G

contains only monomials
that are not divisible by any of the leading terms of the γi’s. Namely, it contains only monomials in B.

The monomials in B build a basis for the quotient ring. Thus, every remainder r = f
G

can be written as
a linear combination of bi ∈ B. That is, for

B = {b1, . . . , bl} , (31)

we have

r = aT · b , (32)

where b = [b1, . . . bl]
T is the vector of the standard monomials, the same monomials appearing in basis B.

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

18 I.A. Fotiou, P. Rostalski, P. A. Parrilo and M. Morari

Definition 4.3 A monomial is standard if it is not divisible by any leading monomial of a polynomial in
the Gröbner basis.

In the generic case, namely for a square system of polynomials with coefficients random enough, the sys-
tem of polynomials (20) has a finite number of solutions and consequently, the quotient ring has the struc-
ture of a finite-dimensional vector space. In addition, the corresponding ideal is called zero-dimensional.
Our primary interest is in this finite set of solutions. The quotient ring associated with system (20) can be
used to transform the original problem to a linear algebra problem. Namely, we can define certain matrices
whose eigenvalues give exactly the solutions of system (20). Let us use again the polynomials in (28) to
illustrate this connection.

Suppose that we have the ideal I = 〈γ1 = y1−3y2 +2, γ2 = y2
2 −y2〉 generated by the Gröbner basis (29)

with B = {1, y2}. After division with this Gröbner basis, the arbitrary polynomial f = y1y
2
2 + y2

1 − 4y1y2 +
y1 + 4y2 + 5 can be written as

f = (y1 − 1)γ1 + (y1)γ2 + f
G

,

where

f
G

= y2 + 7 = [7 1] · b (= [7 1] ·
[

1
y2

]

) .

A remainder f
G
6= 0 shows that f 6∈ I. The polynomial f can in turn be multiplied with another polynomial

function h ∈ K[y1, . . . , yn], say h = y1 = γ1 + 3y2 − 2, and their product expressed as follows:

f · h = (y2
1 − y1 + y2 + 7)γ1 + (y2

1 + 3)γ2 + 22y2 − 14 ,

which means that

f · h
G
(

= f · h
G
)

= [−14 22] ·
[

1
y2

]

.

Moreover, we can define a mapping mh : K[y1, . . . , yn]/I → K[y1, . . . , yn]/I with mh(f) = f
G
· h

G
G

, that

can in turn be applied to any remainder f
G
.

Theorem 4.4 The mapping mh is linear (Cox et al., 1998).

Because of this, and due to the vector space structure of K[y1, . . . , yn]/I, mh can be represented by a
matrix Mh. To compute the matrix Mh, we compute for each element of the basis bi ∈ B the remainder ri

of the polynomial h · bi with respect to the Gröbner basis G:

h · bi
G

= ri, ∀ bi ∈ B . (33)

All ri ∈ K[y1, . . . , yn]/I can be in turn expressed as an inner product

ri = aT
i · b

with respect to the basis B, as in (32). By collecting all vectors ai for all basis elements (Cox et al., 1998),
we can construct a representation of the map mh with respect to basis B, i.e. calculate the matrix Mh as
follows:

Mh ≡ [aij] =

aT
1
...

aT
l

. (34)

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

Parametric Optimization and Optimal Control using Algebraic Geometry 19

For our example, we obtain

Mh =

(

−2 3
0 1

)

.

The matrix Mh is called the generalized companion matrix of the function h.

Evaluating polynomial functions on a variety

Consider a polynomial function h ∈ R[y1, . . . , yn]. The amazing fact about the matrix Mh is that the set of
its eigenvalues is exactly the values of h over the variety V(I) defined by the ideal I. More precisely, V(I)
is the set of all solution points in complex n-space C

n of the system (20). The following theorem holds.

Theorem 4.5 Let I ⊂ C[y1, . . . , yn] be a zero-dimensional ideal, let h ∈ C[y1, . . . , yn]. Then, for λ ∈ C,
the following are equivalent:

(i) λ is an eigenvalue of the matrix Mh

(ii) λ is a value of the function h on the variety V(I).

The proof can be found in (Cox et al. (1998), p. 54).
To obtain the coordinates of the solution set of (20), we evaluate the functions

h1 : y 7−→ y1
...

hm : y 7−→ yn

(35)

on the variety V(I) defined by the ideal I, where y above denotes the vector (y1, . . . , yn). This can be done
by means of the associated companion matrices of the functions hi. The following theorem taken from
(Sturmfels (2002), p. 22) is the basis for the calculation of these point coordinates.

Theorem 4.6 The complex zeros of the ideal I are the vectors of joint eigenvalues of the companion
matrices My1

. . .Myn
, that is

V(I) =
{

(y1, . . . , yn) ∈ R
n : ∃ v ∈ R

n ∀ i : Myi
v = yiv

}

.

It has to be noted that any vector-valued polynomial function h : R
n −→ R can be evaluated over a

zero-dimensional variety in the same way.

4.4 The algorithm

In this section, we present an algorithm, which consists of two parts: the off-line part, where the gener-
alized companion matrices for the optimization problem are constructed, and the on-line part where this
precomputed information is used and given the value of the parameter x, the optimal solution is efficiently
extracted.

Idea

Under certain regularity conditions, if J∗ (defined in (10)) exists and occurs at an optimizer u∗, the KKT
system (19) holds at u∗. Consequently, J∗ is the minimum of J(u, x) over the semi-algebraic set defined
by the KKT equations and inequalities (19). These conditions can be separated in a set of inequalities
and a square system of polynomial equations. We assume that the ideal generated by the KKT system
(19) is zero-dimensional, in order to be able to use the method of eigenvalues for solving systems of

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

20 I.A. Fotiou, P. Rostalski, P. A. Parrilo and M. Morari

polynomial equations, as described in the previous paragraphs. If we have a positive dimensional variety of
critical points, we can always perturb the system in order to get a zero-dimensional variety. The stability
and convergence issues related to such perturbations is a research issue on its own right and one should
keep it in mind. Recently, (Hanzon and Jibetean, 2003) have proposed such a perturbation scheme with
convergence guarantees.

By ignoring the inequalities, a superset of all critical points is computed and in a second step, all
infeasible points are removed. It remains to be searched among the feasible candidate points for those with
the smallest cost function value.

Off-line Part

We define the KKT ideal

IKKT = 〈∇uJ(u, x) +

q
∑

i=1

µi∇ugi(u, x), µigi(u, x)〉 (36)

containing all the equations within the KKT-system (19). All critical points for the optimization prob-
lem (19) and fixed x are the subset of real points on the KKT-variety

VR

KKT ⊆ VKKT = V(IKKT) . (37)

These points can be computed by means of generalized companion matrices. We can use Gröbner bases
computation for the ideal IKKT and compute the corresponding companion matrices Mui

and Mµi
di-

rectly, as shown in (34). Since we want to calculate the companion matrices parametrically, we do all the
computations over the field K of rational functions in the parameters x1 . . . xn, denoted with R(x1 . . . , xn).
This means that all coefficients of the polynomials

f1(u1, . . . , ur, µ1, . . . , µq)
...

fr+q(u1, . . . , ur, µ1, . . . , µq)

are generally rational functions of the parameter x. Consider following example

f1 = u2 − x1u2u1

f2 = (u2 − x2)(u1 + 2) ,

where x = [x1 x2] is the parameter. The solution set can be easily found to be V = {(−2, 0) , (1
x1

, x2)}.
However, to illustrate the method, we solve the system also using eigenvalues. The calculation of a Gröbner
basis with graded reversed lexicographic ordering ≻gradrev in u1 and u2 leads to

γ1 = x1x2u1 − 2x1u2 − u2 + 2x1x2

γ2 = u2
2 − x2u2 ,

(38)

for almost all values of the parameters x1, x2. Almost all means that (38) is a Gröbner basis, if none of
the leading terms vanish, i.e. provided that x1x2 6= 0. For x1x2 = 0 we have to calculate a Gröbner basis
separately, which leads to

γx1x2=0
1 = u2

γx1x2=0
2 = u1 + 2 .

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

Parametric Optimization and Optimal Control using Algebraic Geometry 21

Let us exclude these cases and do the remaining calculations with (38) assuming x1x2 6= 0. The set of
standard monomials is given by B = {1, u2} and the multiplication matrices are

Mu1
=

(

−2 1+2x2

x1x2

0 1
x1

)

, Mu2
=

(

0 1
0 x2

)

. (39)

In this simple case it is even possible to calculate the eigenvalues parametrically. Generally speaking,
however, computing eigenvalues and checking the feasibility of the solution points has to be done after
specializing the parameter x. We readily see that the eigenvalue set of matrices (39) are exactly the
coordinates of the variety (−2, 0) and (1

x1
, x2). The matching information is obtained for free, since the

companion matrices share the same eigenvectors – see Theorem 4.6. A summary of the off-line algorithm
appears in Algorithm 1.

Algorithm 1 (Off-line) Computing the companion matrices

Input: Objective function J(x, u) and constraints gi(x, u) ≤ 0.
Output: Generalized companion matrices Mui

and Mµi
for candidate optimizer.

1: construct IKKT

2: calc. Gröbner basis G for IKKT

3: if G =< 1 > then

4: KKT-variety VKKT is empty
5: else

6: Compute generalized companion matrices Mui
and Mµi

for all variables ui, µi

7: end if

8: return: Mui
and Mµi

.

Remark 1 Due to the structure of the polynomials in (36), there is an alternative way of calculating
the generalized companion matrices. Namely, one could decompose the varieties in sub-varieties and use
case enumeration. For clarity of exposition, however, we choose not to elaborate on this approach. The
interested reader is referred to Fotiou et al. (2006b) and the references therein.

On-line Part

In order to evaluate the point coordinates of the KKT variety, we need to compute eigenvectors and
eigenvalues for the companion matrices. As already mentioned, eigenvalue computation cannot be done
parametrically. The parameter x has to be fixed to a numerical value and the computation is done on-line.

Given the precomputed generalized companion matrices Mui
and Mµi

, the online algorithm takes the
value of the parameters x to compute the optimum J∗ and the optimizer u∗. The three main steps of the
algorithm are:

(i) calculate all critical points (by means of eigenvalue computations),
(ii) remove infeasible solutions (e.g. those for which µi < 0),
(iii) find the feasible solution u∗ with the smallest objective function value J∗ = J(u∗).

Since all companion matrices have been computed parametrically, the on-line algorithm mainly involves
linear algebra, which can be done fast and efficiently.

First, a set of right eigenvectors {v} is computed for the companion matrices Mui
– see Theorem 4.6. All

companion matrices commute pairwise, see (Cox et al., 1998), and from linear algebra we know that such
matrices all share the same eigenvectors. Therefore, it suffices to calculate the eigenvectors for a single
arbitrary matrix or a linear combination of companion matrices. To avoid computational problems, we
choose a matrix Mrand as a random linear combination of the companion matrices associated with the

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

22 I.A. Fotiou, P. Rostalski, P. A. Parrilo and M. Morari

decision variables Mui
, i.e.

Mrand = c1Mu1
+ · · · + crMur

+ cr+1Mµ1
+ · · · + cr+qMµq

, (40)

where ci ∈ C are randomly chosen scalars. Provided that all the roots of the original system have a
multiplicity of one, this ensures with a low probability of failure that the eigenvalues of Mrand will all have
algebraic multiplicity of one (Cox et al. (1998), Chapter 2, §4). The case of root multiplicities greater than
one is studied in Möller and Stetter (1995).

The sets of eigenvectors {v} can now be used to compute all candidate critical points ucand
i and their

Lagrange multipliers µi for the variety VKKT . To avoid unnecessary computations, we first calculate the
candidate Lagrange multipliers µi. In this way, complex or infeasible candidate points with µi < 0 can be
immediately discarded before the candidate optimizers ucand

i are computed.
For all non-discarded candidate solutions, it remains to be checked whether they are feasible, i.e.

g(ucand
i , xi) ≤ 0. To achieve that, a set of feasible local candidate optimizers S = {ucand

i } is initially
calculated by collecting all feasible candidate optimizers. After computing the objective function value
J(ucand

i , x) for all candidate optimizers, the optimal solution

J∗ = min
ucand

i ∈S
J(ucand

i , x)

and the optimizer

u∗
i = arg min

ucand
i ∈S

J(ucand
i , x)

can be easily obtained. A summary of the on-line algorithm can be seen in Algorithm 2.

Algorithm 2 On-line Part: Companion matrices Mu and Mµi
for the variety VKKT have already been

computed and are available.

Input: Value of the parameter x (state measurement taken in real time).
Output: Optimal cost J∗ and optimizer ui.

1: specialize parameter x in Mui
and Mµi

2: calc. a set of common eigenvectors {v} for the companion matrix Mrand

3: solve Mµi
v = µiv to obtain the joint eigenvalues, i.e. candidates for µi

4: discard all eigenvectors with corresp. µi < 0
5: use the remaining eigenvectors to calc. joint-eigenvalues of Mui

to obtain candidates for ucand
i

6: for all evaluated candidate points {ucand
i } do

7: if gk(u
cand
i , x) > 0 then

8: discard candidate point ucand
i

9: else

10: evaluate J(ucand
i , x)

11: end if

12: compare J(ucand
i , x) for the calculated ucand

i and choose optimal J∗ and corresponding u∗
i

13: end for

14: return: optimal cost J∗ and optimizer u∗ = [u∗
1, . . . , u

∗
r]

T .

4.5 Optimal control application

In this section, the eigenvalue-based approach is illustrated by means of an application example. The
off-line algorithm has been implemented in Maple. Then, a Maple-generated input file is used to initialize
Matlab, which runs the on-line algorithm to obtain the optimizer in real time.

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

Parametric Optimization and Optimal Control using Algebraic Geometry 23

x1(t)

x
2
(t

)

controlled
free response

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 10. State-space diagram of the Duffing oscillator

t

x
1
(t

),
x

2
(t

)

t

u
(t

)

x1(t)
x2(t)

0 2 4 6 8 10

0 2 4 6 8 10

-2

0

2

4

6

-4

-2

0

2

4

Figure 11. State and input evolution of the controlled Duffing
oscillator

Consider the Duffing oscillator (Jordan and Smith, 1987), a nonlinear oscillator of second order. An
equation describing it in continuous time is

ÿ(t) + 2ζẏ(t) + y(t) + y(t)3 = u(t) ,

where y ∈ R is the continuous state variable and u ∈ R the control input. The parameter ζ is the damping
coefficient and it is known (here ζ = 0.3). The control objective is to regulate the state to the origin.
To derive the discrete time model, forward difference approximation is used (with a sampling period of
h = 0.05 time units). The resulting state space model with a discrete state vector x ∈ R

2 and input u ∈ R

is:

[

x1(k + 1)
x2(k + 1)

]

=

[

1 h
−h (1 − 2ζh)

] [

x1(k)
x2(k)

]

+

[

0
h

]

u(k) +

[

0
−hx3

1(k)

]

.

An optimal control problem with prediction horizon N = 3, weight matrices

Q =

[

1 0
0 1

]

, R =
1

10
,

and state-constraints

‖x(k + j)‖∞ ≤ 5 ∀j = 1 . . . 3 ,

leads to the following optimization problem:

J∗ = min
u(k),u(k+1),u(k+2)

∑3
i=1 [x1(k+i) x2(k+i)] Q

[

x1(k+i)
x2(k+i)

]

+
∑2

i=0 u(k + i)Ru(k + i)

s.t. ‖x(k + j)‖∞ ≤ 5 ∀j = 1 . . . 3 .

Of these twelve constraints there are ten constraints involving u(k+ i), which have to be considered during
the optimization. The trajectory of the controlled system starting from an initial state of x1(0) = 2.5
and x2(0) = 1 is shown in Figure 11. Figure 10 shows the state-space evolution of the controlled Duffing
oscillator and its free response without the controller. In the uncontrolled case, a violation of the constraint
x2(t) > −5 can be readily observed. The technical details of the computations in this section can be found
in (Fotiou et al., 2006b).

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

24 REFERENCES

4.6 Continuous-time systems

The exposition throughout the paper concerns discrete-time systems. To the best of the authors’ knowledge,
the proposed algebraic methods cannot be directly applied to continuous-time systems. This is because the
continuous-time optimization problem is an infinite-dimensional problem. Nevertheless, an approach for
finding the explicit optimal LQ controller for linear time-invariant systems has been proposed in (Kojima
and Morari, 2004), where the authors propose an approximation scheme involving singular value decom-
position. It is proven, that the computed sub-optimal control laws converge to the optimal one as the
problem approximation is refined.

On the one hand, one could argue that most physical systems are continuous-time systems. This fact alone
motivates efforts for finding optimal control methodologies that operate on the continuous-time systems
directly, which is an interesting research topic in itself. On the other hand, the discrete-time formulation of
continuous-time problems lends itself better to computations. When it comes to implementation, however,
the approach to be taken is likely to be determined by the application at hand and the respective demands
it imposes.

5 Conclusions and future outlook

In this paper we presented two new algebraic methods of nonlinear parametric optimization for the optimal
control of polynomial systems. The first method uses cylindrical algebraic decomposition to evaluate the
map from parameter space to the corresponding optimizer and optimal value. The second method uses
Gröbner bases and the eigenvalue method for solving systems of polynomial equations to perform the
same task. Both methods are illustrated with examples. The algorithms presented are very general and
can be applied to a broad range of problems. The common theme of the proposed approaches is the
precomputation of the solution of the optimal control problem, either by means of CAD or the generalized
companion matrices. Thus, a partial pre-solution of the optimization problem is achieved, moving most
of the computational burden off-line and leaving an easier task for the on-line, real time receding horizon
control implementation.

Further research will explore the possibility of combining algebraic geometry techniques with recently
proposed sum-of-squares programming methods, based on semi-definite representations of finite varieties
(Laurent, 2004; Parrilo, 2002). Moreover, exploiting the recursive structure of dynamical systems so as to
extend the applicability of the proposed algebraic framework to systems with more variables is also under
investigation.

6 Acknowledgements

The authors would like to express their gratitude to Prof. Bernd Sturmfels for his time, help and inspiring
discussions.

References

Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E. N., 2002. The explicit linear quadratic regulator for
constrained systems. Automatica 38, 3–20.

Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, Cambridge.
Brown, C. W., 2003. QEPCAD B: a program for computing with semialgebraic sets using CADs. ACM

SIGSAM Bulletin 37, 97–108.
Caviness, B., Johnson, J., 1998. Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer

Verlag, Wien.
Chandru, V., Hooker, J. N., 1999. Optimization methods for logical inference. Series in discrete mathe-

matics and optimization. John Wiley & Sons, New York.

February 15, 2006 22:41 International Journal of Control FoRM˙IJC

REFERENCES 25

Cox, D., Little, J., O’Shea, D., 1998. Using Algebraic Geometry. Springer, New York.
Fotiou, I. A., Beccuti, A. G., Papafotiou, G., Morari, M., Mar. 2006a. Optimal control of piece-wise poly-

nomial hybrid systems using cylindrical algebraic decomposition. In: Hybrid Systems: Computation
and Control. Santa Barbara, CA.

Fotiou, I. A., Parrilo, P. A., Morari, M., Dec. 2005. Nonlinear parametric optimization using cylindrical
algebraic decomposition. In: Proceedings of the ECC-CDC Conference. Seville, Spain.

Fotiou, I. A., Rostalski, P., Sturmfels, B., Morari, M., Jun. 2006b. An algebraic geometry approach
to nonlinear parametric optimization in control. In: American Control Conference, Preprint:
arXiv:math.OC/0509288. Minneapolis, MN.

Garcia, C. E., Prett, D. M., Morari, M., 1989. Model predictive control: theory and practice - a survey.
Automatica 25, 335–348.

Grieder, P., Borrelli, F., Torrisi, F., Morari, M., Apr. 2004. Computation of the constrained infinite time
linear quadratic regulator. Automatica 40 (4), 701–708.

Hanzon, B., Jibetean, D., Sep. 2003. Global minimization of a multivariate polynomial using matrix meth-
ods. Journal of Global Optimization 27 (1), 1–23.

Hanzon, B., Maciejowski, J., Chou, C., Mar. 1998. Model reduction in H2 using matrix solutions of poly-
nomial equations. Technical Report, CUED/F-INFENG/TR.314.

Jordan, D. W., Smith, P., 1987. Nonlinear Ordinary Differential Equations. Oxford Applied Mathematics
and Computer Science. Oxford University Press.

Kojima, A., Morari, M., Jul. 2004. LQ control for constrained continuous-time systems. Automatica 40 (7),
1143–1155.

Laurent, M., 2004. Semidefinite Representations for Finite Varieties. Preprint, 2004. To appear in Mathe-
matical Programming.

Manocha, D., 1994. Solving Systems of Polynomial Equations. IEEE Computer Graphics and Applications
14, 46–55.

Möller, H. M., Stetter, H. J., 1995. Multivariate polynomial equations with multiple zeros solved by matrix
eigenproblems. Numer. Math. 70 (3), 311–329.

Munro, N., 1999. Symbolic methods in control system analysis and design. IEE, London.
Nie, J., Demmel, J. W., Sturmfels, B., Mar. 2005. Minimizing polynomials via sum of squares over the

gradient ideal. To appear in Mathematical Programming Series A, Preprint: arXiv:math.OC0411342.
Parrilo, P. A., Mar. 2002. An explicit construction of distinguished representations of polynomials non-

negative over finite sets. Tech. rep., Automatic Control Laboratory, ETH Zurich.
URL http://control.ee.ethz.ch

Parrilo, P. A., Sturmfels, B., 2000. Minimizing Polynomial Functions. Dimacs Series in Discrete Mathe-
matics and Theoretical Computer Science.

Qin, S. J., Badgwell, T. A., 2003. A survey of industrial model predictive control technology. Control
Engineering Practice 11, 733–764.

Sturmfels, B., 2002. Solving Systems of Polynomial Equations. No. 97 in CBMS Regional Conference Series
in Mathematics. American Mathematical Society.

Tarski, A., 1948. A decision method for elementary algebra and geometry. University of Califormia Press.

