
Convex Quantifier Elimination

for Semidefinite Programming

Hirokazu Anai1 and Pablo A. Parrilo2

1 Computer System Laboratories,
Fujitsu Laboratories Ltd

Kamikodanaka 4-1-1, Nakahara-ku Kawasaki, 211-8588, Japan
anai@jp.fujitsu.com

2 Automatic Control Laboratory
Swiss Federal Institute of Technology (ETH)

CH-8092 Zürich, Switzerland
parrilo@control.ee.ethz.ch

Abstract. Semidefinite Programming (SDP) is a class of convex op-
timization problems with a linear objective function and linear matrix
inequality (LMI) constraints. SDP problems have many applications in
engineering and applied mathematics. We propose a reasonably fast al-
gorithm to prove and solve SDP exactly by exploiting the convexity of
the SDP feasibility domain. This is achieved by combining a symbolic
algorithm of cylindrical algebraic decomposition (CAD) and a lifting
strategy that takes into account the convexity properties of SDP. The
effectiveness of our method is examined by applying it to some examples
on QEPCAD and maple.

1 Introduction

Semidefinite Programming (SDP) is one of the recent main developments in
mathematical programming, with many applications in applied mathematics and
engineering problems. SDPs are convex optimization problems with a linear ob-
jective function and linear matrix inequality (LMI) constraints (see [3],[9]). In
particular, a wide variety of questions in areas such as systems and control the-
ory can be cast and solved as SDP problems, hence their great practical and
theoretical interest.

Usually, SDP problems are solved numerically using interior point methods,
hence obtaining approximate solutions with finite precision. In certain cases (for
instance, applications in algebraic geometry [13]) an exact algebraic represen-
tation of the optimal solution, and not just numerical values, is desired. Addi-
tionally, in critical situations such as ill-posed problems, there is a real danger
of arriving at an incorrect answer; we may obtain a “numerically” feasible so-
lution for an infeasible problem, or vice versa. Hence it is important to develop
exact methods for deciding their feasibility, and also characterizing and comput-
ing the exact solution of SDP problems. This can be accomplished by symbolic
optimization methods based on quantifier elimination (QE) [1]. The downside



of this approach are the bad computational complexity properties of generic QE
algorithms.

For these reasons, in this paper we propose an improved algorithm to prove
and solve SDP problems exactly based on a symbolic method of cylindrical al-
gebraic decomposition (CAD) [5], and the careful exploitation of the convexity
of the SDP domain through a bisection-based lifting strategy. For simplicity,
we will also assume the availability of a feasible interior point, a reasonable re-
quirement common with interior point methods. This contributes to reduce the
computation time by restricting the parameter space to an a priori known feasi-
ble region. This assumption can be removed at a slightly higher computational
cost. We examine the performance of our method by solving some examples
using QEPCAD1 and maple.

Our method can be regarded as a specialized CAD algorithm for SDP prob-
lems exploiting convexity and an initial interior point. The ideas used here could
be generalized to other classes of convex programming. Thus, we refer to the
approach as “convex quantifier elimination.”

Local quantifier elimination proposed in [8] aims at decreasing the size of
output formula and the computation time by restricting the parameter space
to an interesting area around the given point. They proposed local quantifier
elimination procedure based on the quantifier elimination by virtual substitution
[14, 11]. Convex quantifier elimination differs from local quantifier elimination
in the following point: Given a first-order formula ϕ(v1, . . . , vn) and a point
a = (a1, . . . , an) ∈ Rn, local quantifier elimination computes from ϕ a quantifier-
free formula ϕ∗ and a semi-algebraic set S ∈ Rn containing the point a, such
that for all s ∈ S we have that ϕ(s) and ϕ∗(s) are equivalent. Convex quantifier
elimination ensures that the semi-algebraic set S including the given point a is
a unique feasible region by virtue of the convexity.

The organization of the rest of the paper is as follows: a brief introduction
of SDP problems and a reduction procedure to QE problems is explained in §2.
A review of the basic ideas and notation of cylindrical algebraic decomposition
in presented in §3. In §4 we present our efficient method to solve SDP problems
exactly based on a highly specialized CAD algorithm. Computational results
for some concrete examples are presented to demonstrate the validity of our
approach in §5. Finally, in §6 we present our concluding remarks.

2 Semidefinite programming

2.1 SDP problems

We present next the definition of semidefinite programming problems. A sym-
metric matrix A ∈ Rn×n is positive (semi) definite if and only if the quadratic
form xTAx > 0 (≥ 0) for all x = (x1, · · · , xn) ∈ Rn s.t. x 6= 0, where xT stands
for the transpose of x. In the sequel, when A is positive (semi) definite, we denote
it by A � 0 (� 0). For a real symmetric matrix A, A � 0 (� 0) if and only if all

1 See http://www.cs.usna.edu/~qepcad/B/QEPCAD.html



eigenvalues of A are positive (non negative). A linear matrix inequality (LMI) is
a matrix inequality of the form

M(x) = M0 +

m
∑

i=1

xiMi � 0 (� 0) (1)

where x ∈ Rm is the variable vector and Mi = MT
i ∈ Rn×n, i = 0, . . . ,m, are

given symmetric matrices.
In general, there are three types of (quasi) convex optimization problems

with LMI constraints; Feasibility, Linear objective minimization under LMI con-
straints and Generalized eigenvalue minimization [9]. Among them we focus on
the second one, the minimization of a linear objective function of a vector vari-
able x ∈ Rm subject to a linear matrix inequality, i.e.,

minimize cTx
s.t. M(x) � 0,

(2)

where c ∈ Rm. This problem is called Semidefinite Programming (SDP). For a
vector x0, if M(x0) � 0, x0 is called feasible. If there is no feasible solution,
we say that the problem (2) is infeasible. Notice that set of feasible points in
a convex set, and that the optimal solution, if achieved, lies on the boundary
of the feasible set. SDP includes many important convex optimization problems
such as linear programming as special cases.

SDP problems are usually solved by a numerical techniques based on interior
point methods, hence obtaining approximate solutions of finite precision. As
explained, in certain applications or critical situations, e.g. ill-posed problems,
exact representations of the solutions of its feasibility are desired. Hence we
propose a method of computing the exact feasible solution of SDP problems
using a symbolic optimization method based on quantifier elimination.

2.2 Reducing a SDP problem to a QE problem

In general, optimization problems of minimizing an objective function h(x) sub-
ject to a constraint that is a first-order formula φ(x) are solved by using QE as
follows: First introduce a new indeterminate z assigned to the objective function
h and consider the new first-order formula

φ′(x, z) = φ(x) ∧ (z − h(x) ≥ 0).

We call the polynomial z − h an objective polynomial. Then the problem of
minimizing h subject to φ is formulated as a QE problem

Φ ≡ ∃x1 · · ·
∃xm(φ′).

Next eliminate all quantified variables x1, . . . , xm to have the resulting quantifier-
free formula Φ′ in z. Then Φ′ gives a finite union M of intervals for z, which
shows the possible range of z. If M is empty, ψ is unsolvable (i.e. infeasible); if



M is unbounded from below, h has no minimum w.r.t. φ; if µ ∈ M is a lowest
endpoint of M , then µ is the minimum value of z w.r.t. φ (see [15] for details).

We show next how a linear matrix inequality constraint in a SDP problem can
be reduced to a QE problem: determining (semi)definiteness for a real symmetric
matrix can be achieved without computing eigenvalues by using the following
well-known Sylvester’s criterion:

Theorem 1 (Sylvester’s criterion). Let M = (mij) ∈ Cn×n be a Hermitian
matrix. Then M is positive semidefinite if and only if all principal minors of M
are non negative i.e.

det M

(

i1 i2 · · · ir
i1 i2 · · · ir

)

≥ 0, (3)

for 1 ≤ i1 < i2 < · · · < ir ≤ n, r = 1, 2, · · · , n, where

M

(

i1 i2 · · · ir
j1 j2 · · · jr

)

denotes the r × r submatrix of M which consists of (ik, jl)-entries of M , where
1 ≤ i1 < i2 < · · · < ir ≤ n and 1 ≤ j1 < j2 < · · · < jr ≤ n.

By this criterion, a linear matrix inequality M(x) � 0 can be exactly reduced to
an equivalent formula that is the conjunction of 2n−1(≡

∑n

r=1

(

n

r

)

) inequalities,
say δk (k = 1, . . . , 2n − 1), of the form (3). Consequently, the SDP problem (2)
can be recast as the following QE problem:

Ψ ≡ ∃x1 · · ·
∃xm(ρ). (4)

where

ρ ≡

(

z − cTx ≥ 0 ∧

2
n
−1
∧

k=1

δk ≥ 0

)

.

In general, to solve (4) exactly we need to use a quantifier elimination based on
CAD. In practice we can solve the QE problem (4) only for matrices M(x) of
very small size because of the many constraints δk and the doubly exponential
worst-case complexity of the CAD algorithm (see [1] for example). Therefore, it
is clearly desirable a more efficient way of solving SDP problems exactly based
on symbolic methods.

In the subsequent sections we propose a different, more efficient CAD algo-
rithm adapted to SDP problems by exploiting the special structure and convexity
of SDP domains.

3 CAD algorithm

We briefly sketch the basic ideas of cylindrical algebraic decomposition, see [5]
for details. Assume that we are given an input formula

ϕ(u1, . . . , um) ≡ Q1x1 . . .Qnxn ψ(u1, . . . , um, x1 . . . xn), Qi ∈ {∃, ∀}.



Let F be the set of polynomials appearing in ψ as left hand sides of atomic
formulas. We say that C ⊆ Rm+n is sign-invariant for F if every polynomial in
F has a constant sign on all points in C. Then ψ(c) is either “true” or “false”
for all c ∈ C.

Suppose we have a finite sequence D1, . . . ,Dm+n for F which has the follow-
ing properties:

1. Each Di is a finite partition of Ri into connected semi-algebraic cells. For
1 ≤ j ≤ n each Dm+j is labeled with Qj

2. Di−1 for 1 < i ≤ m + n consists exactly of the projections of all cells in Di

along the coordinate of the i-th variable in (u1, . . . , um, x1 . . . xn).
For each cell C ∈ Di−1 we can determine the preimage S(C) ⊆ Di under the
projection.

3. For each cell C ∈ Dm we know a quantifier-free formula δC(u1, . . . , um)
describing this cell.

4. Each cell C ∈ Dm+n is sign-invariant for F . Moreover for each cell C ∈ Dm+n

we are given a test point tC in such a form that we can determine the sign
of f(tC) for each f ∈ F and thus evaluate ϕ(tC).

Then a finite partition Dm+n of Rm+n for F is called an F -invariant cylindri-
cal algebraic decomposition of Rm+n. A quantifier-free equivalent formula ϕ is
obtained as the disjunction of all δC for which C ∈ Dm is valid in the following
sense:

1. For m ≤ i < m+ n, we have Di+1 that is labeled:
(a) If Di+1 is labeled “∃”, then C ∈ Di is valid if at least one C ′ ∈ S(C) is

valid.
(b) If Di+1 is labeled “∀”, then C ∈ Di is valid if all C ′ ∈ S(C) are valid.

2. A cell C ∈ Dm+n is valid if ϕ(tC) is “true”.

The algorithm to obtain such a sequence D1, . . . ,Dm+n, the quantifier-free
formula δC , and the test point tC consists of two phases, the projection phase
and construction (lifting) phase.

Projection phase: In the projection phase, one constructs from F ⊆ R[u1, . . . ,
um, x1, . . . , xn] a new finite set F ′ ⊆ R[u1, . . . , um, x1, . . . , xn−1] that satisfies
a particular condition, detailed next. Consider a, b ∈ Rm+n−1 such that for all
f ′ ∈ F ′ the signs of both f ′(a), f ′(b) ∈ R are equal. Then for all f ∈ F the
corresponding univariate polynomials f(a, xn), f(b, xn) ∈ R[xn] both have the
same number of different real and complex roots. This guarantees the following
property called “delineability”: Let C be a connected subset of Rm+n−1 that is
sign-invariant for F ′. For each f ∈ F consider the functions ρk : C → R assigning
to a ∈ C the k-th real root of f(a, xn) ∈ R[xn]. Then all these ρk are continuous.
Moreover, the graph of the various ρk do not intersect. In other words, the order
of the real roots does not change as they continuously change their position in
the real line.

The step from F to F ′ is called a projection and denoted by F ′ := PROJ(F ).
We call polynomials in F ′ projection polynomials and the irreducible factors of



projection polynomials of F ′ projection factors. Iterative application of PROJ-
operator leads to a finite sequence

Fm+n, . . . , F1, where Fm+n := F, Fi := PROJ(Fi+1) for 1 ≤ i < m+ n.

The PROJ-operator computes certain coefficients, discriminants, resultants, and
subresultant coefficients obtained from the polynomials in Fi+1 and their higher
derivatives, regarded as univariate polynomials in their last variable, which is the
(i+1)-st one in (u1, · · · , um, x1, . . . , xn). The final set F1 contains only univariate
polynomials in u1.

Construction phase: In the construction phase we first construct a partition
D1 of the real line R1 into finitely many intervals that are sign-invariant for
F1. The real zeros of the univariate polynomials in F1 define a sign invariant
decomposition of R1. The partition D1 consists of cells given by these zeros and
the intermediate open intervals. Thus we isolate the above zeros and find test
points in each interval. This procedure is called the base phase. For an open
interval we may choose a rational test point but for a zero in general we need
its exact representation of an algebraic number.

For 1 ≤ i < m + n the partitions Di ⊆ Ri are computed recursively: The
roots of all polynomials in Fi as univariate polynomials in their last variable are
delineated above each connected cell C in Di−1. Thus we can cut the cylinder
above C into finitely many connected semi-algebraic cells. Then Di is a collection
of all these cells arising from all cylinders above the cells of Di−1

Consider the lifting from the partition D1 of R1 to a partition D2 of R2 since
remaining lifting procedures until Rm+n are achieved by repeating the same
procedure as the lifting from R1 to R2. We show the construction of the test
points of each cell of R2 belonging to the cylinder over a cell C ∈ D1 with a test
point α. First specialize the polynomials in F2 := PROJm+n−2(F ) by the test
point α of C. We then get a set of univariate polynomials in u2 and deal with
these polynomials in u2 in the same way as the base phase, i.e., root isolation and
choice of test points. The lifting from R1 to R2 is regarded as the construction
of the second component of the test points of Dm+n.

The Construction phase produces a list of (indexed) cells and their test
points. We know which cells S(C) in Di origin from which cell C in Di−1. This
implies that a finite sequence D1, . . . ,Dm+n for F has a structure of a tree rep-
resentation. The first level of nodes under the root of the tree corresponds to
the cells in D1. The second level of nodes stands for the cells in D2, i.e., the
cylinders over the cells of R1. The leaves represent the cells of Dm+n (i.e., CAD
of Rm+n). A test point of the corresponding cell is stored in each node or leaf.
To each level of the tree there are a number of projection polynomials Fi whose
signs define a cell when evaluated over a test point.



4 Convex quantifier elimination: a specialized CAD for

SDP problems

4.1 Improving CAD algorithm

Projection phase It is crucially important for the efficiency of CAD construc-
tion that the PROJ operator produces as small a set of polynomials as possible,
while still ensuring the cylindrical arrangement of cells in the resulting decom-
position. Improved projection operators have been proposed by several authors
[12, 10, 4].

The complexity of the projection phase is given by the following: given r
irreducible polynomials of degree less than or equal to d inN variables, then after

N −1 projection steps we have (r ·d)2
O(N)

polynomials of degree at most d2
O(N)

.
It is often the case that we cannot decrease the number of variables when we
reduce the target problem considered to an equivalent first-order formula. Thus,
ideally we should produce an equivalent input formula with fewer polynomials,
and smaller degree.

Construction phase There are two devices to improve the efficiency of the
construction phase:

(a) Avoiding algebraic computation during lifting processes: Revisit the ex-
tension of D1 to D2. Let C be a cell of D1 with a test point α. Consider all
polynomials f(u2) := f(α, u2) ∈ F2 that are not identically zero. The real roots
of f(u2)’s determine the test points of each cell of R2 in the cylinder over a
cell C. Let β be a root of f(u2). If the test point α is an algebraic number,
we need computations over the algebraic extension field Q(α) for root isolation.
Moreover it is required that the test point of each cell be a vector of algebraic
numbers over a simple algebraic extension of Q. Hence we need to compute a
primitive element γ for Q(α, β) and represent the test point (α, β) as pairs of
elements of Q(γ). Computations over an algebraic extension field are typically
more expensive than those over Q. For the efficiency of the construction phase,
we should consider the possibility of avoiding the use of algebraic test points.

(b) Pruning unnecessary branches of a CAD tree: In general not every cell
in the construction is actually necessary for eliminating quantifiers in a given
input formula ϕ. This observation was first made and generalized to partial
CAD by H. Hong [6]. Partial CAD systematically exploits the logical structure
of the input formula. This greatly reduces the number of cells to be considered.
Furthermore we can expect to exploit the special structure of the input formula
(e.g., convexity) in order to prune unnecessary branches of a CAD tree.

4.2 Exploiting convexity of SDP

The feasibility domain of an SDP is a convex set, and this implies several im-
portant properties: (i) the feasible region is a unique connected region, (ii) the
determinant polynomial vanishes on the boundary of the feasible region of the
SDP. Moreover, we also assume that a feasible interior point is available (we can



remove this assumption, at a slightly higher computational cost). We will use
these properties to improve the CAD algorithms in the sequel. The next theorem
guarantees (ii):

Theorem 2. The determinant vanishes on the boundary of the domain of pos-
itive semidefiniteness of a real symmetric matrix.

Sketch of the proof: All eigenvalues of a symmetric matrix are real and the
matrix is positive semidefinite if and only if all eigenvalues are greater than or
equal to zero. Moreover the eigenvalues, as zeros of the characteristic polynomial,
depend continuously on the entries of the matrix. Suppose now the values of the
entries of the symmetric matrix are such that the matrix is on the boundary
of its positive semidefinite domain. Then in every neighborhood of this point
there is a point, where the matrix is not positive semidefinite, and hence has a
negative eigenvalue. So by the continuity of eigenvalues, the matrix must have a
zero as an eigenvalue at this point, and therefore the determinant vanishes. ut

The two properties described above allow us to formulate specialized methods
for both the projection and lifting stages. For simplicity, we assume that the
SDP to be solved have a strictly feasible solution, i.e., there exists an x such
that M(x) � 0.

(1) improved projection phase: As shown in §2,M(x) � 0 can be reduced to
an equivalent formula that is the conjunction of 2n−1(≡

∑n

r=1

(

n

r

)

) inequalities.
Since the boundary of the feasible region of SDP is a part of the determinant
polynomial detM(x), it is sufficient that we consider the set {z−cTx, detM(x)}
as an input set of CAD to obtain the test point which provides a minimum of the
objective function. This greatly improves the efficiency of the projection phase
in contrast to the reduction according to Sylvester’s criterion.

Remark 1. Notice that this property does not imply that we can replace the
LMI constraint in the original problem with just the constraint detM(x) = 0,
as the other principal minors do play an important role in selecting the optimal
solution. Nevertheless, it is always the case that the determinant vanishes at the
optimal solution.

(2) improved construction phase: We construct a CAD for an input set

{z − cTx, detM(x)}

in order to solve an SDP given by (2). After m recursive projections we have a
set of univariate polynomials in z. We denote the set of test points which are
real roots of the univariate polynomials in z by TR, the set of test points taken
from the intervals between the roots by TI .

Since the SDP feasibility domain is convex, the feasible region of z is a
unique isolated interval. The endpoints of the feasible interval of z correspond
to the maximum and minimum of z, i.e., the objective function. We call the left



Fig. 1. A typical CAD tree by the convex QE for SDP.

endpoint giving the minimum of z a truth-boundary cell, which is contained in
TR.

Suppose that we have an interior point x0 = (x0
1, . . . , x

0
m) of the SDP feasible

set. This is the same setting as in numerical interior point methods. Then since
we have a feasible value z0 = cTx0 of z, the feasible interval of z consists of
the cell containing z0 and the connected cells. Here we consider only the case
z0 /∈ TR because if z0 ∈ TR then we can regard the test point of the next left
interval of z0 as z0 and then we can proceed in the same way as shown below.

The test points larger than z0 are not needed in finding the minimum of z.
We can denote the test points smaller than z0 as follows:

−∞ < · · · < s` < r` < s`−1 < r`−1 < · · · < r2 < s1 < r1 < s0 < r0 < z0,

where ri ∈ TR, si ∈ TI , and let r` be the the truth-boundary cell, i.e., the
minimum of z.

In order to find the truth-boundary cell we start with construction of a CAD
from over the cell with a test point s0. If the cell with a test point s0 has a
“true” leaf then we construct a CAD over the next cell s1. Repeat this similarly
until a certain si has no “true” leaf. In other words, we make depth-first search
of “true” leaf of the CAD tree over si’s from the right to the left until a certain
si has no “true” leaf. When testing the feasibility of the lifted point in Rm, the
full positive semidefiniteness condition on M(x) should be checked, and not just



the determinant. For efficiency reasons, it is desirable to choose the order of si’s
to be considered according to a standard bisection scheme.

We have then the following proposition:

Proposition 1. There exists an integer ` such that s`−1 has a “true” leaf but
s` has no “true” leaf. Then r` is the truth-boundary cell.

The coordinate xmin which gives the minimum value of z can be obtained by
lifting over the truth boundary cell. Note that we do not have to use test points
in TR to identify which test point is the truth-boundary cell. As for the lifting at
the level of the tree corresponding to xi, we can also prune unnecessary branches
since the feasible region consists of the connected cells to the cell with a test point
x0

i . Thus we can ignore outer both sides of the feasible region.

A typical CAD tree by the convex QE proposed here for a SDP problem is
demonstrated in Fig. 1. The white node “◦” stands for a test point in TI and
the black one “•” a test point in TR . The construction procedure is skipped in
the shaded area of the CAD tree.

5 Examples

We have examined our method presented in precedings sections for the follow-
ing SDP problems by using QEPCAD and maple for projection phase and for
construction phase, respectively. 2

Example 1. A feasible interior point is: (a, b, c) = (0, 3, 0).

objective: a+ b+ c, s.t.





1 a 3 − b
a 5 c

3 − b c 9



 ≥ 0.

Example 2. A feasible interior point is: (a, b, c) = (1,−1, 1).

objective: a+ 2b+ 3c, s.t.

[

a b
b c+ 1

]

≥ 0,

[

1 b+ c
b+ c 2− a

]

≥ 0.

Example 3. This example arises from the minimization of a symmetric quartic
polynomial. A feasible interior point is: (γ, a, b, c, d) = (60,−1, 12, 2, 4).

objective: γ, s.t.





γ a b
a 1 c
b c 2d



 ≥ 0, 1− 2a ≥ 0,

[

2b d
d 1

]

≥ 0, 2c− 3 ≥ 0.

2 All the computations are executed on a PC with a CPU Pentium III 1GHz and 756
MB memory.



5.1 Projection phase

Table 1 shows the number of projection factors appearing at each level of the
CAD tree, total number of projection factors, and total time to accomplish the
projection phase for the above three examples. Here, “–” implies that we could
not finish the computation. “∗1” means the total number of projection factors
occurring until level 2 and “∗2” stands for the total time until QEPCAD halted
on computing level 1. “Sylv” uses Sylvester’s criterion to reduce an SDP to a
first-order formula and “A&P” uses our approach shown in the previous section
for the reduction . These results show that projection phase of our approach
performs much faster than that of the approach using Sylvester’s criterion.

Ex.1 level 1 2 3 4 total time

Sylv 152 22 7 3 184 250
A&P 7 5 3 2 17 10

Ex.2 level 1 2 3 4 total time

Sylv 160 18 7 4 189 200
A&P 37 9 4 3 53 70

Ex.3 level 1 2 3 4 5 6 total time

Sylv – 2879 88 14 8 5 2995∗1 169250∗2

A&P 57 58 12 5 3 2 137 1240

Table 1. Computational results for projection phase

5.2 Construction phase

We tried to compute a CAD for the input set according to A&P’s reduction by
using QEPCAD to get the minimum of objective functions. We used the option
+N50000000, this means a size for SACLIB’s garbage collected array. The default
value is +N2000000. However, QEPCAD halted due to lack of memory with a
message “Too few cells reclaimed” for all examples.

We have not yet finished the implementation of our proposed method. We
manually applied our strategy for choosing test points and searching for true
leaves for the above examples on maple. Then we were able to solve the con-
struction phases for all examples in a few minutes.

6 Conclusions

We have introduced a convexity-based quantifier elimination algorithm as an
efficient method to compute exact (algebraic) representations of the solution of
SDP problems. Our approach can be regarded as a specialized CAD algorithm



for partially exploiting the convexity of the feasible set of SDP. This is also
a successful attempt to combine symbolic and numeric approaches to achieve
efficiency. We hope this work will lead to further generalizations of symbolic
approaches to exploit convexity to other related problems.

A maple-implementation of the method proposed here on top of the SyNRAC-
package [2] is planned.

Acknowledgments The authors would like to thank C.W. Brown for his in-
valuable help. The authors would like to thank K. Yokoyama, S. Hara, and V.
Weispfenning for fruitful discussions.

References

1. H. Anai. On solving semidefinite programming by quantifier elimination. In Proc.

of American Control Conference, Philadelphia, pages 2814–2818, 1998.
2. H. Anai and H. Yanami. SyNRAC: A maple-package for solving real algebraic

constraints. In Proceedings of the International Workshop on Computer Alge-

bra Systems and Their Applications: CASA’2003. To appear in the series LNCS,
Springer-Verlag.

3. S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in

System and Control Theory. SIAM Studies in Applied Mathematics, vol 15. SIAM,
1994.

4. C. W. Brown. Improved projection for cylindrical algebraic decomposition. Journal

of Symbolic Computation, 32(5):447–465, 2001.
5. G. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic

Decomposition, LNCS 32. Springer Verlag, 1975.
6. G. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier

elimination. Journal of Symbolic Computation, 12(3):299–328, Sept. 1991.
7. A. Dolzmann, T. Sturm and V. Weispfenning. Real Quantifier Elimination in

Practice In Matzat, B. H. and Greuel, G.-M. and Hiss, G., editor, Algorithmic
Algebra and Number Theory, pages 221-247, Springer, 1998.

8. A. Dolzmann and V. Weispfenning. Local quantifier elimination. In C. Traverso,
editor, ISSAC 2000: 7–9 August 2000, University of St. Andrews, Scotland: proceed-

ings of the 2000 International Symposium on Symbolic and Algebraic Computation,
pages 86–94, New York, NY 10036, USA, 2000. ACM Press.

9. P. Gahinet, A.Nemirovski, A.J.Laub, and M.Chilai. LMI Control Toolbox User’s

Guide, For Use with MATLAB. The MATH WORKS INC, 1995.
10. H. Hong. An improvement of the projection operator in cylindrical algebraic de-

composition. In ISSAC: Proceedings of the ACM SIGSAM International Sympo-

sium on Symbolic and Algebraic Computation, pages 261–264, 1990.
11. R. Loos and V. Weispfenning. Applying linear quantifier elimination. The Com-

puter Journal, 36(5):450–462, 1993. Special issue on computational quantifier elim-
ination.

12. S. McCallum. An improved projection operation for cylindrical algebraic decom-
position of three-dimensional space. Journal of Symbolic Computation, 5(1-2):141–
161, Feb.–Apr. 1988.

13. P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems,
Math. Prog. Ser. B, to appear, 2003.



14. V. Weispfenning. The complexity of linear problems in fields. Journal of Symbolic

Computation, 5(1–2):3–27, Feb.–Apr. 1988.
15. V. Weispfenning. Simulation and optimization by quantifier elimination. J. Sym-

bolic Computation, 24(2):189–208, 1997.


