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Basic Semialgebraic Sets

The basic (closed) semialgebraic set defined by polynomials fy,..., fi is
{wER” | fi(x) ZOforaIIizl,...,m}

Examples
e The nonnegative orthant in R"
e The cone of positive semidefinite matrices

e Feasible set of an SDP; polyhedra and spectrahedra

Properties

o |f 51,59 are basic closed semialgebraic sets, then so is S1 M S9; i.e.,
the class is closed under intersection

e Not closed under union or projection
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Semialgebraic Sets

Given the basic semialgebraic sets, we may generate other sets by set the-
oretic operations; unions, intersections and complements.

A set generated by a finite sequence of these operations on basic semial-
gebraic sets is called a semialgebraic set.

Some examples:

e [he set

S:{xER”\f(x)*O}

is semialgebraic, where * denotes <, <, =, #£.
e In particular every real variety is semialgebraic.

e We can also generate the semialgebraic sets via Boolean logical oper-
ations applied to polynomial equations and inequalities
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Semialgebraic Sets

Every semialgebraic set may be represented as either

e an intersection of unions

m  Dj
S = ﬂ U {:z: c R" | sign f;;(z) = aij} where a;; € {—1,0,1}
i=1 j=1

e a finite union of sets of the form

{xER"\f@-(x)>O,hj(:z:):Oforallz':l,...,m,jzl,...,p}

e in R, a finite union of points and open intervals

Every closed semialgebraic set is a finite union of basic closed semialgebraic
sets: i.e., sets of the form

{wERn\fi(x)ZOforallizl,...,m}
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Properties of Semialgebraic Sets
o If 51,59 are semialgebraic, so is S1 U S and 51N Sy
e The projection of a semialgebraic set is semialgebraic

e The closure and interior of a semialgebraic sets are both semialgebraic

< b
e Some examples: @ Q Q m k
A J
~

Sets that are not Semialgebraic

Some sets are not semialgebraic; for example
o the graph { (z,y) € R? |y = e’ |
o the infinite staircase { (z,y) € R? |y = |z] 1

e the infinite grid Z"
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Tarski-Seidenberg and Quantifier Elimination
Tarski-Seidenberg theorem: if S C R""P is semialgebraic, then so are
e {z€R"|JyeR (z,y) €S} (closure under projection)

e {zeR"|Vy€eRP(z,y) €S} (complements and projections)

I.e., quantifiers do not add any expressive power

Cylindrical algebraic decomposition (CAD) may be used to compute the
semialgebraic set resulting from quantifier elimination
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Feasibility of Semialgebraic Sets

Suppose S is a semialgebraic set; we'd like to solve the feasibility problem

Is S non-empty?

More specifically, suppose we have a semialgebraic set represented by poly-
nomial inequalities and equations

S:{xERn’fz'(@EO, hj(a:):Oforallizl,...,m,jzl,...,p}

e |mportant, non-trivial result: the feasibility problem is decidable.
e But NP-hard (even for a single polynomial, as we have seen)

e We would like to certify infeasibility



10 - 8 The Positivstellensatz P. Parrilo and S. Lall, CDC 2003 2003.12.07.02

Certificates So Far

e [he Nullstellensatz: a necessary and sufficient condition for feasibility
of complex varieties

{xE(Cn | hi(x):OVi}z(Z) — —1ecideal{hy,...,hm}

e Valid inequalities: a sufficient condition for infeasibility of real basic
semialgebraic sets

{xERn\fi(az)ZOVi}:@ <~ —1€cone{fi,...,fm}

e [inear Programming: necessary and sufficient conditions via duality
for real linear equations and inequalities
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Certificates So Far

We'd like a method to construct certificates for
e polynomial equations

e over the real field
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Real Fields and Inequalities

If we can test feasibility of real equations then we can also test feasibility
of real inequalities and inequations, because

e inequalities: there exists x € R such that f(z) > 0 if and only if

there exists (z, y) € R? such that f(z) = y°

e strict inequalities: there exists x such that f(xz) > 0 if and only if

there exists (z, y) € R? such that y*f(z) = 1

e inequations: there exists x such that f(xz) # 0 if and only if

there exists (,y) € R? such that yf(z) = 1

The underlying theory for real polynomials called real algebraic geometry
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Real Varieties

The real variety defined by polynomials A1, ..., hy € Rz, ..., 2y is
Vr{hi,....hm} ={x €R" | hi(x)=0foralli=1,...,m}

We'd like to solve the feasibility problem; is Vr{hi,..., hn} # 07

We know
e Every polynomial in ideal{hq, ..., h;,} vanishes on the feasible set.

e The (complex) Nullstellensatz:

—1 € ideal{hy, ..., hn} — Vr{hi,....,hm} =10

e But this condition is not necessary over the reals
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The Real Nullstellensatz

Recall X is the cone of polynomials representable as sums of squares.

Suppose hy, ...,y € Rz, ..., xp].

—1eY+ideal{hy,..., hm) — Ve{hi,... b} =0

Equivalently, there is no € R" such that
hij(x)=0 foralli=1,...,m
if and only if there exists t1,...,t;, € Rlzy,...,z,| and s € X such that

—1=54+thi+ -+ tmhm
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Example

Suppose h(z) = z° + 1. Then clearly Vr{h} = 0

We saw earlier that the complex Nullstellensatz cannot be used to prove
emptyness of Vp{h}

But we have
—1=s+1th

with
s(z) =z and  t(z)=-—1

and so the real Nullstellensatz implies Vr{h} = 0.

The polynomial equation —1 = s 4 th gives a certificate of infeasibility.
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The Positivstellensatz

We now turn to feasibility for basic semialgebraic sets, with primal problem

Does there exist x € R" such that
filx) >0  foralli=1,...,m
hi(x)=0 forallj=1,...,p

Call the feasible set S recall
e every polynomial in cone{f],..., fi,} is nonnegative on S

e every polynomial in ideal{hy, ..., hy} is zero on S

The Positivstellensatz (Stengle 1974)

S=0 <= —1l€cone{f],...,fm}+ideal{hy,..., hn}
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Example

Consider the feasibility problem J
S={(r,y) eR*| flx,y) = 0, h(z,y) =0}
where L

fl,y) =2 —y*+3
hz,y) =y + 2% +2 .,

By the P-satz, the primal is infeasible if and only if there exist polynomials
s1,89 € ¥ and t € R|x, y| such that

—1 =351+ s9f +th

A certificate is given by

81:%+2(y+%)2+6(az—6)2, so =2, t=—0.
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Explicit Formulation of the Positivstellensatz

The primal problem is

The dual problem is

These are strong alternatives
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Testing the Positivstellensatz

Do there exist ¢; € R|z1,..., 2] and 5,74, ... € X such that
—1=) tihi+so+ ) sifi+ ) rijfifj+- -

e This is a convex feasibility problem in #;, s;, 75, . ..

e To solve it, we need to choose a subset of the cone to search: i.e.,
the maximum degree of the above polynomial; then the problem is a
semidefinite program

e This gives a hierarchy of syntactically verifiable certificates

e The validity of a certificate may be easily checked; e.g., linear algebra,
random sampling

e Unless NP=co-NP, the certificates cannot a/lways be polynomially sized.
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Example: Farkas Lemma

The primal problem; does there exist x € R" such that

Arxz+b >0 Cx+d=0

Let f;(x) = CLZTZE + b;, hi(x) = CZTZI? + d;. Then this system is infeasible if
and only if
—1 € cone{fy,..., fm} +ideal{hy,... hp}

Searching over linear combinations, the primal is infeasible if there exist
A > 0 and p such that

M (Az +b) + p (Cx +d) = —1

Equating coefficients, this is equivalent to

MA+ulc=0 Mb+uld=-1 A>0
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Hierarchy of Certificates
e Interesting connections with logic, proof systems, etc.

e Failure to prove infeasibility (may) provide points in the set.

e Tons of applications:
optimization, copositivity, dynamical systems, quantum mechanics...
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Special Cases

Many known methods can be interpreted as fragments of P-satz refutations.
e LP duality: linear inequalities, constant multipliers.
e S-procedure: quadratic inequalities, constant multipliers
e Standard SDP relaxations for QP.
e The linear representations approach for functions f strictly positive on

the set defined by f;(x) > 0.

fl@)=so+s1fi+-+snfn, si€T

Converse Results
e [osslessness: when can we restrict a priori the class of certificates?

e Some cases are known; e.g., additional conditions such as linearity, per-
fect graphs, compactness, finite dimensionality, etc, can ensure specific

a priori properties.
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Example: Boolean Minimization

v Qz <y
7 —1=0

A P-satz refutation holds if there is S > 0 and A € R", ¢ > 0 such that

n
—e=alSx+~y -2l Qu+ Z )\Z(x,? —1)
1=1

which holds if and only if there exists a diagonal A such that () = A,
v = trace \ — €.

The corresponding optimization problem is

maximize trace \
subject to Q= A
A is diagonal
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Example: S-Procedure

The primal problem; does there exist x € R" such that

:CTle > ()
ZCTFQCE > ()

:CTazzl

We have a P-satz refutation if there exists A\{,Ao >0, p € Rand S = 0
such that

T

—1=alSz+ )\1:ETF1:L‘ + )\QSUTFQ.T + u(l — 2" x)

which holds if and only if there exist A{, Ao > 0 such that

AMET 4+ XoFy < —1

Subject to an additional mild constraint qualification, this condition is also
necessary for infeasibility.
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Exploiting Structure

What algebraic properties of the polynomial system yield efficient compu-
tation?

e Sparseness: few nonzero coefficients.

e Newton polytopes techniques
e Complexity does not depend on the degree

e Symmetries: invariance under a transformation group

e Frequent in practice. Enabling factor in applications.

e Can reflect underlying physical symmetries, or modelling choices.
e SOS on invariant rings

e Representation theory and invariant-theoretic techniques.

e [deal structure: Equality constraints.

e SOS on quotient rings
e Compute in the coordinate ring. Quotient bases (Groebner)



