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A Wrapped Kalman Filter for Azimuthal Speaker
Tracking
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Abstract—We present the wrapped Kalman filter (WKF) for
tracking the azimuth of a speaker with a compact, 3-channel
microphone array. Traditional extended and unscented filters
assume that the observation is a rotating vector in R2. However,
the azimuth inhabits a 1D subspace: the unit circle. We model the
state variable with a wrapped Gaussian distribution and show
that this achieves a lower mean squared error than 2D methods.
We demonstrate the superior tracking performance of the WKF
in simulated and real reverberant environments.

Index Terms—Kalman filter, wrapped Gaussian, circular statis-
tics, direction of arrival tracking

I. INTRODUCTION

Array-based acoustic source localization and tracking is
an important area of research, particularly for speech-driven
interfaces [1], [2], [3]. These technologies often require a
smooth estimate of the source position over time. Traditionally,
the Kalman filter (KF) [4] and its extended (EKF) [5] and
unscented (UKF) [6] variants provide this capability. The
KF is only applicable to linear-Gaussian dynamical systems.
However, it can be generalized to non-linear models by first-
order linearization (in the EKF) or direct representation of the
non-linearities through the unscented transform (in the UKF).

In this paper, we are interested in tracking an acoustic source
with a compact array. Although range information cannot be
accurately estimated in this case, we can track the source’s
direction-of-arrival (DOA). Thus, the state position is a circular
variable, i.e. it is constrained to lie on the unit circle. One
popular technique is to represent it as a scalar in R1 and the
observation as a rotating vector in R2 [7]. Unfortunately, this
2D model introduces additional noise to the 1D system.

We present the wrapped Kalman filter (WKF) as an alter-
native to the EKF and UKF for recursive Bayesian inference
of a circular variable. The WKF tracks the hidden state of
a wrapped dynamical system whose 1D observations lie in
[−π, π]. It maintains an estimate of the posterior state distri-
bution P (θt|y1:t) by approximating it as a wrapped Gaussian
(WG) [8]. The resulting filter equations involve a weighted
sum of infinitely many innovation terms. Fortunately, this sum
can be truncated to only a few terms in practice without a loss
in performance. The same technique was used in [9] to train
a wrapped hidden Markov model.
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In this paper, we
• introduce a wrapped dynamical system (WDS) model
• propose the wrapped Kalman filter (WKF) to perform

recursive inference for the WDS
• interpret the WKF alternatively as a KF with measure-

ment fusion or an approximation of a switching filter
• present experimental results showing the superior perfor-

mance of the WKF over extended and unscented filters
for azimuthal speaker tracking

II. WRAPPED GAUSSIAN DISTRIBUTION

A circular random variable θ ∈ S1 is one that lies in the
range [−π, π] and whose statistics are identical at the bound-
aries, such as phase or azimuth angle. The wrapped Gaussian
(WG) distribution [8, Chapter 3] is the result of transforming a
random variable γ ∼ N

(
µ, σ2

)
via the mapping ψ : R1 → S1:

θ = ψ(γ) = mod (γ + π, 2π)− π . (1)

Thus, the pdf is given as:

P (θ ; µ, σ2) =

∞∑
l=−∞

1√
2πσ2

e−
(θ−(µ+2πl))2

2σ2 , θ ∈ S1 . (2)

We can visualize (2) on the unit circle or in S1 (see Fig. 1).

III. STATE SPACE MODELS FOR WRAPPED FILTERING

In this section, we present two dynamical systems that
model the evolution of a circular state variable.

A. Rotating vector model

The following rotating-vector state space model (RVM) [7]
is often used for filtering circular data:

xt =

[
1 dt

0 1

]
xt−1 + vt , vt ∼ N

(
0,

[
λ2v,1 0

0 λ2v,2

])
(3)

yt =

[
cos(xt,1)

sin(xt,1)

]
+ wt , wt ∼ N

(
0, λ2wI

)
. (4)

The state vector xt ∈ R2 consists of position and velocity,
yt ∈ R2 is the observation vector, dt is the time increment, and
vt ∈ R2 and wt ∈ R2 are the process and measurement noise,
respectively. We assume that the noise variances λ2v,: and λ2w
are either known or can be estimated empirically. Since the
measurement equation (4) involves a non-linear transformation
of the state, one must resort to the EKF or UKF to infer the
state sequence.

The drawback of this model is that it regards the observation
as a 2D vector when the state is truly 1D (and can be inferred
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Fig. 1. (Top) Wrapped Gausian pdf (µ = π
3

) on the unit circle in R2 shown
with 2D Gaussian contours (σ2 = 0.8). (Bottom) WG pdf in [−π, π] (µ = π

3
and varying σ2). The θ axis is the unit circle, unfolded.

via ∠yt). This introduces additional noise to the system
that limits the tracking capabilities of the filters. We will
show that tracking with a 1D observation model (presented
next) improves tracking performance. Contours of the 2D
measurement distribution are shown in the top panel of Fig. 1.

B. Wrapped dynamical system (WDS)

The position-only WDS is described by:

θt = ψ (θt−1 + vt) , vt ∼ N
(
0, σ2

v,1

)
(5)

yt = ψ (θt + wt) , wt ∼ N (0, σ2
w) (6)

where θt, yt ∈ S1 and vt, wt ∈ R1. Velocity is trivially
included by extending the state vector and including a noise
term σ2

v,2 in the state model since it is not wrapped and does
not appear in (6). Thus, we will only consider position in the
derivation of the WKF (for the sake of clarity) and incorporate
velocity in the final algorithm. A typical sample path of the
WDS is shown in Fig. 2 with an observation sequence and the
WKF state estimate.

The advantage of the WDS over the RVM is that the
observations are treated as 1D quantities. We can expect
that filtering in this model will be more accurate since it is
easier to infer the hidden state sequence θ1:T from lower-
dimensional measurements. Conceptually, inference in the
WDS is achieved by Rao-Blackwellisation [10] of inference
in the RVM with the radius of yt in (4) marginalized out.

IV. FILTERING FOR THE WRAPPED DYNAMICAL SYSTEM

Now we derive the wrapped Kalman filter (WKF). The
filtered state distribution does not remain WG over time, but
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Fig. 2. Sample path and observation sequence for the wrapped dynamical
system with position and velocity state components. The WKF tracks the WDS
despite wrapping effects at −π and π. (σ2

v,1 = σ2
w = 0.5, σ2

v,2 = 0.001)

we can approximate it as such. This leads to a correct step with
two equivalent interpretations. In one, a single WG component
is updated via 2π-periodic copies of the observation (akin to
measurement fusion). And in the other, all WG components are
updated using a single observation. The WKF is then shown
to be a good approximation of a switching Kalman filter.

A. Wrapped Kalman filtering
The WG allows us to model the wrapping function ψ(θ)

in (5)-(6). The filtered state distribution at time t− 1 is

P (θt−1|y1:t−1) =
∞∑

l=−∞

Pl(θt−1|y1:t−1) (7)

=

∞∑
l=−∞

N (θt−1 ; µt−1 + 2πl, σ2
θt−1

) . (8)

At each step, we predict the next state distribution:

P (θt|y1:t−1) =
∫
P (θt|θt−1)P (θt−1|y1:t−1) dθt−1 (9)

=

∫
P (θt|θt−1)

∞∑
l=−∞

Pl(θt−1|y1:t−1) dθt−1 (10)

=

∞∑
l=−∞

∫
P (θt|θt−1)Pl(θt−1|y1:t−1) dθt−1 (11)

=

∞∑
l=−∞

Pl(θt|y1:t−1) , (12)

and then correct this prediction:

P (θt|y1:t) ∝ P (yt|θt)P (θt|y1:t−1) (13)

∝

[ ∞∑
m=−∞

Pm(yt|θt)

][ ∞∑
l=−∞

Pl(θt|y1:t−1)

]
. (14)

This is an exponentially-growing sum of increasingly dif-
fering Gaussian components. We approximate it at time t with
a WG by considering one term of the predicted density and
interpreting the observation as being replicated [11, Chapter 4].
This gives a weighted sum of 2π-periodic Gaussians:

P̃ (θt|y1:t) ∝
∞∑

l=−∞

P (yt + 2πl|θt)P0(θt|y1:t−1) ηt,l , (15)
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Fig. 3. Two interpretations of the correct step in the WKF. (Top) Single
observation and periodic Gaussians (wrapped Gaussian in [−π, π] overlaid).
(Bottom) Single Gaussian and periodic observations. (µ = π

3
, σ2 = 3)

where

ηt,l =
N (yt + 2πl ; µ̂−t,1, σ

2
w)

∞∑
m=−∞

N (yt + 2πm ; µ̂−t,1, σ
2
w)

, (16)

represents the probability of a replicate. The posterior at time
t is approximated by finding the closest Gaussian distribution
to (15) via moment-matching and then repeating it every
2π. We can view this as a measurement fusion step [12].
Equivalently, we could ignore all but a single measurement
term in (14) and proceed as before (see Fig. 3).

The filtering procedure is summarized in Algorithm 1. A
velocity component has been incorporated. µ̂t and Σ̂t are the
estimated state mean and covariance, Kt is the Kalman gain,
the state transition matrix A is the same as in (3), and the
measurement matrix is a row vector B = [1, 0]. A minus sign
superscript indicates a prediction. A composite innovation gt
is formed via a weighted average of innovation terms. The
position estimate must be wrapped to S1. We can see from
Algorithm 1 that the complexity of the WKF is marginally
greater than that of a conventional Kalman filter.

We truncate the WG to 3 terms in practice since we only
care about wrapping effects in [µ̂t,1 − 2π, µ̂t,1 + 2π]. Thus,
we only need to consider 3 replicates of yt. For very high
noise levels (e.g. σ2

w > 2), this degree of truncation may be
inadequate. However, we cannot expect to track the state with
any confidence on S1 in such harsh conditions, so we will
ultimately only be interested in cases where 3 terms suffice.

B. WKF as an approximation of a switching Kalman filter

Modeling the state distribution as a set of locked Gaussians
implies a generative model where we sample the observation
from a single WG component. We can incorporate a hidden
indicator variable zt that selects what component is active at
time t. The result is that we have a switching measurement
equation. The state is a vector θt of the WG component means
and the observation yt is a selected mean plus noise:

θt = θt−1 + vt , vt ∼ N (0, σ2
vJ) , (17)

yt = Bzt θt + wt , wt ∼ N (0, σ2
w) , (18)

Algorithm 1 Wrapped Kalman Filter
Predict

µ̂−t = A µ̂t−1
µ̂−t,1 = ψ

(
µ̂−t,1

)
Σ̂
−
t = A Σ̂t−1 AT + Σv

Correct
Kt =

Σ̂
−
t BT

B Σ̂
−
t BT+σ2

w

gt =
1∑

l=−1

(
(yt + 2πl)− µ̂−t,1

)
ηt,l

µ̂t = µ̂−t + Kt gt
µ̂t,1 = ψ (µ̂t,1)

Σ̂t = (I−Kt B) Σ̂
−
t

where J is a ones matrix and zt selects a measurement matrix:

Bzt = [. . . , 0, 0, 1, 0, 0, . . .] . (19)

The state distribution has a rank-1 covariance matrix Σt =
σ2
t J because the WG means (components of θt) are locked.

This leads to a standard switching Kalman filter (SKF) [13].
The WKF is equivalent to the SKF when the transition distri-
bution P (zt|zt−1) is modeled as uniform. We found that this
is not a significant drawback as the weights ηt,l are sufficient
to capture transitions between neighboring WG components.
Forming the composite innovation gt is analogous to the
“collapse” operation of the SKF.

V. EXPERIMENTS

We now show that the WKF can track an acoustic source
more accurately than either the EKF or UKF.

A. Array and DOA estimator

The array used in the following experiments consists of
three omnidirectional microphones placed in a right triangle
configuration (the perpendicular sides are 1 cm in length).

DOA estimates are extracted from the audio stream to use as
measurements. We sample the audio at 16,000 Hz and segment
it into windows of 1,024 samples with 3/4 overlap. The DFT
of each window is calculated for each channel and inter-
channel time delays are estimated for each frequency such that
DOAs may be estimated using a least-squares technique [2].
A weighted average of these estimates is computed with the
DFT magnitudes as weights. This emphasizes bins that are
more likely to contain salient speech energy and so provides
some robustness to reverberation. The measurements in the
RVM and WDS are taken to be the unit vector whose angle
is the estimated DOA and the DOA itself, respectively.

B. Simulated tracking experiments

We ran Monte Carlo simulations in a 2D room simulator
with walls 5 meters in length and a T60 reverberation time
of 165 milliseconds. The state path was generated according
to (3) with the position on a circle of radius 1 meter centered
on the array. The array itself was centered in the room. One
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Fig. 4. MSE for EKF, UKF, and WKF over 1000 sequences for reverberant
speaker tracking on the unit circle. σ2

v,2 = 10−5.

sentence (2-3 seconds in length) was chosen at random from
the TSP speech corpus [14] for each trial.

We added noise to the estimated DOAs to (1) ensure that
they conform to the filters’ noise models and (2) test the filters’
robustness. We attempted to match the noise levels as follows.
Given a 2D Gaussian variance λ2w in the RVM, the matching
1D WG variance σ2

w is found by fitting a WG to the angles of
104 samples drawn from the 2D Gaussian. The fit is reasonable
but slightly overestimates the spread of the angles. Thus, our
results are slightly biased in favor of the RVM.

The circular MSE for a single trial was calculated as:

MSE =
1

T

T∑
t=1

min
l∈[−∞,∞]

(µ̂t,1 − θt + 2πl)
2
, (20)

Results are summarized in Fig. 4 for various noise settings.
The process and measurement noise parameters were set to the
true values corresponding to either model during inference. We
can observe that the WKF consistently tracks the speaker’s
path most accurately. This is due to the fact that the WKF
infers the state path from lower-dimensional measurements.

C. Real tracking experiment

A 3-microphone array was placed on a table in the middle
of a medium-sized office room with dimensions 5 × 7 × 4
meters and a T60 time of 25 milliseconds. 2 sentences from
the TSP database were played in sequence from a loudspeaker
while it was moved around the array at a radius of about 1.5
meters. High-frequency narrowband noise was simultaneously
played to estimate a ground-truth DOA path. The WKF was
given measurements calculated from the remaining spectrum.
Fig. 5 shows the tracking results for one such experiment. As
in simulations, we found that the WKF was able to track the
source at least as accurately as the 2D methods.

VI. CONCLUSIONS

The wrapped Kalman filter (WKF) was introduced for
tracking the DOA of a moving speaker. It was shown that
the WKF is a Kalman filter whose filtered state distribution
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Fig. 5. WKF estimate of speaker path in real, reverberant room. σ2
v,1 =

5× 10−3, σ2
v,2 = 10−5, σ2

w = 0.1.

is a wrapped Gaussian. The MSE of the state path estimate
is reduced by regarding the measurement as a 1D quantity
embedded on the unit circle rather than as a vector in R2.

An approximation was used in the correct step to ensure
that the filtered state distribution remains a WG. This was
interpreted alternatively as a measurement fusion step and a
good approximation to the “collapse” operation in a switching
filter. Finally, we demonstrated the advantages of the WKF
over conventional EKF and UKF algorithms for azimuthal
speaker tracking under reverberant conditions.
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