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Postcritical reflection When b2 > b1, f2 can be 90

� and f1 in this
condition is called critical angle:

fc = sin�1 b1
b2

. (2.101)

When the incident angle is larger than fc, we have postcritical
reflection, in which waves are perfectly reflected. In this case,

h2 =
q

b2
2 � p2 is imaginary. To avoid divergence of refracted waves

of v2 (equation 2.93) at z ! +•, the sign of h2 should be

h2 = iĥ2 = i
q

p2 � b�2
2 (w > 0) (2.102)
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Figure 2.9: Reflection and transmission
at a medium which has the free surface
and a finite layer.

When medium 2 has a finite thickness (H) and the free surface
exists on top of it, waves reverberate. The solution in medium 1 is the
same as equation equation 2.93. Because we have another reflected
waves from the boundary at z = H, the solution in medium 2 is

v2 = A2e�iw(t�px�h2(z�H)) + B2e�iw(t�px+h2(z�H)). (2.103)

Because the stress syz is 0 at the free surface z = H, we obtain
A2 = B2. Therefore, equation 2.103 becomes

v2 = 2A2 cos wh2(z � H)e�iw(t�px). (2.104)

The boundary condition at z = 0 is the same as equation 2.95 and we
obtain

A1 + B1 = 2A2 cos wh2H

iµ1h1(A1 � B1) = 2µ2h2 A2 sin wh2H. (2.105)

From equation 2.105, we can compute reflection and transmission
coefficients: Different from equations 2.92 or

2.97, equation 2.106 is a function of
the frequency. This is because the
reflection and transmission depend on
the thickness H.

Proof |R| = 1.

T =
A2
A1

=
µ1h1

µ1h1 cos wh2H � iµ2h2 sin wh2H
,

R =
B1
A1

=
µ1h1 cos wh2H + iµ2h2 sin wh2H
µ1h1 cos wh2H � iµ2h2 sin wh2H

. (2.106)

Waves are amplified because of the surface layer. The amplitude ra-
tio between the incident wave and the wave represented by equation
2.103 is

����
v2(z = H)

A1

���� =
����
2A2
A1

���� = 2|T|. (2.107)

Compared with the ratio without the surface layer (2 due to equation
2.92), |T| relates to the amplification of the waves.

If hi is real, the denominator of T is following an ellipse on the
real-imaginary domain with principal axes on the real and imaginary
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axes when w changes. Therefore, the maximum and minimum T
should be on the real or imaginary axes. On the real axis (sin wh2H =

0 and cos wh2H = ±1),

|T| = 1, (2.108)

and on the imaginary axis (sin wh2H = ±1 and cos wh2H = 0),

|T| = µ1h1
µ2h2

=
r1b1 cos f1
r2b2 cos f2

. (2.109)
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Figure 2.10: Site amplification caused
by a soft surface layer for SH waves
for different incident angles (line
colors). The normalized frequency is
f H/b2 and the vertical axis |T|. In
this example, I use r1/r2 = 1.2 and
b1/b2 = 2.

When we consider the vertical incident wave (f1 = f2 = 0), the
maximum |T| is on the real axis (equation 2.108) when the surface
layer is harder than below (r1b1 < r2b2). On the other hand, when
the surface layer is softer (r1b1 > r2b2), the maximum |T| is on the
imaginary axis (equation 2.109) and |T| > 1, which is the reason of
amplification at the soft structure (e.g., figure 2.10). The frequency
at the maximum amplification satisfies cos wh2H = 0 ! wh2H =

(2n + 1)p/2.
The T and R (equation 2.106) include all reverberations (p101-102,

Saito).

2.6.4 P-SV waves
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2.7 Surface waves

Surface and body waves are not very easy to distinguish because they
are related. We consider that surface waves are propagating around
the surface of media and the energy of them concentrate near the
surface. Generally, the main features of surface waves compared with
body waves are traveling slower, less amplitude decay, and velocities
are frequency dependent.

2.7.1 Dispersion

One important feature is that surface waves are dispersive (in con-
trast to body waves), which means that the depth sensitivity of
surface waves depends on frequencies of waves, and hence we can
obtain vertical heterogeneity of subsurface from surface waves.

The simplest example of dispersion may be the sum of two har-
monic waves with slightly different frequency and wavenumber
(Figure 2.11):
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Figure 2.11: Superimposed cosine
waves. Here, w = 1 ⇥ 2 ⇥ p (1/s),
k = 0.3 ⇥ 2 ⇥ p (1/km), dw = 0.1 (1/s),
and dk = 0.05 (1/km).

u(x, t) = cos(w1t � k1x) + cos(w2t � k2x), (2.110)

where w1 = w � dw, w2 = w + dw, k1 = k � dk, and k2 = k + dk.

cos(a + b) + cos(a � b) = 2 cos a cos b

Therefore,

u(x, t) = cos{(wt � kx)� (dwt � dkx)}+ cos{(wt � kx) + (dwt � dkx)}
= 2 cos(wt � kx) cos(dwt � dkx). (2.111)

The waveform of u(x, t) consists of a cosine curve with frequency
w (carrier) with a superimposed cosine curve with frequency dw

(envelope). From equation 2.111, the velocities for short (carrier) and
long (envelope) period waves are

c =
w

k
, U =

dw

dk
, (2.112)

respectively. In equation 2.112, we assume dw and dk approach to
zero. We call c as phase velocity and U as group velocity. The group
velocity U can be written as

dw = w � w1 = ck � c1k1 = ck � (c � dc)(k � dk)
⇡ cdk + kdc

dk = k � k1 =
w

c
� w1

c1
=

w

c
� w � dw

c � dc

⇡ w

c
� w � dw

c
� wdc � dcdw

c2 ⇡ dw

c
� wdc

c2

1
U

=
dk
dw

=
dw/c � wdc/c2

dw
=

1
c

✓
1 � k

dc
dw

◆

U =
dw

dk
= c + k

dc
dk

= c
✓

1 � k
dc
dw

◆�1
. (2.113)

Usually, because the phase velocity c of Love and Rayleigh waves
increase with period (i.e., velocity increasing with depth), dc/dw

is negative. Therefore, the group velocity is slower than the phase
velocity U < c.
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2.7.2 Love waves
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Figure 2.12: Two-layer model. I should
follow the subscripts with Figure 2.9.
Love waves within a homogeneous

layer can result from constructive
interference between postcritical
reflected SH waves.

We consider the medium shown in Figure 2.12, which contains a
finite thickness layer on top of a halfspace medium. Note that we
need a layer to obtain Love waves. The Love-wave problem can be
considered as that whether waves, which horizontally propagate with
velocity c and amplitude zero at z ! •, exist or not.

When we consider the condition b1 < c < b2 (which is the
condition that Love waves exist I will proof later.), a solution in the
medium 1 is

h1 =
q

b�2
1 � p2, c = 1/pv1(z) = cos wh1(z � H)e�iw(t�px), (2.114)

which is equal to equation 2.104 with A = 1/2. Based on equation
2.93, a solution in the medium 2 is

v2 = A2e�iw(t�px�h2z) + B2e�iw(t�px+h2z), (2.115)

where h2
2 < 0 when c < b2. When we choose =(h2) > 0 (w > 0), the

eiwh2z = eiw(<(h2)+i=(h2))z = eiw<(h2)z
| {z }
oscillation

e�w=(h2)z
| {z }

divergence(z=•)

Because h2 is complex number, the
reflected waves from the medium 1

perfectly reflect at the boundary z = 0.
Also from equation 2.121,

v1 = e�iw(t�px)
h
eiwh1(z�H) + e�iwh1(z�H)

i
,

which is the summation of upgoing
and downgoing plane waves (with
propagating to the +x direction. There-
fore, we can consider Love waves are
reverberation of SH waves.

first and second terms on the right-hand side of equation 2.115 are
diverse and converse to zero at z ! �•, respectively. By considering
the condition of amplitudes, we can write a solution in the medium 2

as

v2 = B2e�iw(t�px+h2z) = B2e�iw(t�px)ewĥ2z, (2.116)

where ĥ2 =
q

p2 � b�2
2 > 0.

Because the boundary condition at the free surface is already
satisfied in equation 2.114, the boundary condition at z = 0 should be
satisfied (displacements and stresses should be continuous):

v1 = v2, µ1
∂v1
∂z

= µ2
∂v2
∂z

cos wh1H = B2, µ1(wh1 sin wh1H) = µ2(wĥ2B2) (2.117)

where µi = rib
2
i . Therefore, to exist Love waves, waves satisfy

Dl(p, w) = µ2ĥ2 cos wh1H � µ1h1 sin wh1H = 0, (2.118)

or

tan wh1H =
µ2ĥ2
µ1h1

, (2.119)

which are called the characteristic equation for Love waves. With
equation 2.120, Love waves exist when h1 and ĥ2 are real positive
number for an angular frequency.

Mode The equation defines the dispersion curve for Love wave
propagation within the layer. On the plane of pw, for each p, we
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have multiple values of w satisfies equation 2.120 due to the tangent
function, and the smallest w defines the fundamental mode, and
the second smallest is the first higher mode, etc. Equation 2.120

cannot be solved analytically, but we can do numerically. When w

is small, we only have one solution, which is the fundamental mode
(Saito, p149). Also in the fundamental mode, c ! b2 (w ! 0) and
c ! b1 (w ! •).

The angular frequency of nth higher modes can be defined as

wn H
b1

=
npp

1 � (b1/b2)2
, (2.120)

and called cut-off angular frequency.
Depth variation of amplitude From equations 2.114, 2.116, and

2.117, the displacements of Love waves are

v1(z) = cos wh1(z � H)
| {z }

amplitude

e�iw(t�px)
| {z }

phase

v2(z) = cos wh1(H)ewĥ2z
| {z }

amplitude

e�iw(t�px)
| {z }

phase

. (2.121)

Group velocity We can estimate the group velocity of Love waves
by computing equation 2.113. The p(w) derivative of DL(p, w) = 0 is When f (x, y) = 0,

d
dx

f (x, y(x)) = 0

d f (x, y)
dx

+
d f (x, y)

dy
dy(x)

dx
= 0

∂DL(p, w)
∂w

+
∂DL(p, w)

∂p
∂p(w)

∂w
= 0

∂p(w)
∂w

= �∂DL/∂w

∂DL/∂p
(2.122)

For the two-layer case (equation 2.118),

c
U

= 1 +
h2

1
p2

"
1 +

(µ2/µ1)(b�2
1 � b�2

2
wĥ2 H[h2

1 + (µ2/µ1)2ĥ2
2 ]

#�1

2.7.3 Rayleigh waves
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