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1.1 Plane wave reflection and transmission

1.1.1 Introduction
This means that we consider wave

propagation on a plane, which is
perpendicular to the x2 axis.

When we consider the propagating waves are plane waves, we can
find a coordinate system which has ∂ui/∂x2 = 0. From equation , if
we choose these axes, we obtain
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(1.1)

The displacement on the x2 direction is independent from x1 and x3,
and only contain S waves, which are called SH waves. The waves
described by u1 and u3 are called P-SV waves.

1.1.2 SH wave

From equation 1.1 with replacing u2 to v, r/µ as 1/b2, and x1x2x3 to
xyz, we obtain

1
b2

∂2v
∂t2 =

∂2v
∂x2 +

∂2v
∂z2 , (1.2)

which is a 2D scaler wave equation. The waves represented by v are
called SH wave. We consider a plane-wave solution of equation 1.2 as

v = e�iw(t�px�hz), (1.3)

where p is the ray parameter (and p is the horizontal slowness and h

the vertical slowness). With p and b, h is Slownesses and wavenumbers are also
related.

kx = pw, kz = hwh2 =
1
b2 � p2. (1.4)

Based on the incident angle of the wave f (angle from the z axis),
horizontal and vertical slownesses are

p =
sin f

b
, h =

cos f

b
. (1.5)
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1.1.3 Reflection and transmission of SH wave
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Figure 1.1: Reflection at the free surface.

Let us consider the reflection at the free surface (Figure 1.1). The
general solution of SH waves reflected at the free surface is given by

v = Ae�iw(t�px�hz)
| {z }

incoming

+ Be�iw(t�px+hz)
| {z }

re f lection

, (1.6)

where A and B are constants. As a boundary condition at the free
surface, stresses szx, syz, and szz are zero (because we are considering
only the y direction, we use only the condition of syz); therefore at
z = 0,

syz = szy = µ
∂v
∂z

, (1.7)

where the first equation naturally satisfies by our coordinate system.
From the second equation, we obtain the relationship that

(A � B)e�iw(t�px) = 0
B
A

= 1, (1.8)

which is the reflection coefficient for SH waves at the free surface.
SH waves bounce at the free surface with the same amplitude. From
equation 1.8, the displacement at the free surface is v(z = 0) =

2Aexp(�iw(t � px)), which means twice as large as the incoming
wave (and the reflected wave).
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Figure 1.2: Reflection and transmission
at a boundary.

Next, we consider the reflections at a boundary (Figure 1.2). This
derivation is similar to the string case (1D scaler wave equation). We
simply extend it to the 2D case. Now, we set z = 0 as a boundary,
and medium 1 (r1, b1) is at z < 0 and medium 2 (r2, b2) z > 0.
When the incoming wave propagation from medium 1, plane-wave
solutions are why is p in equation 1.9 common for

media 1 and 2?
v1 = A1e�iw(t�px�h1z) + B1e�iw(t�px+h1z), (z < 0)

v2 = A2e�iw(t�px�h2z), (z > 0) (1.9)

where the first term in v1 is the incoming wave, the second term in
v1 the reflected wave, and v2 the refracted wave. Define f1 and f2 are
the angle of the incident and refracted waves, respectively, slownesses
are

p =
sin f1

b1
=

sin f2
b2

, h1 =
cos f1

b1
, h2 =

cos f2
b2

(1.10)

At z = 0, the displacement satisfies a boundary condition, in which
displacements and stresses at the boundary are continuous:

v1 = v2, µ1
∂v1
∂z

= µ2
∂v2
∂z

. (1.11)
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From these conditions, we obtain

A1 + B1 = A2, µ1h1(A1 � B1) = µ2h2 A2 (1.12)

and reflection and transmission coefficients are µ/r = b2, hi = cos fi/bi

R12 =
B1
A1

=
µ1h1 � µ2h2
µ1h1 + µ2h2

=
r1b1 cos f1 � r2b2 cos f2
r1b1 cos f1 + r2b2 cos f2

T12 =
A2
A1

=
2µ1h1

µ1h1 + µ2h2
=

2r1b1 cos f1
r1b1 cos f1 + r2b2 cos f2

. (1.13)

The impedance for SH waves at media 1 and 2 are r1b1 and r2b2,
respectively.

Now, we show the energy is preserved during these reflection and
transmission. The energy at a unit volume (at steady state) can be
written by

E = rw2X2, (1.14)

where X is the amplitude of waves. When the plane wave propagat-
ing with velocity b, the energy flux at a unit area (perpendicular to
the propagation) is

F = bE = rbw2X2. (1.15)

We apply this relationship to the reflection and transmission of SH
waves. The energy of the incoming wave at are S is Sr1b1w2 cos f1
and the sum of the reflection and transmission waves are S|R12|2r1b1w2 cos f1 +

S|T12|2r2b2 cos f2, and these energy should be equal:

Sr1b1w2 cos f1 = S|R12|2r1b1w2 cos f1 + S|T12|2r2b2 cos f2

1 = |R12|2 +
r2b2 cos f2
r1b1 cos f1

|T12|2, (1.16)

where equation 1.13 satisfies equation 1.16.
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Figure 1.3: Reflection and transmission
at a medium which has the free surface
and a finite layer.

When medium 2 has a finite thickness (H) and the free surface
exists on top of it, waves reverberate. The solution in medium 1 is
the same as equation equation 1.9. Because we have another reflected
waves from the boundary at z = H, the solution in medium 2 is

v2 = A2e�iw(t�px�h2(z�H)) + B2e�iw(t�px+h2(z�H)). (1.17)

Because the stress syz is 0 at the free surface z = H, we obtain
A2 = B2. Therefore, equation 1.17 becomes

v2 = 2A2e�iw(t�px�h2(z�H)). (1.18)

The boundary condition at z = 0 is the same as equation 1.11 and we
obtain

A1 + B1 = 2A2 cos wh2H

iµ1h1(A1 � B1) = 2µ2h2 A2 sin wh2H. (1.19)
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From equation 1.19, we can compute reflection and transmission
coefficients: Different from equations 1.8 or 1.13,

equation 1.20 is a function of the
frequency. This is because the reflection
and transmission depend on the
thickness H.

Proof |R| = 1.

T =
A2
A1

=
µ1h1

µ1h1 cos wh2H � iµ2h2 sin wh2H
,

R =
B1
A1

=
µ1h1 cos wh2H + iµ2h2 sin wh2H
µ1h1 cos wh2H � iµ2h2 sin wh2H

. (1.20)

Waves are amplified because of the surface layer. The amplitude ra-
tio between the incident wave and the wave represented by equation
1.17 is

����
v2(z = H)

A1

���� =
����
2A2
A1

���� = 2|T|. (1.21)

Compared with the ratio without the surface layer (2 due to equation
1.8), |T| relates to the amplification of the waves.

If hi is real, the denominator of T is following an ellipse on the
real-imaginary domain with principal axes on the real and imaginary
axes when w changes. Therefore, the maximum and minimum T
should be on the real or imaginary axes. On the real axis (sin wh2H =

0 and cos wh2H = ±1),

|T| = 1, (1.22)

and on the imaginary axis (sin wh2H = ±1 and cos wh2H = 0),

|T| = µ1h1
µ2h2

=
r1b1 cos f1
r2b2 cos f2

. (1.23)
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Figure 1.4: Site amplification caused
by a soft surface layer for SH waves
for different incident angles (line
colors). The normalized frequency is
f H/b2 and the vertical axis |T|. In
this example, I use r1/r2 = 1.2 and
b1/b2 = 2.

When we consider the vertical incident wave (f1 = f2 = 0), the
maximum |T| is on the real axis (equation 1.22) when the surface
layer is harder than below (r1b1 < r2b2). On the other hand, when
the surface layer is softer (r1b1 > r2b2), the maximum |T| is on the
imaginary axis (equation 1.23) and |T| > 1, which is the reason of
amplification at the soft structure (e.g., figure 1.4). The frequency
at the maximum amplification satisfies cos wh2H = 0 ! wh2H =

(2n + 1)p/2.
The T and R (equation 1.20) include all reverberations (p101-102,

Saito).
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