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2.3.11 Principal stresses

For any stress tensor, we can always find a direction of n̂ that defines
the plane of no shear stresses. This is important for earthquake
source mechanisms.

To find the direction n̂ is an eigenvalue problem:

sn̂ = ln̂

(s � lI)n̂ = 0, (2.57)

where l is eigenvalues, not a Lamé constant. To find l, we need to
solve Relationship between the original

stress tensor s and principle stresses.
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det[s � lI] = 0, (2.58)

and obtain three eigenvalues l1, l2, and l3 (|l1| � |l2| � |l3|),
which are the principal stresses (s1, s2, and s3, respectively). Corre-
sponding eigenvectors for each eigenvalue define the principal stress axes
(n̂(1), n̂

(2), and n̂

(3)).

2.3.12 Traction on a fault

The traction at an arbitrary plane of orientation (s) is obtained by
multiplying the stress tensor by s:

T(n̂) = sn̂. (2.59)

Using this relationship, we can compute a traction on a fault.
In the 2D case, the stress tensor is

s =

 
s11 s12
s21 s22

!
. (2.60)

When the fault is oriented q (clockwise) from the x1 axis, the normal
vector is

n̂ =

 
sin q

cos q

!
. (2.61)

Therefore, from equation 2.59, the traction on the fault is

T(n̂) =

 
s11 s12
s21 s22

! 
sin q

cos q

!
, (2.62)

which indicates the direction and strength of the traction on the
fault. We can decompose the traction into normal (TN) and shear TS
tractions on the fault:

f̂ = Rn̂

where

R =

✓
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◆
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0 1
�1 0

◆
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TN = T(n̂) · n̂ =

 
s11 s12
s21 s22

! 
sin q

cos q

!
·
 

sin q

cos q

!

TS = T(n̂) · f̂ =

 
s11 s12
s21 s22

! 
sin q

cos q

!
·
 

cos q

� sin q

!
, (2.63)

where f̂ is the unit vector parallel to the fault direction.

2.3.13 Deviatoric stresses

Because in the deep Earth, compressive stresses are dominant, only
considering the deviatoric stresses is useful for many applications.
For example, the deviatoric stresses result from tectonic forces and
cause earthquake faulting.

When the mean normal stress is given by M = (s11 + s22 + s33)/3,
the deviatoric stress is

sD = s � MI (2.64)
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