Focal mechanisms

Nori Nakata
Stanford University

Faulting

Faulting

Faulting

Focal mechanism

Strike: 0-360
Dip: 0-90
Rake: 0-360

[s, d, r]=[0,90,0]

$[s, d, r]=[0,90,0]$

$[s, d, r]=[0,60,0]$

$[s, d, r]=[0,60,0]$

$[s, d, r]=[0,90-0,0]$

$[s, d, r]=[30,90,0]$

$[s, d, r]=[30,90,0]$

$[s, d, r]=[30,60,0]$

$[s, d, r]=[30,60,0]$

$[s, d, r]=[0,90,30]$

$[s, d, r]=[0,90,30]$

$[s, d, r]=[0,90,60]$

$[s, d, r]=[0,90,60]$

$[s, d, r]=[270,30,0]$

$[s, d, r]=[270,30,0]$

$[s, d, r]=[30,30,60]$

$[s, d, r]=[30,30,60]$

$[s, d, r]=[0,90,0-270]$

$[s, d, r]=[30,90,0-270]$

[s, d, r]=[30,60,0-270]

150

Are they enough?

Are they enough?

Moment tensor

Moment tensor

[s,d,r]=[0,90,0]

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Moment tensor

Moment tensor

Moment tensor

Moment magnitude

$$
\begin{aligned}
& \mathbf{M}_{0}=\frac{1}{\sqrt{2}}\left(\sum_{i j} \mathbf{M}_{i j}^{2}\right)^{1 / 2} \\
& \mathbf{M}_{w}=\frac{2}{3}\left(\log _{10} \mathbf{M}_{0}-9.1\right)
\end{aligned}
$$

Faulting

Faulting

Faulting

Faulting

Rake $=0$ (left) 180 (right) Rake $=\mathbf{2 7 0}$

Rake $=90$

Left-lateral strike slip (rake=0)

Normap-dip slip (rake=270)

Reverse-dip slip (rake=90)

Reverse-dip slip (rake=90)

P and T axes

P: maximum compressive principal stress
T: minimum compressive principal stress

Radiation pattern

(A)

(C)

(B)

(D)

Pujol (2003)

Moment tensor

Characterize earthquake

What kind of faulting?

Is the dip shallow or steep?
Is the mechanism deviatoric?

Characterize earthquake What kind of faulting?
 $$
[\mathrm{s}, \mathrm{~d}, \mathrm{r}]=[30,60,180]
$$

Is the dip shallow or steep?

Is the mechanism deviatoric?

What is the horizontal direction of faulting?

Characterize earthquake

[s,d,r]=[30,60,180]
What kind of faulting? Right lateral strike slip

Is the dip shallow or steep? Steep

Is the mechanism deviatoric?
Yes

What is the horizontal direction of faulting? 30 degrees from North

Characterize earthquake

 [s,d,r]=[30,30,60] What kind of faulting?

Is the dip shallow or steep?

Is the mechanism deviatoric?

What is the horizontal direction of faulting?

Characterize earthquake

[s,d,r]=[30,30,60]

What kind of faulting?
Mostly reverse-dip slip with some left-lateral strike slip Is the dip shallow or steep? Shallow

Is the mechanism deviatoric?
Yes
What is the horizontal direction of faulting? 30 degrees from North

EASTERN TURKEY
$11 / 10 / 23$ 10:41:21.73

Epicenter: 38.710
43.446

MW 7.3
USGS CENTROID MOMENT TENSOR 11/10/23 10:41:44.50

```
Centroid: 39.451 43.354
```

Depth 16 No. of sta: 159
Moment Tensor; Scale 10**19 Nm
$\mathrm{Mrr}=5.89 \quad$ Mtt $=-6.13$
$\mathrm{Mpp}=0.24 \quad$ Mrt $=7.73$
Mrp= 1.60
Mtp $=-0.51$
Principal axes:
T Val= $9.83 \quad$ Plg=63 \quad Azm=344
$\begin{array}{llll}\mathrm{N} & 0.22 & 4 & 81\end{array}$
$\begin{array}{llll}\text { P } & -10.05 & 26 & 173\end{array}$
Best Double Couple:Mo=9.9*10**19
NP1:Strike= 80 Dip=71 Slip= 86
NP2:
272
19101

http://earthquake.usgs.gov/ earthquakes/

What kind of faulting?

Is the dip shallow or steep (closer to 0 or 90 degrees)?

Is the mechanism deviatoric?

What is meant by "centroid"?

OKLAHOMA

11/11/06 03:53:10.53
Epicenter: 35.537 -96.747
MW 5.6
USGS/SLU REGIONAL MOMENT TENSOR
Depth 7 No. of sta: 32
Moment Tensor; Scale 10**17 Nm
Mrr=-0.17 Mtt= 3.22
Mpp $=-3.05 \quad$ Mrt $=-0.07$
$\operatorname{Mrp}=-0.28 \quad$ Mtp $=-1.09$
Principal axes:

T	Val $=$	3.40	Plg $=$
N	-0.14	85	Azm= 190
P	-3.26	5	95
		280	

Best Double Couple:Mo=3.3*10**17
NP1:Strike= 55 Dip=87 Slip=-176
NP2: $324 \quad 86$

What kind of faulting?

What is the strike?

Is the mechanism deviatoric?

SOUTHERN TEXAS

11/10/20 12:24:40.58

Epicenter: 28.803 -98.154
MW 4.8
USGS/SLU REGIONAL MOMENT TENSOR
Depth 5 No. of sta: 22
Moment Tensor; Scale 10**16 Nm
Mrr=-1.05 \quad Mtt $=0.73$
$\mathrm{Mpp}=0.32 \quad \mathrm{Mrt}=-1.14$
Mrp=-0.91 Mtp= 0.46
Principal axes:

T	Val $=$	1.78	Plg=27	Azm=145
N	0.03	3	53	
P	-1.80	63	318	

Best Double Couple:Mo=1.8*10**16
NP1:Strike= 53 Dip=72 Slip= -93
NP2: 241 18

What kind of faulting?

What is the dip?

Is the mechanism deviatoric?

NEAR EAST COAST OF HONSHU, JAPAN

```
11/03/11 05:46:23.82
```

Epicenter: 38.308142 .383
MW 9.0
USGS CENTROID MOMENT TENSOR
11/03/11 05:47:47.20
Centroid: 38.486142 .597
Depth 10 No. of sta: 151
Moment Tensor; Scale $10 * * 22 \mathrm{Nm}$
Mrr= $2.03 \quad$ Mtt $=-0.16$
Mpp=-1.87 Mrt= 2.06
Mrp= 3.49 Mtp=-0.60
Principal axes:
T Val= 4.57 Plg=58 Azm=306
$\begin{array}{llll}\mathrm{N} & -0.05 & 5 & 208\end{array}$
$\begin{array}{llll}P & -4.52 & 32 & 115\end{array}$
Best Double Couple:Mo=4.5*10**22
NP1:Strike= 29 Dip=77 Slip= 95
NP2: $187 \quad 14 \quad 68$

What kind of faulting?

Which is the fault plane?

Records

a)

response

