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My research interests lie in arithmetic geometry and arithmetic statistics, especially as they relate
to the arithmetic of curves (both scheme-y and stacky curves). My research has typically leaned towards
finiteness results, obtained by applying a mix of techniques from number theory, algebraic geometry,
and topology. I have broad arithmetic and geometric interests, but my work so far has related to the
following topics:
(Arithmetic statistics of Selmer groups, Section 1) In [Ach23], I complete the proof that, over any

global field, the average rank of elliptic curves is finite. I propose to improve known upper bounds in
the function field case (see Problems 1 and 2) as well as to study the theoretical limits of the most
commonly used strategy for obtaining such bounds (see Problem 4).

(Brauer groups of stacky curves, Section 2) I have developed techniques for computing Brauer groups
of stacky curves [ABJ+24, Ach24]. I propose to use these to compute the integral étale-Brauer
obstruction set for the moduli stack Y(1) of elliptic curves (see Problem 5) with the hopes of giving
a new proof that there is no elliptic scheme over Z.

(Arithmetic of high-dimensional varieties, Section 3) In [AM23], we verified a consequence of Vojta’s
conjecture on integral points by proving that a nice high-dimensional variety X – if it has infinite
étale fundamental group – supports infinitely many irreducible divisors D such that X −D has only
finitely many integral points. The novelty here is that most such results require D to have many
irreducible components.

1. Arithmetic statistics of Selmer groups

Arithmetic statistics is a field concerned with understanding the distributions, suitably defined, of various
objects of number theoretic interest (finite extensions of Q, class groups of number fields, Selmer groups of
elliptic curves, etc.). After ordering the objects under consideration by a suitable defined height function,
one is often interested in getting an asymptotic count for them as their heights tend towards infinity and/or
in computing average sizes or moments of invariants attached to them.

Of particular relevance to my own work is the study of statistics of ranks of elliptic curves. Recall that
an elliptic curve E over a field F is a smooth, projective genus 1 curve equipped with chosen point 0 ∈ E(F )

defined over F . This choice of point defines a group law on E(F ) with 0 serving as the identity. When F is
a global field – i.e. a number field (Q or a finite extension thereof) or a global function field (Fq(t), for some
prime power q, or a finite extension thereof) – the abelian group E(F ) is finitely generated and so one can
speak of the rank of E.

In this context, the main conjectures are as follows.

Conjecture 1.1 (Minimalist Conjecture, folklore). Fix any global field K. Half of elliptic curves E/K have
rank 0 and half have rank 1.

Most recent progress on this conjecture comes, not from directly studying ranks of elliptic curves, but
from studying sizes of their Selmer groups. Here, for every n ≥ 1 and any elliptic curve E/K, the n-Selmer
group Seln(E/K) is a specific finite Z/nZ-module which admits an injection E(K)/nE(K) ↪! Seln(E/K).
One consequence of this injection is that nrankE(K) ≤ #Seln(E/K), so Selmer groups allow one to bound
ranks. Correspondingly, the distribution of sizes of Selmer groups has received much attention; in particular,
a conjectural formula for this distribution has been proposed in [BKL+15] (building off of previous heuristics
of Poonen-Rains [PR12]). One major prediction of this conjectural distribution is the following.

Conjecture 1.2 ([BKL+15]). Fix any global field K and any n ≥ 1. The average size E[# Seln(E/K)] of
n-Selmer groups of elliptic curves E/K is the sum of the divisors of n.

Proving Conjecture 1.2, in addition to understanding the distribution of parities of ranks of elliptic
curves (which, under BSD, is related to the root number of the curve’s L-function), would prove Conjec-
ture 1.1. Evidence for Conjecture 1.2 goes back to work of de Jong [dJ02, Theorem 1.2] who computed
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that E[# Sel3(E/Fq(t))] ≤ 4 + o(1) as q ! ∞. Studying Conjecture 1.2 gained even more popularity after
work of Bhargava and Shankar [BS15a, BS15b, BS13a, BS13b] verified that E[# Seln(E/Q)] =

∑
d|n d for

n = 1, 2, 3, 4, 5. Since then, many other authors have verified Conjecture 1.2, or variations of it, in a variety
of settings, both over number fields and function fields; see e.g. [Sha13, HLHN14, Tho19, Lan21a, FLR23,
PW23, EL24]. One common feature of work on this conjecture in the function field case is that authors
either usually restrict the characteristics of the function fields over which they work or only work over genus
0 function fields, but neither of these restrictions appear in Conjecture 1.2. In contrast, in my preprint
[Ach23], I was able to prove the following theorem for any global function field.

Theorem 1.3 ([Ach23, Theorem B]). Let K = Fq(B) be the function field of a nice1 curve B/Fq, and let
ζB be its zeta function. Then,

E[# Sel2(E/K)] ≤ 1 + 2ζB(2)ζB(10),

This implies lim
n!∞

E[# Sel2(E/FqnK)] ≤ 3.

This is the first paper proving such a result for a truly arbitrary global function field. Combined with
work of Arul Shankar, this has the following aesthetically pleasing consequence.

Theorem 1.4 ([Ach23, Sha13]). Let K be any global field. Then, E[rankE(K)] is finite.

The above Theorem 1.4 is not a priori obvious, and in fact was not known for certain (high genus, low
characteristic) function fields before [Ach23]. It is a priori conceivable that there exists enough elliptic curves
E/K of unbounded ranks to force the average to be infinite. In fact, it is known [Ulm02] that ranks of elliptic
curves over a global function field are unbounded. However, Theorem 1.3 tells us that curves with truly
large ranks are rare enough for the average to remain bounded.

1.1. Proposed Project(s). The first project I propose is to improve the elliptic curve average rank bounds
I obtained in [Ach23], especially over function fields of characteristic 2. A first very natural continuation of
[Ach23] would be to strengthen Theorem 1.3 to state that E[# Sel2(E/K)] ≤ 3 over any fixed K. This would
mainly involve computing local densities for ‘hyper-Weierstrass curves’ [Ach23, Definition 4.1.2] (these serve
as the geometric model of 2-Selmer elements used to parameterize them) which are both minimal (have at
worst rational singularities) and locally solvable, and then to carefully sieve these out of the resulting count.
The main difficulty here is effectively detecting minimality.

Problem 1. Prove that E[# Sel2(E/K)] ≤ 3 for K as in Theorem 1.3.

A further extension of this work would be to prove analogous bounds for the average size of n-Selmer, at
least for n ≤ 5 (as in the work of Bhargava and Shankar over Q). This should be doable by combining ideas
introduced in [Ach23] with those present in [dJ02, BS15b, BS13a, BS13b]. In the case n = 3, [dJ02, Theorem
1.2] proves an analogue of Theorem 1.3 for Fq(t), but the n ≥ 3 case is still open for higher genus function
fields. The cases for n ≥ 4, as far as I am aware, remain completely open in the function field setting.

Problem 2. Prove an analogue of Theorem 1.3 for n = 3, 4, 5.

Remark 1.5. As explained in [Cow21, Section 4], Problem 2 (at least for K = Fq(t)) is also related to
Alex Cowan’s conjecture that 100% of elliptic surfaces over Q have rank 0 (when viewed as elliptic curves
over Q(t)). Spelled out slightly, solving Problem 2 (combined with the relatively easier task of producing a
large family of elliptic curves in which the parity of the rank is provably equidistributed) would allow one
to conclude that E[rankE(K)] ≤ 1− δ for some δ > 0. Once one has a statement like this, [Cow21, Section
4] shows how a Chinese remainder theorem argument almost let’s one deduce that 100% of elliptic surfaces
over Q have rank 0, his [Cow21, Conjecture 1.1]. In any case, proving that E[rankE(K)] < 1 (as would be
feasible if one solves Problem 2) would give strong evidence towards [Cow21, Conjecture 1.1]. ◦

1smooth, projective, and geometrically connected
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The previously suggested problems could be tackled using the parameterize-and-count meta-strategy
often employed in arithmetic statistics. However, for handling cases of Conjecture 1.2 in the function field
setting, there exists a second fruitful approach. It is possible to relate this problem to that of counting
Fq-points on certain moduli spaces of n-Selmer elements and then essentially reduce this counting problem
to controlling the cohomology groups of the involved moduli spaces. Arguments along these lines have been
successfully made by Aaron Landesman and his collaborators [Lan21b, FLR23, EL24], at least in the case of
good characteristic function fields. It would be interesting to extend these techniques to bad characteristic
function fields, at least starting with the analogue of [Lan21b]. In this case, as mentioned in [Lan21b, Remark
1.10], the main obstacle is to compute the images of certain (wildly ramified) monodromy representations.

Problem 3. Extend the main result of [Lan21b] to characteristic 2, say for n-Selmer with n odd.

As previously alluded to, one generally bounds the average size of n-Selmer via a parameterize-and-count
argument where the first step is find a suitable parameterization/description of the n-Selmer elements to
count. Most commonly, one (implicitly or explicitly) parameterizes n-Selmer elements – say for n ≥ 3 – by
representing them as (locally solvable) nice degree n, genus 1 curves embedded in Pn−1. One expects that
these objects cannot be parameterized once n is large enough, and it would be interesting to prove this for
some explicit value of n. Let Mn denote the moduli space of “nice degree n, genus 1 curves embedded in Pn−1”
and let Hn denote the Hilbert scheme of such curves, so Mn ≃ [Hn/PGLn]. In practice, a parameterization
of such curves (e.g. a description of the equations needed to cut out such a curve in Pn−1) amounts to a
dominant rational map f : AN 99K Hn, for some N .2 Therefore, if Hn is not unirational, there can be no
such parameterization, and so the “parameterize–and–count” strategy may be less feasible for such an n (of
course, this would not necessarily rule out the possibility of using some other clever parameterization). It
would be interesting, to prove that some Hn is not unirational.3

Problem 4. Find an explicit n such that Hn is not unirational.

Remark 1.6. Various candidate moduli spaces of Selmer elements have been studied before, e.g. in [dJF08,
Section 4] and in [Lan]. Furthermore, rationality problems for moduli spaces of curves have been considered
by many authors, including Joe Harris and his collaborators (see e.g. [HM82, Har84, EH84]). The ideas
present in these works can serve as a starting point for considering Problem 4. ◦

One can also ask an analogue of Problem 4 in the number field counting setting (e.g. in the setting of
questions such as “How many Sn-extensions of Q are there of discriminant bounded?”). Here, one is interested
in parameterizing rank n free Z-algebras, and again, one suspects this is not possible for n sufficiently large,
so one can ask the analogous question of proving this for some explicit value of n. The relevant moduli space
here has previously been studied in [Poo08].

2. Brauer groups of stacky curves

An algebraic stack is a generalization of a scheme/variety which allows spaces to have stabilizer/automor-
phism groups attached to each point. They provide a particularly useful context for studying moduli spaces
(spaces whose points parameterize other geometric objects of interest) because the objects parameterized
often have automorphism. For example, the moduli space Y(1) of elliptic curves exists as an algebraic stack,

2Note that elements of n-Selmer are represented by locally solvable genus 1 curves. For K any global field, any K-point of
Mn representing a Selmer element will lift to a Kv-point of Hn for all places v of K. Because PGLn-torsors satisfy a local-
to-global principal, this means such a K-point lifts to a K-point of Hn, so, for counting Selmer elements, it suffices to find a
parameterization of Hn(K) instead of Mn(K).
3In contrast to Hn, one can identify Mn ≃ Picn

C/M, where C ! M is the universal (unpointed) genus 1 curve. This space is

unirational because M1 (the moduli space of elliptic curves) is and the ‘multiplication map’ M1 = Pic1
C/M

×n
−−! Picn

C/M = Mn

is dominant (though far from surjective on Q-points, for example).
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but does not exist as a variety because an elliptic curve E always has at least one non-trivial automorphism
(e.g. negation for its group law).

There is much interest in studying moduli spaces, because their geometry has consequences for the objects
they parameterize, and in particular, in computing the cohomology of moduli spaces and other algebraic
stacks. Of particular relevance to my work, is studying the Brauer groups of these spaces. Brauer groups
Br(−) := H2

ét(−,Gm)tors of fields/schemes/stacks are particular geometric invariants which arise in con-
nection to class field theory, ℓ-adic cohomology, and to obstructions to (rational and integral) points on
varieties. In recent years, there has been increasing interest in understanding Brauer groups of algebraic
stacks and especially of stacky curves. One can see, for example, the work of Antieau–Meier and oth-
ers [AM20, Shi19, LP22] computing the Brauer group of Y(1) and the work of Santens [San23] studying
Brauer–Manin obstructions to integral points on stacky curves.

As an example of the results thus far obtained, the stack Y(1) is arguably the most important stacky curve,
and accordingly, its Brauer group has received the most attention. Work of many authors has produced the
following result.

Theorem 2.1 ([AM20, Shi19, Mei18, LP22]).
(1) Let R = Z,Z[1/2], or a field of characteristic not 2. Then,

BrY(1)R ≃ BrA1
R ⊕H1

ét(R,Z/12Z).

(2) Let k be a field of characteristic 2. Then, there is a short exact sequence

0 −! BrA1
k ⊕H1

ét(k,Z/12Z) −! BrY(1)k −! Z/2Z −! 0.

(3) Let ℓ be a prime and let S/Z[1/ℓ] be a separated, regular, noetherian scheme. Then,

Br(Y(1)S)(ℓ) ≃ Br(S)(ℓ) ⊕H1
ét(S,Z/12Z)(ℓ).

In [ABJ+24] – written in collaboration with Deewang Bhamidipati, Aashraya Jha, Caleb Ji, and Rose
Lopez – we extended some of the techniques used in Theorem 2.1 to compute the Brauer group of the moduli
stack Y0(2) of elliptic curves equipped with an étale subgroup of order 2. Namely, we found that

(1) BrY0(2)R ≃ BrY0(2)R ⊕H1
ét(R,Z/4Z)⊕ Z/2Z,

where Y0(2) = A1 \ {0} is the coarse moduli space of Y0(2). In later work [Ach24], I studied techniques for
computing Brauer groups of (tame) stacky curves more generally. For example, I prove

Theorem 2.2 ([Ach24, Theorem B]). Let S be a noetherian Z[1/2]-scheme.

(1) BrX(1)S ≃ BrP1
S ≃ BrS, where X(1) is the moduli stack of generalized elliptic curves.

(2) If S is regular, then there is an explicit isomorphism

BrA1
S ⊕H1

ét(S,Z/12Z)
∼−−! BrY(1)S .

(3) If S is regular, then there is an explicit isomorphism

Br(A1
S \ {0})⊕H1

ét(S,Z/4Z)⊕H0
ét(S,Z/2Z)

∼−−! BrY0(2)S ,

where Y0(2) is the moduli stack of elliptic curves equipped with a subgroup of order 2.

Note that this generalizes both Theorem 2.1 (away from characteristic 2) and (1).
Furthermore, in the paper [ABJ+24], we observed that BrY0(2)k = Z/2Z, when k is a field of characteristic

not 2. This gave the first example of a tame stacky curve with nontrivial Brauer group over an algebraically
closed fields. For a schemey curve X/k, Tsen’s theorem says that BrXk = 0 and even for the stacky curve
Y(1), [AM20] had shown that BrY(1)k = 0 if char k ̸= 2 (note that Y(1) is nowhere tame in characteristic
2). This led us to pose the question of what was governing this behavior; what aspects of the geometry of a
stacky curve would let you predict if it has nontrivial Brauer group over an algebraically closed field. This
question was addressed in [Ach24].
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Theorem 2.3 (special case of [Ach24, Proposition 7.10]). Let k be an algebraically closed field, and let X/k
be a regular cyclotomic4 stacky curve with generic stabilizer group G/k. Then, BrX ≃ H1

ét(X,G∨).

Theorem 2.3 applies in particular to all tame modular curves and gives a geometric explanation for
the observation in [ABJ+24] that Y(1) has trivial Brauer group over algebraically closed fields (in tame
characteristics) while Y0(2) has nontrivial Brauer group for these fields. The relevant geometric difference
is that the coarse space A1 of Y(1) is simply connected (more specifically, has no non-trivial double covers)
while the coarse space of Y0(2) is not.

The paper [Ach24] also contains a study of residue maps for Brauer groups of stacks, including some
new results on Picard groups of stacky curves [Ach24, Theorem D] and a ‘stacky Faddeev sequence’ [Ach24,
Theorem E], generalizing the usual Faddeev sequence [CTS21, Section 1.5] often used to compute Brauer
groups of (affine) rational curves.

2.1. Proposed Project(s). A personal motivation for my work [ABJ+24, Ach24] on Brauer groups is the
hope of computing (étale) Brauer–Manin obstruction sets on stacky curves. Santens studied this problem
when the stacky curve in question contains a dense, open subscheme, but I am not aware of work looking at
examples which are everywhere stacky. The main such example I have in mind to study is the moduli space
Y(1) of elliptic curves. In particular, I am interested in understanding Brauer groups of modular curves well
enough to compute the integral étale Brauer–Manin set for Y(1). I anticipate that this set is empty, and if
so, showing this would give a new proof of Tate’s theorem [Ogg66] that there is no elliptic scheme over Z.

Problem 5. Compute the integral étale-Brauer obstruction set Y(1)(Ẑ× R)ét-Br.

Carrying out such a computation would also serve as a proof-of-concept showcasing that exploiting Brauer
groups of moduli stacks can be effective in determining whether certain classes of geometric objects can have
everywhere good reduction. It would be my hope that resolving Problem 5 would motivate more people to
study Brauer groups of stacks as well as their associated obstructions.

The first step to tackling Problem 5 is to understand Brauer groups of (stacky) modular curves well
enough to compute with them. In this direction, I have proven Theorem 2.2 to explicitly compute some
low level examples. As a further stepping stones towards Problem 5, it would be interesting to work out
some higher level/genus examples, to compute the non–étale integral Brauer–Manin obstruction set on Y(1)

(I believe this set to be nonempty, but I had not yet carried out a full computation of it), and to generally
continue better understanding Brauer groups of stacks.

Problem 6. Extend [Ach24] by compute the Brauer groups of some interesting high level modular curves.

Problem 7. Compute the integral (non-étale) Brauer–Manin obstruction set Y(1)(Ẑ× R)Br.

Remark 2.4. Harari and Voloch [HV10, Conjecture 2] have conjectured that the integral Brauer–Manin
obstruction is the only obstruction to integral points on affine hyperbolic curves. Carrying out Problem 7
(and, more promisingly, Problem 5) would help one understand how this conjecture should be adjusted by
stacky rational curves. ◦

Finally, separate from the goal of eventually resolving Problem 5, it would be interesting to simply better
understand Brauer groups of general stacks. In [Ach24], I focus attention on stacks which are tame, but
there are interest wild examples as well (see e.g. [Shi19]).

Problem 8. Extend [Ach24] by studying Brauer groups of wild stacks (with finite stabilizer groups), with
the aim of putting Shin’s computation [Shi19] in a broader geometric context.

4An algebraic stack is cyclotomic if all its stabilizer groups of the form µn for some n
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Remark 2.5. As implicitly suggested by the philosophy of [Ach24], given such an algebraic stack X with
coarse space map c : X ! X, a good place to start would be to study the sheaf R2c∗Gm. In the tame setting,
[Ach24, Theorem A] gives a criterion for this sheaf to vanish which serves as the jumping off point for almost
all other computations in that paper. One would like to control this sheaf in the wild setting as well. For
Y(1)k with char k = 2, for example, it is reasonable to suspect that H0(A1,R2c∗Gm) = Z/2Z (see [Ach24,
Remark 1.4]). Understanding what features of the geometry of Y(1) control such a computation could lead
to clearer picture of Brauer groups of wild stacky curves. ◦

3. Arithmetic of high-dimensional varieties

The basic problem of arithmetic geometry is computing/understanding integral points on varieties (note
that ‘integral points’ = ‘rational points’ if the variety is proper). In the case of curves, we have the following
amazing result of Faltings and Siegel.

Theorem 3.1 (Siegel [Sie14], Faltings [Fal83]). Let X be a (not necessarily proper) hyperbolic curve. Then,
every set of integral points on X is finite.

When dimX > 1, one has the following conjectural generalization. Informally, one says that a smooth
quasi-projective variety U is arithmetically hyperbolic if it only has finitely many integral points (even
after field extension) and is pseudo-arithmetically hyperbolic if all but finitely many of its integral
points belong to some closed subvariety Z ⊊ U (see e.g. [Jav20] for precise definitions).

Conjecture 3.2 (Lang–Vojta, [Lan86, Conjecture 5.7] and [Voj87, Proposition 4.1.2]). Let X be a nice
projective variety over a number field K, and let D ⊂ X be a normal crossings divisor. If ωX(D) is ample,
then X \D is pseudo-arithmetically hyperbolic.

Faltings [Fal91] proved Conjecture 3.2 when X is an abelian variety (and Vojta [Voj96, Voj99] obtained
analogous results for semiabelian varieites). Beyond these cases, most work on Conjecture 3.2 has focused on
cases where the divisor D has many irreducible components (see e.g. [CZ04, Lev09, Aut11, RV20, RV21]).

Remark 3.3. Conjecture 3.2 suggests that, if dimX ≥ 2, then it should support infinitely many irreducible
divisors D for which X \D is psuedo-arithmetically hyperbolic. Indeed, given such an X, choose an ample
line bundle L on X such that ωX ⊗ L is also ample and dimH0(X,L ) > 1. Any divisor D ∈ |L | is L ’s
complete linear system will be connected [Har77, Corollary III.7.9] and a general such D will be smooth (so
irreducible) by Bertini. ◦

Perhaps the most famous example of a higher-dimensional X (which is not an abelian variety) with
irreducible D ⊂ X for which X \D is provably arithmetically hyperbolic comes from work of Faltings [Fal02]
where he constructed such D on X = P2. In the paper [AM23], Jackson Morrow and I constructed new
examples of irreducible divisors D on nice varieties X such that X \D is arithmetically hyperbolic.

Theorem 3.4 ([AM23, Corollary B]). Let X be a smooth projective variety over a number field K. Assume
that dimX ≥ 2 and that πét

1 (XK) is infinite. Then, there exists infinitely many ample irreducible divisors
D ⊂ X such that X \D is arithmetically hyperbolic. If X(K) ̸= ∅, then one can arrange that these D are
geometrically irreducible.

3.1. Proposed Project(s). While Theorem 3.4 has fairly permissible hypotheses, it is non-constructive. It
gives no easy method of testing whether a given divisor D ⊂ X has an arithmetically hyperbolic complement.
Furthermore, because it requires πét

1 (XK) to be infinite, it does not include Faltings’ earlier examples [Fal02]
of irreducible divisors on projective space with arithmetically hyperbolic complements.

Building on work of Ru [Ru17] and Ru–Vojta [RV20, RV21], one way of addressing the first of these
deficiencies would be to introduce and study an “étale Nevanlinna volume constant Nevét(L , D),” an analogue
of the Nevanlinna constant Nev(D) of [Ru17, Definition 1.2] which takes into account information from “étale”
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covers of X; in order to have a hope of constructing a constant powerful enough to recover Faltings’ results
[Fal02], one should really allow the covers to be ramified along D. It would be interesting to compare such
a constant to the Evertse–Ferretti and birational Nevanlinna constants introduced in [RV20, RV21], which
took into account information from proper birational maps to X.

Problem 9. Define and study an “étale Nevanlinna volume constant Nevét(L , D),” and compare it to the
analogous constants appearing in [RV20, RV21].
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