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For interested mathematicians, there is a longer, more detailed research statement on my website.

I study arithmetic geometry and arithmetic statistics. The fundamental problem of arithmetic geometry
is as follows: given a collection f1, . . . , fn of polynomials in k variables, can one understand the set of all tuples
(x1, . . . , xk) of integers such that f1(x1, . . . , xk) = f2(x1, . . . , xk) = · · · = fn(x1, . . . , xk) = 0, i.e. all integral
solutions to the system f1 = · · · = fn = 0? For example, one can set n = 1, set k = 2, look at the one polynomial
F (x, y) = y2 − x3 + x in two variables, and notice it has the solution F (1, 0) = 02 − 13 + 1 = 0, among others. In
general, “understanding” this set of solutions can be interpreted either qualitatively (is it empty, finite, or infinite?)
or quantitatively (exactly how big is it?). However, proving that a particular system of equations has even a single
integral solution can be quite difficult1. This is where arithmetic statistics comes in. Instead of looking at a
single system of equations, one considers a family of equations and tries to understand statistical properties of the
integral solutions in this family (see e.g. (2) below). My Ph.D research follows three themes.
(1) Integral points on higher-dimensional varieties; see [AM23].

Let f1, . . . , fn be a system of polynomials, as discussed above. The ‘geometry ’ in ‘arithmetic geometry ’ refers to
the fact that one usually studies the integral solutions to f1 = · · · = fn = 0 by first looking at the shape/space X

formed by plotting all the real (or even complex) solutions to f1 = · · · = fn = 0. This will often be a nice, smooth
space whose geometry informs the arithmetic (e.g. set of integral solutions) of the system f1, . . . , fn. In my first
project in grad school, I looked at systems where the associated X is a high-dimensional space and, together with
Jackson Morrow, was able to prove, in effect, that knowing a mild geometric condition on X is enough to prove
that a suitable transformation of your system only has finitely many integral solutions.2 I propose to make this
result more explicit; for the experts, I would like to do this by defining and studying an “étale Nevalinna constant”
akin to the work of Ru and Ru–Vojta [Ru17, RV20, RV21].
(2) Statistics on the family Fa,b(x, y) = y2 − (x3 + ax+ b); see [Ach23].

These are the so-called ‘elliptic curves’. In this context, one usually studies rational solutions (i.e. x, y can
be fractions). The polynomials Fa,b are special because two solutions (x1, y1), (x2, y2) (possibly the same point
twice) can be “combined” to produce a third (x3, y3). Often, repeating this procedure can lead one to constructing
infinitely many solutions to this equation. One naturally asks, “Given a, b, how many solutions does one need to
start with in order to generate all of them, up to finitely many exceptions?” This number is called the rank of Fa,b,
and there has been much literature (e.g. [dJ02, BS15, HLHN14, BKL+15]) studying the distribution of the ranks
of these equations. In particular, we are interested in computing the average rank of these equations. In [Ach23],
I studied this average rank question in a modified setting, in which these sorts of questions had not previously
seen much progress.3 I propose to continue this work both by improving the average rank bound I attained and by
studying theoretic limitations of the “parameterize-and-count” strategy typically employed in this area.4

(3) Geometric invariants of the family Fa,b; see [ABJ+24, Ach24].
Remarkably, the collection of all Fa,b’s itself forms a geometric object, the ‘moduli space of elliptic curves’

Y (1). A rational point on Y (1) is, equivalently, a choice of some Fa,b.5 Moduli spaces (spaces which parameterize
other geometric objects of interest) are often studied in mathematics. In [ABJ+24, Ach24], we study a particular
geometric invariant (the ‘Brauer group’) of spaces like Y (1), building on earlier work of Antieau–Meier [AM20].
Interests in this invariant stems from its ability to obstruct points on these spaces. I propose to both expand the
techniques of [Ach24] so they apply to more general classes of moduli spaces and to use these Brauer groups to prove
that Y (1) has no integral points.6 This is well-known via other means, but I hope a Brauer obstruction-theoretic
proof may better generalize to studying integral points on some currently less well understood moduli spaces.

1This is related to Hilbert’s 10th Problem (proved by Matiyasevich) which states that there is no general algorithm for deciding if even
a single polynomial in many variables has any integer solutions. See [Coo04, Section 6.3] for more of the history of this problem.
2For the experts, the statement is essentially that if X is a smooth, projective variety with infinite (étale) fundamental group, then
there are infinitely many irreducible divisors D ⊂ X such that X −D can only have finitely many integral points. Current techniques
usually only prove such finiteness results when D has many components.
3For the experts, I bounded the average rank of elliptic curves over global function fields of characteristic p = 2 (in fact, any p > 0).
4For the experts, I would like to find an explicit value of n for which n-Selmer elements (thought of as genus 1, degree n curves in
Pn−1) provably cannot be parameterized.
5Up to isomorphism; if there is a nice matching between solutions of Fa,b and Fc,d, they correspond to the same rational point on
Y (1).
6For the experts, I hope to show that the integral étale-Brauer obstruction set for the moduli stack of elliptic curves is empty.
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