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1. INTRODUCTION & RESEARCH OBJECTIVES

My research interests lie in arithmetic geometry and arithmetic statistics, especially as they
relate to the arithmetic of curves (both scheme-y and stacky curves). My research has typically
leaned towards finiteness results, obtained by applying a mix of techniques from number theory,
algebraic geometry, and topology. My current and future work relates to the following topics:

(Average ranks of elliptic curves, via statistics of Selmer groups, Section 2.1) In [Ach23],
I complete the proof that, over any global field, the average rank of elliptic curves is finite. I pro-
pose to improve known upper bounds in the function field case (see Problems 1 and 2) as well as
to study the theoretical limits of the most commonly used strategy for obtaining such bounds (see
Problem 4).

(Brauer groups of stacky curves, Section 2.2) Ihave developed techniques for computing Brauer
groups of stacky curves [ABJ 24, Ach24]. I propose to use these to compute the integral étale-Brauer
obstruction set for the moduli stack Y(1) of elliptic curves (see Problem 5) with the hopes of giving
a new proof that there is no elliptic scheme over Z.

(Integral points on higher-dimensional varieties, Section 2.3) In [AM23], we construct new
examples of irreducible divisors D on nice varieties X such that X\ D has only finitely many integral
points. The novelty here is that most such results require D to have many irreducible components.

2. PAST ACCOMPLISHMENTS, INCLUDING RESULTS FROM PRIOR NSF SUPPORT

I would first like to acknowledge that much of my graduate education has been funded by NSF
Graduate Research Fellowship grant DGE-2141064. In particular, all the results described in Sec-
tions 2.1 and 2.2 were obtained (partially or fully) while I was being supported by this grant.

2.1. Average ranks of elliptic curves, via statistics of Selmer groups. Arithmetic statistics
is a field concerned with understanding the distributions, suitably defined, of various objects of
number theoretic interest. Of particular relevance to my own work is the distribution of ranks of
elliptic curves. Recall that an elliptic curve E over a field F' is a smooth, projective genus 1 curve
equipped with chosen point 0 € E(F') defined over F. This choice of point defines a group law on
E(F) with 0 serving as the identity. When F' is a global field — i.e. a number field (Q or a finite
extension thereof) or a global function field (F4(t), for some prime power ¢, or a finite extension
thereof) — the abelian group E(F) is finitely generated and so one can speak of the rank of E.
In this context, the main conjectures are as follows.

Conjecture 2.1 (Minimalist Conjecture, folklore). Fizx any global field K. Half of elliptic curves
E/K have rank 0 and half have rank 1.

Most recent progress on this conjecture comes, not from directly studying ranks of elliptic curves,
but from studying sizes of their Selmer groups. Here, for every n > 1 and any elliptic curve
E/K, the n-Selmer group Sel,(E/K) is a specific finite Z/nZ-module which admits an injection
E(K)/nE(K) — Sel,(E/K); consequentially, n***kE(K) < 4 Sel, (E/K), so Selmer groups give
rank bounds. The distribution of sizes of Selmer groups has received much attention. In particular,
a conjectural formula for this distribution has been proposed in [BKL " 15| (building off of heuristics
of Poonen-Rains [PR12]). One major prediction of this conjectural distribution is the following.

Conjecture 2.2 (|[BKLT15]). Fiz any global field K and anyn > 1. The average size E[# Sel,(E/K)]
of n-Selmer groups of elliptic curves E/K is the sum of the divisors of n.
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Proving Conjecture 2.2 (in addition to understanding the distribution of parities of ranks of elliptic
curves) would prove Conjecture 2.1. Evidence for Conjecture 2.2 goes back to work of de Jong [dJ02,
Theorem 1.2] who computed that E[# Sels(E/F,(t))] < 4+0(1) as ¢ — oo. Studying Conjecture 2.2
gained even more popularity after work of Bhargava and Shankar [BS15a, BS15b, BS13a, BS13b]
verified that E[# Sel,,(E/Q)] = Zd|nd for n = 1,2,3,4,5. Since then, many other authors have
verified Conjecture 2.2, or variations of it, in a variety of settings, both over number fields and
function fields; see e.g. [Shal3, HLHN14, Thol9, Lan2la, FLR23, PW23, EL24]. One common
feature of work on this conjecture in the function field case is that authors either usually restrict the
characteristics of the function fields over which they work or only work over genus 0 function fields,
but neither of these restrictions appear in Conjecture 2.2. In contrast, in my preprint [Ach23], I
was able to prove:

Theorem 2.3 ([Ach23, Theorem B|). Let K = F,(B) be the function field of a nice' curve B/F,,
and let (g be its zeta function. Then,

Ef# Sely(E/K)] <1+ 2(p(2)¢p(10), and so lim E[# Sely(E/FqnK)] < 3.

This is the first paper proving such a result for a truly arbitrary global function field. Combined
with work of Arul Shankar, this has the following aesthetically pleasing consequence.

Theorem 2.4 ([Ach23, Shal3]). Let K be any global field. Then, E[rank E(K)] is finite.

2.2. Brauer Groups of Stacky Curves. Algebraic stacks are generalizations of schemes which
allows spaces to have stabilizer/automorphism groups attached to their points. They provide a
particularly useful context for studying moduli spaces (spaces whose points parameterize other
geometric objects of interest) because the objects parameterized often have automorphism. For
example, the moduli space Y(1) of elliptic curves exists as an algebraic stack, but does not exist as
a scheme because elliptic curve always have at least one non-trivial automorphism (e.g. negation).

Brauer groups Br(—) := H%(—, G )tors of schemes/stacks are particular geometric invariants
which are used, e.g., to obstruct points on varieties (see [Poo17, Chapter 8|), and which have received
much recent attention in the stacky setting. One can see, for example, the work of Antieau—Meier
and others [AM20, Shil9, LP22] computing the Brauer group of Y(1) and the work of Santens [San23]
studying Brauer-Manin obstructions to integral points on stacky curves. In [ABJ 24, Ach24| I have
been studying techniques for computing Brauer groups of reasonably general stacky curves. This has
allowed me to both extend previous work on specific examples (see [AM20, Meil8, LP22, ABJ"24])
and to compute Brauer groups of fairly general stacky curves over algebraically closed fields.

Theorem 2.5 ([Ach24, Theorem B|). Let S be a noetherian Z[1/2]-scheme.
(1) BrX(1)s ~ BrPL ~ Br S, where X(1) is the moduli stack of generalized elliptic curves.
(2) If S is regular, then there is an explicit isomorphism
BrAf @ HL(S,Z/12Z) - BrY(1)s.
(3) If S is regular, then there is an explicit isomorphism
Br(Ag\ {0}) @ Hy(S, Z/4Z) & He,(S, Z/2Z) = Bro(2)s,
where Yo(2) is the moduli stack of elliptic curves equipped with a subgroup of order 2.

1smooth, projective, and geometrically connected



Niven Achenjang MSPRF Project Description

Theorem 2.6 (See [Ach24, Proposition 7.10]). Let k be an algebraically closed field, and let X/k
be a regular cyclotomic® stacky curve with generic stabilizer group G/k. Then, BrX ~ HL (X, GV).

2.3. Integral points on higher-dimensional varieties. The basic problem of arithmetic geom-
etry is understanding integral points on varieties (note that ‘integral points’ = ‘rational points’ if
the variety is proper). In the case of curves, we have amazing results of Faltings and Siegel.

Theorem 2.7 (Siegel [Siel4], Faltings [Fal83]). Let X be a (not necessarily proper) hyperbolic curve.
Then, every set of integral points on X is finite.

Work of Lang and of Vojta has produced a conjectural generalization. Informally, A smooth quasi-
projective variety U is arithmetically hyperbolic if it only has finitely many integral points (even
after field extension) and calls it pseudo-arithmetically hyperbolic if all but finitely many of
its integral points belong to some closed subvariety Z C U (see e.g. [Jav20] for precise definitions).

Conjecture 2.8 (Lang—Vojta, [Lan86, Conjecture 5.7] and [Voj&7, Proposition 4.1.2]). Let X be
a nice projective variety over a number field K, and let D C X be a normal crossings divisor. If
wx (D) is ample, then X \ D is pseudo-arithmetically hyperbolic.

Faltings [Fal91] proved Conjecture 2.8 when X is an abelian variety or subvariety thereof (and
Vojta [Voj96, Voj99] obtained analogous results for semiabelian varieites). Beyond these cases, most
work on Conjecture 2.8 has focused on cases where the divisor D has many irreducible components
(see e.g. [CZ04, Lev09, Autll, RV20, RV21]). Perhaps the most famous example of a higher-
dimensional X (which is not an abelian variety) with irreducible D C X for which X \ D is provably
arithmetically hyperbolic is Faltings’ [Fal02] construction of such D on X = P2. In the paper
[AM23], Jackson Morrow and I constructed new examples of irreducible divisors D on nice varieties
X such that X \ D is arithmetically hyperbolic.

Theorem 2.9 ([AM23, Corollary B|). Let X be a smooth projective variety over a number field
K. Assume that dim X > 2 and that ﬂft(XF) 1s infinite. Then, there exists infinitely many ample
irreducible divisors D C X such that X \ D is arithmetically hyperbolic. If X (K) # 0, then one can
arrange that these D are geometrically irreducible.

3. FUTURE WORK

3.1. Project 1: Improved average rank bounds over global function fields. The first
project I propose is to improve the elliptic curve average rank bounds I obtained in [Ach23], especially
over function fields of characteristic 2. A first very natural continuation of [Ach23] would be to
strengthen Theorem 2.3 to state that E[# Sela(E/K)] < 3 over any fixed K. This would mainly
involve computing local densities for ‘hyper-Weierstrass curves’ [Ach23, Definition 4.1.2] which are
minimal (have at worst rational singularities) and locally solvable.

Problem 1. Prove that E[# Selo(E/K)| < 3 for K as in Theorem 2.5.

A further extension of this would would be to prove analogous bounds for the average size of
n-Selmer, at least for n < 5 (as in the work of Bhargava and Shankar). This should be doable by
combining ideas introduced in [Ach23] with those present in [dJ02, BS15b, BS13a, BS13b]. In the
case n = 3, [dJ02| proves an analogue of Theorem 2.3 for Fy(t), but the n > 3 case is still open for
higher genus function fields (and even for genus 0 if n > 4).

2An algebraic stack is cyclotomic if all its stabilizer groups of the form u,, for some n
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Problem 2. Prove an analogue of Theorem 2.3 forn = 3,4,5. Following [BS13b|, use this to prove
that E[rank E(K)] <1 — 0 for some 6 > 0 (independent of K ) when K is a global function field.

Remark 3.1. As explained in [Cow21, Section 4|, Problem 2 would give strong evidence in support
of Alex Cowan’s conjecture [Cow21, Conjecture 1.1 that ‘100% of elliptic surfaces over Q have rank
0’ (viewed as elliptic curves over Q(T)). o

In addition to “parameterize-and-count,” there is a second strategy for studying Conjecture 2.2 in
the function field setting. In brief, one can reduce it to the problem of controlling the cohomology
groups of certain moduli spaces; see work of Aaron Landesman and his collaborators [Lan21b,
FLR23, EL24]. These works avoid characteristic 2, but it would be interesting to remove this
restriction, at least starting with the analogue of [Lan21b|. In this case, as mentioned in [Lan21b,
Remark 1.10], the main obstacle is to compute the images of certain (wildly ramified) monodromy
representations.

Problem 3. Extend the main result of [Lan21b] to characteristic 2, say for n-Selmer with n odd.

3.2. Project 2: Limits of the “parameterize-and-count” strategy for Selmer averages.
For n > 3, one most commonly parameterizes n-Selmer elements by representing them as (locally
solvable) smooth degree n, genus 1 curves embedded in P"~!. One expects that these objects cannot
be parameterized once n is large enough, and it would be interesting to prove this for some explicit
value of n. Let H, denote the Hilbert scheme of such curves. In practice, a parameterization of
such curves (e.g. a description of the equations needed to cut out such a curve in P"~!) amounts to
a dominant rational map f: AN --s H,, for some N. If H,, is not unirational, there can be no such
parameterization, and so the “parameterize—and—count” strategy may be less feasible for such n.

Problem 4. Find an explicit n such that H, is not unirational.

Remark 3.2. Various related moduli spaces have been studied before, e.g. in [dJF08, Section 4]
and in [Lan|. Furthermore, rationality problems for moduli spaces of curves have been considered
by many authors, including Joe Harris and his collaborators (see e.g. [HM82, Har84, EH84]). The
ideas present in these works can serve as a starting point for considering Problem 4. o

One can ask an analogue of Problem 4 in the number field counting setting (e.g. in the setting of
questions such as “How many S,-extensions of Q are there of discriminant bounded?”). Here, one
is interested in parameterizing rank n free Z-algebras, and again, one suspects this is not possible
for n sufficiently large. The relevant moduli space here has previously been studied in [Poo08].

3.3. Project 3: An étale-Brauer obstruction to elliptic schemes over Z. Brauer groups are
used to define obstructions to points on varieties (see e.g. [Pool7, Chapter 8]). For stacky curves,
Santens [San23| has studied their Brauer-Manin obstructions when the curve in question contains
a dense, open subscheme. However, I propose to look at an example which is everywhere stacky:
the moduli stack Y(1) of elliptic curves. I anticipate that its integral étale-Brauer obstruction set
is empty. This would give a new proof of the nonexistence of an elliptic scheme over Z. Carrying
out such a computation would also serve as a proof-of-concept showcasing that exploiting Brauer
groups of moduli stacks can be effective in determining whether certain classes of geometric objects
can have everywhere good reduction. It would be my hope that resolving Problem 5 would motivate
more people to study Brauer groups of stacks as well as their associated obstructions.

Problem 5. Compute the integral étale-Brauer obstruction set Y(1)(Z x R)€-Br 5 Y(1)(Z).



Niven Achenjang MSPRF Project Description

4. CAREER DEVELOPMENT & CHOICE OF MENTOR AND HOST INSTITUTION

I would be hard pressed to find a mathematician more well-versed in arithmetic statistics than
Melanie Matchett Wood, my proposed host. Her expertise would be invaluable for investigating
the problems described in Sections 3.1 and 3.2. While I have so far focused on statistics of Selmer
groups, I expect that working with her would also allow me to delve into other aspects of arithmetic
statistics as well. In addition to being personally enriching, this would also be especially useful
for problems like Problem 4, which exists on both the Selmer and number field counting sides.
Additionally, Harvard has Joe Harris who has done much work on computing Kodaira dimensions
of moduli space and so who would also be a helpful person to discuss Problem 4 with. Melanie’s
presence at Harvard draws in many your arithmetic statisticians who would all make great peers.
For example, Aaron Landesmann is currently at Harvard and he would be the ideal person to discuss
the challenges involved in Problem 3 with. Furthermore, the nearby MIT has Bjorn Poonen, my
current PhD advisor. It would be great to still have access to him and his expertise. In particular, he
is an expert on Brauer—-Manin obstructions and on stacky curves, both directly related to Problem 5.

5. BROADER IMPACTS

I firmly believe that mathematics can be enjoyed and understood by anyone and in the importance
of helping students feel comfortable and confident in their abilities and in their place within the
mathematical community. I propose to continue my existing pattern of outreach and to make active
efforts towards making more students comfortable in Harvard’s broader mathematical community.

Every year in grad school, I have served as a mentor for MIT’s directed reading program, where
I have mentored 5 different students as they learned 5 topics of interest to them. Additionally, I
have opted to be a teaching assistant for a couple online courses. In the summer of 2021, I served as
a teaching assistant (TA) for the undergraduate session of the Park City Math Institute (PCMI),
and in the Fall of 2022, I served as a TA for the Preliminary Arizona Winter School (PAWS). Both
of these positions were for online courses serving a large, varied collection of undergraduates (and
some grad students in the case of PAWS). I am still able to occasionally able to assist with PAWS
and the broader, in-person Arizona Winter School (AWS). Last year, I served as one of the study
group leaders for AWS and this year I will be on a PAWS panel about navigating grad school. As
an undergraduate, I was a TA and residential counselor for the Stanford University Mathematics
Camp (SUMaC) and a TA for Euler Circle, a Bay Area-based math circle. SUMaC served students
from accross the globe, and Euler Circle teaches math courses — ranging from general mathematical
thinking, which serves to bridge the gap between algorithmic and conceptual ways of thinking about
math, to more specialized topics like complex analysis — to local students.

At Harvard, I would like to join ongoing efforts towards broadening participation in mathematics,
such as their Real Representations, Community Committee, and Math Includes programs. I would
also like to add to list of efforts by holding frequent “Open Office Hours.” In brief, I envision this
as a space where, for roughly two hours twice a week, students could come ask me general guidance
questions and where I would invite other postdocs to come make themselves available to meet and
support undergraduates. This would help increase interaction between undergrads and postdocs (at
Harvard, many postdocs do not teach and so do not interact much with undergrads), and I believe
that serving as a visibly black entry point into the broader Harvard mathematics community would
allow me to draw more underrepresented minorities into the community (who might otherwise be
more hesitant to put themselves out there).



