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Spanning Trees

A subgraph that

1 includes all vertices

2 is a tree

I connected

I no cycles (i.e., minimally connected)

• # of spanning trees: t(G) , |T(G)|

• edge-weighted graphs:

tw(G) ,
∑

T∈T(G)
∏
e∈E(T) w(e)

• Matrix-Tree Theorem:

tw(G) = detLw(G)→ reduced Laplacian
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Graphical Representation of SLAM

• Vertices: n robot poses in d-dimensional space

− Edges: noisy pairwise measurements

� Edge Weights: measurement precision

find the “optimal” embedding (drawing) in SE(d)n
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A Tale of Two Cities: Manhattan vs. City10K
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SLAM: estimation over graph (ICRA 2016)

Key observation:

Fisher information ↔ graph Laplacian

volume of uncertainty ellipsoids ↔ weighted number of spanning trees

Theorems:

I Known orientation with dimension d (e.g., d ∈ {2,3})

detCov[x̂mle]

hypervolume of uncertainty hyperellipsoid

= tw(G)
−d

weighted number of spanning trees

I 2D pose-graph:

lim
γ→0

detCov[x̂mle]

hypervolume of uncertainty hyperellipsoid

= twp(G)
−2 · twθ (G)−1

weighted number of spanning trees

5/21



Conclusion:

min. detCov[x̂mle]

Determinant(D)-optimality

⇔ max. tw(G)

tree(t)-optimality

subject to sparsity constraints

This paper:

approximation algorithms for designing sparse t-optimal graphs

+

provable guarantees
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Edge Selection Problem (ESP)

I P1: Given a set of c new measurements (edges), pick k ≤ c.

I P2: Given a c-subset of existing measurements (edges), prune k ≤ c.
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k-ESP

1 Ginit = (V,Einit,w) — connected

2 C candidate edges

maximize
E⊆C

Tree (Einit ∪ E)

D-optimality

s.t. |E| = k

sparsity

(k-ESP)

Has been studied in other fields (e.g., network reliability)

Characterizing t-optimal graphs → open problem

Exhaustive search is not tractable

k = 1 (IROS’14):

I Optimal candidate: maximum effective resistance Reff

- Reff: A metric to define a “distance” between two vertices in G

- Optimal policy: connect the vertices that are furthest from each other
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Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates

- Pick the candidate with the highest effective resistance

1 Monotone: iff f(A ∪ {x}) ≥ f(A)

2 Submodular: iff f exhibits the diminishing returns property, e.g.,

wining an : vs.

Greedy algorithm → constant-factor approximation with a factor of (1− 1/e) ≈ 0.63

• Main Result: E 7→ Tree (Einit ∪ E) is monotone log-submodular

• Value of greedy is within a constant-factor of OPT (see the paper)

9/21



Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates

- Pick the candidate with the highest effective resistance

1 Monotone: iff f(A ∪ {x}) ≥ f(A)

2 Submodular: iff f exhibits the diminishing returns property, e.g.,

wining an : vs.

Greedy algorithm → constant-factor approximation with a factor of (1− 1/e) ≈ 0.63

• Main Result: E 7→ Tree (Einit ∪ E) is monotone log-submodular

• Value of greedy is within a constant-factor of OPT (see the paper)

9/21



Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates

- Pick the candidate with the highest effective resistance

1 Monotone: iff f(A ∪ {x}) ≥ f(A)

2 Submodular: iff f exhibits the diminishing returns property, e.g.,

wining an : vs.

Greedy algorithm → constant-factor approximation with a factor of (1− 1/e) ≈ 0.63

• Main Result: E 7→ Tree (Einit ∪ E) is monotone log-submodular

• Value of greedy is within a constant-factor of OPT (see the paper)

9/21



Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates

- Pick the candidate with the highest effective resistance

1 Monotone: iff f(A ∪ {x}) ≥ f(A)

2 Submodular: iff f exhibits the diminishing returns property, e.g.,

wining an : vs.

Greedy algorithm → constant-factor approximation with a factor of (1− 1/e) ≈ 0.63

• Main Result: E 7→ Tree (Einit ∪ E) is monotone log-submodular

• Value of greedy is within a constant-factor of OPT (see the paper)

9/21



Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates

- Pick the candidate with the highest effective resistance

1 Monotone: iff f(A ∪ {x}) ≥ f(A)

2 Submodular: iff f exhibits the diminishing returns property, e.g.,

wining an : vs.

Greedy algorithm → constant-factor approximation with a factor of (1− 1/e) ≈ 0.63

• Main Result: E 7→ Tree (Einit ∪ E) is monotone log-submodular

• Value of greedy is within a constant-factor of OPT (see the paper)

9/21



Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates

- Pick the candidate with the highest effective resistance

1 Monotone: iff f(A ∪ {x}) ≥ f(A)

2 Submodular: iff f exhibits the diminishing returns property, e.g.,

wining an : vs.

Greedy algorithm → constant-factor approximation with a factor of (1− 1/e) ≈ 0.63

• Main Result: E 7→ Tree (Einit ∪ E) is monotone log-submodular

• Value of greedy is within a constant-factor of OPT (see the paper)

9/21



Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates

- Pick the candidate with the highest effective resistance

1 Monotone: iff f(A ∪ {x}) ≥ f(A)

2 Submodular: iff f exhibits the diminishing returns property, e.g.,

wining an : vs.

Greedy algorithm → constant-factor approximation with a factor of (1− 1/e) ≈ 0.63

• Main Result: E 7→ Tree (Einit ∪ E) is monotone log-submodular

• Value of greedy is within a constant-factor of OPT (see the paper)

9/21



Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates

- Pick the candidate with the highest effective resistance

1 Monotone: iff f(A ∪ {x}) ≥ f(A)

2 Submodular: iff f exhibits the diminishing returns property, e.g.,

wining an : vs.

Greedy algorithm → constant-factor approximation with a factor of (1− 1/e) ≈ 0.63

• Main Result: E 7→ Tree (Einit ∪ E) is monotone log-submodular

• Value of greedy is within a constant-factor of OPT (see the paper)

9/21



Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates

- Pick the candidate with the highest effective resistance

1 Monotone: iff f(A ∪ {x}) ≥ f(A)

2 Submodular: iff f exhibits the diminishing returns property, e.g.,

wining an : vs.

Greedy algorithm → constant-factor approximation with a factor of (1− 1/e) ≈ 0.63

• Main Result: E 7→ Tree (Einit ∪ E) is monotone log-submodular

• Value of greedy is within a constant-factor of OPT (see the paper)

9/21



Approximation Alg. 2: Convex relaxation

I Selectors: π , [π1 . . . πc]> ∈ {0,1}c

I Pick the ith candidate edge iff πi = 1
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maximize
π

log detL(π)

subject to
c∑
i=1

πi = k,

πi ∈ {0,1}, ∀i ∈ [c].

• Convex Program (MAXDET) → CVX/YALMIP + SDPT3

• OPTcvx ≥ OPT where OPTcvx , log detL(π?)

I if π? ∈ {0,1}c ⇒ optimal solution

- otherwise need a rounding scheme: [0,1]c 3 π? 7→ π̃ ∈ {0,1}c s.t. ‖π̃‖0 = k

- e.g., pick the k candidate edges that correspond to the k largest π?i ’s
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Convex relaxation: a new narrative

• 0 ≤ πi ≤ 1: the probability of sampling the ith candidate

maximize
π

log detL(π)

subject to
c∑
i=1

πi = k,

πi ∈ [0,1], ∀i ∈ [c].

maximize
π

Eπ

[
tw(G)

]
subject to Eπ

[
|E|
]
= k,

πi ∈ [0,1], ∀i ∈ [c].

I relaxation: hard → soft objective and constraints

I justification for deterministic rounding (picking the k largest π?i )

I randomized rounding schemes
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Certifying near-optimality

(notation: τ , log Tree)

Corollary:

max
{
τgreedy,τcvx

}
︸ ︷︷ ︸ ≤ OPT

intractable

≤ min
{
ατgreedy + (1− α)τinit,τ

?
cvx

}
︸ ︷︷ ︸

where α , (1− 1/e)
−1 ≈ 1.58

I given any (suboptimal) design A,

max
{
0,L− τA

}
≤ OPT− τA

gap

≤ U− τA
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Intel Research Lab Dataset
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Intel Research Lab Dataset
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Greedy design for k = 161 loop-closure edges (18% of candidates)
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Other Applications

• Relevant applications:

I Network reliability under random edge failure

(e.g., power or communication networks)

I D-optimal incomplete block designs

I Molecular physics

I RNA modelling

I Estimation over sensor networks (e.g., time synchronization)

I Connectivity controller for multi-robot systems
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Dirty Laundry & Conclusion

Active SLAM: (work in progress — not addressed here)

I Dimensionality reduction for D-optimal planning:

sensitive to topology and not to a particular embedding

I Hierarchical planning: topology → embedding

I Advantages:

I Agnostic to sensor readings and not confined to a particular embedding

I Robust against local minima and linearization errors

I A compact and almost lossless representation

Contributions:

I A new submodular graph invariant: log Tree

I First near-optimal approximation algorithms for designing t-optimal graphs

I A new narrative for MAXDET-like convex relaxation

I Near-optimality certificates
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Thank you!

1 Maximizing the Weighted Number of Spanning Trees (arXiv)

2 Tree-Connectivity: Evaluating the Graphical Structure of SLAM (ICRA’16)

3 Good, Bad and Ugly Graphs for SLAM (RSS’15 Workshop)

4 Novel Insights Into the Impact of Graph Structure on SLAM (IROS’14)

kasra.github.io
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δ-ESP∗

minimize
E⊆C

|E|

subject to treew(Einit ∪ E) ≥ δ.

I Performance guarantees

kgreedy ≤ ζ∗kOPT

I Near-optimality certificates

max
{⌈ 1

ζ∗
kgreedy

⌉
,
⌈ c∑
i=1

π?i

⌉}
︸ ︷︷ ︸ ≤ kOPT ≤ min

{
kgreedy,kcvx

}
︸ ︷︷ ︸ .

I Given any design with kA edges,

min
{
0,kA − U

}
≤ kA − kOPT︸ ︷︷ ︸

gap

≤ kA − L
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Kirchhoff’s Matrix-Tree Theorems
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tw(G) ,
∑

T∈T(G)

Vw(T)
(MT)
= detLw

Lw : reduced weighted graph Laplacian
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