Designing Sparse Reliable SLAM:

A Graph-Theoretic Approach

Approximation Algorithms for Designing Sparse Graphs with the Maximum Weighted Number of Spanning Trees

Kasra Khosoussi, Gaurav Sukhatme, Shoudong Huang and Gamini Dissanayake
University of Technology Sydney - University of Southern California

Spanning Trees

A subgraph that
1 includes all vertices
2 is a tree

- connected
- no cycles (i.e., minimally connected)
- \# of spanning trees: $t(\mathcal{G}) \triangleq|\mathbb{T}(\mathcal{G})|$
- edge-weighted graphs:

$$
t_{w}(\mathcal{G}) \triangleq \sum_{\mathcal{T} \in \mathbb{T}(\mathcal{G})} \prod_{e \in \mathcal{E}(\mathcal{T})} w(e)
$$

- Matrix-Tree Theorem:

$$
t_{w}(\mathcal{G})=\operatorname{det} \mathbf{L}_{w}(\mathcal{G}) \rightarrow \text { reduced Laplacian }
$$

Spanning Trees

A subgraph that
1 includes all vertices
2 is a tree

- connected
- no cycles (i.e., minimally connected)
- \# of spanning trees: $t(\mathcal{G}) \triangleq|\mathbb{T}(\mathcal{G})|$
- edge-weighted graphs:

$$
t_{w}(\mathcal{G}) \triangleq \sum_{\mathcal{T} \in \mathbb{T}(\mathcal{G})} \prod_{e \in \mathcal{E}(\mathcal{T})} w(e)
$$

- Matrix-Tree Theorem:

$$
t_{w}(\mathcal{G})=\operatorname{det} \mathbf{L}_{w}(\mathcal{G}) \rightarrow \text { reduced Laplacian }
$$

Graphical Representation of SLAM

- Vertices:
- Edges:
\square Edge Weights:
n robot poses in d-dimensional space noisy pairwise measurements measurement precision
find the "optimal" embedding (drawing) in $\mathrm{SE}(d)^{n}$

Graphical Representation of SLAM

- Vertices:
- Edges:
\square Edge Weights:
n robot poses in d-dimensional space noisy pairwise measurements measurement precision
find the "optimal" embedding (drawing) in $\mathrm{SE}(d)^{n}$

Graphical Representation of SLAM

- Vertices:
- Edges:
\square Edge Weights:
n robot poses in d-dimensional space noisy pairwise measurements measurement precision
find the "optimal" embedding (drawing) in $\mathrm{SE}(d)^{n}$

Graphical Representation of SLAM

- Vertices:
- Edges:
\square Edge Weights:
n robot poses in d-dimensional space noisy pairwise measurements measurement precision
find the "optimal" embedding (drawing) in $\mathrm{SE}(d)^{n}$

vs.

A Tale of Two Cities: Manhattan vs. City10K

SLAM: estimation over graph (ICRA 2016)

Key observation:
Fisher information \leftrightarrow graph Laplacian
volume of uncertainty ellipsoids \leftrightarrow weighted number of spanning trees

Theorems:

- Known orientation with dimension d (e.g., $d \in\{2,3\}$)

- 2D pose-graph:

Conclusion:

Conclusion:

subject to sparsity constraints

Conclusion:

subject to sparsity constraints

This paper:
approximation algorithms for designing sparse t-optimal graphs $+$
provable guarantees

Edge Selection Problem (ESP)

- P1: Given a set of c new measurements (edges), pick $k \leq c$.
- P2: Given a c-subset of existing measurements (edges), prune $k \leq c$.

Edge Selection Problem (ESP)

- P1: Given a set of c new measurements (edges), pick $k \leq c$.
- P2: Given a c-subset of existing measurements (edges), prune $k \leq c$.

Edge Selection Problem (ESP)

- P1: Given a set of c new measurements (edges), pick $k \leq c$.
- P2: Given a c-subset of existing measurements (edges), prune $k \leq c$.

Edge Selection Problem (ESP)

- P1: Given a set of c new measurements (edges), pick $k \leq c$.
- P2: Given a c-subset of existing measurements (edges), prune $k \leq c$.

equivalent classes of problems

k-ESP

$1 \mathcal{G}_{\text {init }}=\left(\mathcal{V}, \mathcal{E}_{\text {init }}, w\right)$ - connected
2. \mathcal{C} candidate edges

(k-ESP)

k-ESP

$1 \mathcal{G}_{\text {init }}=\left(\mathcal{V}, \mathcal{E}_{\text {init }}, w\right)$ - connected
2. \mathcal{C} candidate edges

$$
\begin{equation*}
\underset{\mathcal{E} \subseteq \mathcal{C}}{\operatorname{maximize}} \underset{\text { D-optimality }}{\mathcal{T} \text { ree }\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right)} \quad \text { s.t. } \quad|\mathcal{E}|=k \tag{k-ESP}
\end{equation*}
$$

(-) Has been studied in other fields (e.g., network reliability)

k-ESP

$1 \mathcal{G}_{\text {init }}=\left(\mathcal{V}, \mathcal{E}_{\text {init }}, w\right)$ - connected
2. \mathcal{C} candidate edges

$$
\begin{equation*}
\underset{\mathcal{E} \subseteq \mathcal{C}}{\operatorname{maximize}} \underset{\text { D-optimality }}{\mathcal{T} \text { ree }\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right)} \quad \text { s.t. } \quad|\mathcal{E}|=k \tag{k-ESP}
\end{equation*}
$$

(-) Has been studied in other fields (e.g., network reliability)
\because Characterizing t-optimal graphs \rightarrow open problem

k-ESP

$1 \mathcal{G}_{\text {init }}=\left(\mathcal{V}, \mathcal{E}_{\text {init }}, w\right)$ - connected
2. \mathcal{C} candidate edges

$$
\underset{\mathcal{E} \subseteq \mathcal{C}}{\operatorname{maximize}} \underset{\text { D-optimality }}{\operatorname{Tree}\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right)} \quad \text { s.t. } \quad \mid \underset{\text { sparsity }}{|\mathcal{E}|=k}
$$

(-) Has been studied in other fields (e.g., network reliability)
\because Characterizing t-optimal graphs \rightarrow open problem
© Exhaustive search is not tractable

k-ESP

$1 \mathcal{G}_{\text {init }}=\left(\mathcal{V}, \mathcal{E}_{\text {init }}, w\right)$ - connected
2. \mathcal{C} candidate edges

$$
\begin{equation*}
\underset{\mathcal{E} \subseteq \mathcal{C}}{\operatorname{maximize}} \underset{\text { D-optimality }}{\mathcal{T} \text { ree }\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right)} \quad \text { s.t. } \quad \mid \underset{\text { sparsity }}{|\mathcal{E}|=k} \tag{k-ESP}
\end{equation*}
$$

(-) Has been studied in other fields (e.g., network reliability)
\because Characterizing t-optimal graphs \rightarrow open problem
© Exhaustive search is not tractable
$k=1\left(\right.$ IROS $\left.^{\prime} 14\right)$:

- Optimal candidate: maximum effective resistance $R_{\text {eff }}$
- $R_{\text {eff: }}$ A metric to define a "distance" between two vertices in \mathcal{G}

k-ESP

$1 \mathcal{G}_{\text {init }}=\left(\mathcal{V}, \mathcal{E}_{\text {init }}, w\right)$ - connected
2. \mathcal{C} candidate edges

$$
\begin{equation*}
\underset{\mathcal{E} \subseteq \mathcal{C}}{\operatorname{maximize}} \underset{\text { D-optimality }}{\mathcal{T} \text { ree }\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right)} \quad \text { s.t. } \quad \mid \underset{\text { sparsity }}{|\mathcal{E}|=k} \tag{k-ESP}
\end{equation*}
$$

(-) Has been studied in other fields (e.g., network reliability)
\because Characterizing t-optimal graphs \rightarrow open problem
© Exhaustive search is not tractable
$k=1\left(\right.$ IROS $\left.^{\prime} 14\right)$:

- Optimal candidate: maximum effective resistance $R_{\text {eff }}$
- $R_{\text {eff: }}$ A metric to define a "distance" between two vertices in \mathcal{G}
- Optimal policy: connect the vertices that are furthest from each other

Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates
- Pick the candidate with the highest effective resistance

Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates
- Pick the candidate with the highest effective resistance

Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates
- Pick the candidate with the highest effective resistance

1 Monotone: iff $f(\mathcal{A} \cup\{x\}) \geq f(\mathcal{A})$

Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates
- Pick the candidate with the highest effective resistance

1 Monotone: iff $f(\mathcal{A} \cup\{x\}) \geq f(\mathcal{A})$
2. Submodular: iff f exhibits the diminishing returns property, e.g.,

Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates
- Pick the candidate with the highest effective resistance

1 Monotone: iff $f(\mathcal{A} \cup\{x\}) \geq f(\mathcal{A})$
2 Submodular: iff f exhibits the diminishing returns property, e.g., wining an

vs.

Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates
- Pick the candidate with the highest effective resistance

1 Monotone: iff $f(\mathcal{A} \cup\{x\}) \geq f(\mathcal{A})$
2 Submodular: iff f exhibits the diminishing returns property, e.g., wining an

Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates
- Pick the candidate with the highest effective resistance

1 Monotone: iff $f(\mathcal{A} \cup\{x\}) \geq f(\mathcal{A})$
2 Submodular: iff f exhibits the diminishing returns property, e.g.,
wining an

vs.

Greedy algorithm \rightarrow constant-factor approximation with a factor of $(1-1 / e) \approx 0.63$

Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates
- Pick the candidate with the highest effective resistance

1 Monotone: iff $f(\mathcal{A} \cup\{x\}) \geq f(\mathcal{A})$
2 Submodular: iff f exhibits the diminishing returns property, e.g.,
wining an

vs.

Greedy algorithm \rightarrow constant-factor approximation with a factor of $(1-1 / e) \approx 0.63$

- Main Result: $\mathcal{E} \mapsto \mathcal{T} r e e\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right)$ is monotone log-submodular

Approximation Alg. 1: Greedy

For k times:

- Compute the effective resistance of the remaining candidates
- Pick the candidate with the highest effective resistance

1 Monotone: iff $f(\mathcal{A} \cup\{x\}) \geq f(\mathcal{A})$
2 Submodular: iff f exhibits the diminishing returns property, e.g.,
wining an

Greedy algorithm \rightarrow constant-factor approximation with a factor of $(1-1 / e) \approx 0.63$

- Main Result: $\mathcal{E} \mapsto \mathcal{T} r e e\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right)$ is monotone log-submodular
- Value of greedy is within a constant-factor of OPT (see the paper)

Approximation Alg. 2: Convex relaxation

- Selectors: $\boldsymbol{\pi} \triangleq\left[\pi_{1} \ldots \pi_{c}\right]^{\top} \in\{0,1\}^{c}$
- Pick the i th candidate edge iff $\pi_{i}=1$

Approximation Alg. 2: Convex relaxation

- Selectors: $\boldsymbol{\pi} \triangleq\left[\pi_{1} \ldots \pi_{c}\right]^{\top} \in\{0,1\}^{c}$
- Pick the i th candidate edge iff $\pi_{i}=1$

Approximation Alg. 2: Convex relaxation

- Selectors: $\boldsymbol{\pi} \triangleq\left[\pi_{1} \ldots \pi_{c}\right]^{\top} \in\{0,1\}^{c}$
- Pick the i th candidate edge iff $\pi_{i}=1$

$$
\begin{array}{ll}
\underset{\pi}{\operatorname{maximize}} & \log \operatorname{det} \mathbf{L}(\boldsymbol{\pi}) \\
\text { subject to } & \sum_{i=1}^{c} \pi_{i}=k, \\
& \pi_{i} \in\{0,1\}, \forall i \in[c] .
\end{array}
$$

Approximation Alg. 2: Convex relaxation

- Selectors: $\boldsymbol{\pi} \triangleq\left[\pi_{1} \ldots \pi_{c}\right]^{\top} \in\{0,1\}^{c}$
- Pick the i th candidate edge iff $\pi_{i}=1$

$$
\begin{array}{ll}
\underset{\pi}{\operatorname{maximize}} & \log \operatorname{det} \mathbf{L}(\boldsymbol{\pi}) \\
\text { subject to } & \sum_{i=1}^{c} \pi_{i}=k \\
& \pi_{i} \in[0,1], \forall i \in[c] .
\end{array}
$$

Approximation Alg. 2: Convex relaxation

- Selectors: $\boldsymbol{\pi} \triangleq\left[\pi_{1} \ldots \pi_{c}\right]^{\top} \in\{0,1\}^{c}$
- Pick the i th candidate edge iff $\pi_{i}=1$

$$
\begin{array}{ll}
\underset{\pi}{\operatorname{maximize}} & \log \operatorname{det} \mathbf{L}(\boldsymbol{\pi}) \\
\text { subject to } & \sum_{i=1}^{c} \pi_{i}=k \\
& \pi_{i} \in[0,1], \forall i \in[c] .
\end{array}
$$

- Convex Program (MAXDET) \rightarrow CVX/YALMIP + SDPT3

Approximation Alg. 2: Convex relaxation

- Selectors: $\boldsymbol{\pi} \triangleq\left[\pi_{1} \ldots \pi_{c}\right]^{\top} \in\{0,1\}^{c}$
- Pick the i th candidate edge iff $\pi_{i}=1$

$$
\begin{array}{ll}
\underset{\pi}{\operatorname{maximize}} & \log \operatorname{det} \mathbf{L}(\boldsymbol{\pi}) \\
\text { subject to } & \sum_{i=1}^{c} \pi_{i}=k \\
& \pi_{i} \in[0,1], \forall i \in[c] .
\end{array}
$$

- Convex Program (MAXDET) \rightarrow CVX/YALMIP + SDPT3
- OPT $_{\text {cvx }} \geq$ OPT where OPT $_{\text {cvx }} \triangleq \log \operatorname{det} \mathbf{L}\left(\boldsymbol{\pi}^{\star}\right)$

Approximation Alg. 2: Convex relaxation

- Selectors: $\boldsymbol{\pi} \triangleq\left[\pi_{1} \ldots \pi_{c}\right]^{\top} \in\{0,1\}^{c}$
- Pick the i th candidate edge iff $\pi_{i}=1$

$$
\begin{array}{ll}
\underset{\pi}{\operatorname{maximize}} & \log \operatorname{det} \mathbf{L}(\boldsymbol{\pi}) \\
\text { subject to } & \sum_{i=1}^{c} \pi_{i}=k \\
& \pi_{i} \in[0,1], \forall i \in[c] .
\end{array}
$$

- Convex Program (MAXDET) \rightarrow CVX/YALMIP + SDPT3
- OPT $_{\text {cvx }} \geq$ OPT where OPT $_{\text {cvx }} \triangleq \log \operatorname{det} \mathbf{L}\left(\boldsymbol{\pi}^{\star}\right)$
- if $\pi^{\star} \in\{0,1\}^{c} \Rightarrow$ optimal solution

Approximation Alg. 2: Convex relaxation

- Selectors: $\boldsymbol{\pi} \triangleq\left[\pi_{1} \ldots \pi_{c}\right]^{\top} \in\{0,1\}^{c}$
- Pick the i th candidate edge iff $\pi_{i}=1$

$$
\begin{array}{ll}
\underset{\pi}{\operatorname{maximize}} & \log \operatorname{det} \mathbf{L}(\boldsymbol{\pi}) \\
\text { subject to } & \sum_{i=1}^{c} \pi_{i}=k \\
& \pi_{i} \in[0,1], \forall i \in[c] .
\end{array}
$$

- Convex Program (MAXDET) \rightarrow CVX/YALMIP + SDPT3
- OPT $_{\text {cvx }} \geq$ OPT where OPT $T_{c v x} \triangleq \log \operatorname{det} \mathbf{L}\left(\boldsymbol{\pi}^{\star}\right)$
- if $\pi^{\star} \in\{0,1\}^{c} \Rightarrow$ optimal solution
- otherwise need a rounding scheme: $\quad[0,1]^{c} \ni \boldsymbol{\pi}^{\star} \mapsto \tilde{\boldsymbol{\pi}} \in\{0,1\}^{c}$ s.t. $\|\tilde{\boldsymbol{\pi}}\|_{0}=k$

Approximation Alg. 2: Convex relaxation

- Selectors: $\boldsymbol{\pi} \triangleq\left[\pi_{1} \ldots \pi_{c}\right]^{\top} \in\{0,1\}^{c}$
- Pick the i th candidate edge iff $\pi_{i}=1$

$$
\begin{array}{ll}
\underset{\pi}{\operatorname{maximize}} & \log \operatorname{det} \mathbf{L}(\boldsymbol{\pi}) \\
\text { subject to } & \sum_{i=1}^{c} \pi_{i}=k \\
& \pi_{i} \in[0,1], \forall i \in[c] .
\end{array}
$$

- Convex Program (MAXDET) \rightarrow CVX/YALMIP + SDPT3
- OPT $_{\text {cvx }} \geq$ OPT where OPT $_{\text {cvx }} \triangleq \log \operatorname{det} \mathbf{L}\left(\pi^{\star}\right)$
- if $\pi^{\star} \in\{0,1\}^{c} \Rightarrow$ optimal solution
- otherwise need a rounding scheme: $\quad[0,1]^{c} \ni \boldsymbol{\pi}^{\star} \mapsto \tilde{\boldsymbol{\pi}} \in\{0,1\}^{c}$ s.t. $\|\tilde{\boldsymbol{\pi}}\|_{0}=k$
- e.g., pick the k candidate edges that correspond to the k largest π_{i}^{\star} 's

Convex relaxation: a new narrative

- $0 \leq \pi_{i} \leq 1$: the probability of sampling the i th candidate

Convex relaxation: a new narrative

- $0 \leq \pi_{i} \leq 1$: the probability of sampling the i th candidate

		।
$\underset{\pi}{\operatorname{maximize}}$	$\mathbb{E}_{\boldsymbol{\pi}}\left[t_{w}(\mathcal{G})\right]$	।
subject to	$\mathbb{E}_{\boldsymbol{\pi}}[\|\mathcal{E}\|]=k$,	\mid
	$\pi_{i} \in[0,1], \forall i \in[c]$.	\mid

I

Convex relaxation: a new narrative

- $0 \leq \pi_{i} \leq 1$: the probability of sampling the i th candidate

Convex relaxation: a new narrative

- $0 \leq \pi_{i} \leq 1$: the probability of sampling the i th candidate

- relaxation: hard \rightarrow soft objective and constraints

Convex relaxation: a new narrative

- $0 \leq \pi_{i} \leq 1$: the probability of sampling the i th candidate

- relaxation: hard \rightarrow soft objective and constraints
- justification for deterministic rounding (picking the k largest π_{i}^{\star})

Convex relaxation: a new narrative

- $0 \leq \pi_{i} \leq 1$: the probability of sampling the i th candidate

$\underset{\pi}{\operatorname{maximize}}$		$\underset{\pi}{\operatorname{maximize}}$	$\log \operatorname{det} \mathbf{L}(\boldsymbol{\pi})$
	$\mathbb{E}_{\boldsymbol{\pi}}\left[t_{w}(\mathcal{G})\right]$		
subject to	$\mathbb{E}_{\boldsymbol{\pi}}[\|\mathcal{E}\|]=k$,	subject to	$\sum \pi_{i}=k$,
	$\pi_{i} \in[0,1], \forall i \in[c]$.		
			$\pi_{i} \in[0,1], \forall i$

- relaxation: hard \rightarrow soft objective and constraints
- justification for deterministic rounding (picking the k largest π_{i}^{\star})
- randomized rounding schemes

Certifying near-optimality

(notation: $\tau \triangleq \log$ Tree)

Corollary:

$$
\max \left\{\tau_{\text {greedy }}, \tau_{\mathrm{cvx}}\right\} \leq \underset{\text { intractable }}{\mathrm{OPT}} \leq \min \left\{\alpha \tau_{\text {greedy }}+(1-\alpha) \tau_{\text {init }}, \tau_{\mathrm{cvx}}^{\star}\right\}
$$

where $\alpha \triangleq(1-1 / e)^{-1} \approx 1.58$

Certifying near-optimality

(notation: $\tau \triangleq \log$ Tree)

Corollary:

$$
\underbrace{\max \left\{\tau_{\text {greedy }}, \tau_{\mathrm{cvx}}\right\}}_{\mathcal{L}} \leq \mathrm{OPT} \leq \underbrace{\min \left\{\alpha \tau_{\text {greedy }}+(1-\alpha) \tau_{\text {init }}, \tau_{\mathrm{cvx}}^{\star}\right\}}_{\mathcal{U}}
$$

where $\alpha \triangleq(1-1 / e)^{-1} \approx 1.58$

Certifying near-optimality

(notation: $\tau \triangleq \log$ Tree)

Corollary:

$$
\underbrace{\max \left\{\tau_{\text {greedy }}, \tau_{\text {cvx }}\right\}}_{\mathcal{L}} \leq \mathrm{OPT} \leq \underbrace{\min \left\{\alpha \tau_{\text {greedy }}+(1-\alpha) \tau_{\text {init }}, \tau_{\text {cvx }}^{\star}\right\}}_{\mathcal{U}}
$$

where $\alpha \triangleq(1-1 / e)^{-1} \approx 1.58$

- given any (suboptimal) design \mathcal{A},

$$
\max \left\{0, \mathcal{L}-\tau_{\mathcal{A}}\right\} \leq \underset{\text { gap }}{\mathrm{OPT}-\tau_{\mathcal{A}}} \leq \mathcal{U}-\tau_{\mathcal{A}}
$$

Intel Research Lab Dataset

Intel Research Lab Dataset

Greedy design for $k=161$ loop-closure edges (18% of candidates)

Other Applications

- Relevant applications:
- Network reliability under random edge failure (e.g., power or communication networks)
- D-optimal incomplete block designs
- Molecular physics
- RNA modelling
- Estimation over sensor networks (e.g., time synchronization)
- Connectivity controller for multi-robot systems

Dirty Laundry \& Conclusion

Active SLAM: (work in progress - not addressed here)

- Dimensionality reduction for D-optimal planning:
sensitive to topology and not to a particular embedding
- Hierarchical planning: topology \rightarrow embedding
- Advantages:
- Agnostic to sensor readings and not confined to a particular embedding
- Robust against local minima and linearization errors
- A compact and almost lossless representation

Contributions:

- A new submodular graph invariant: \log Tree
- First near-optimal approximation algorithms for designing t-optimal graphs
- A new narrative for MAXDET-like convex relaxation
- Near-optimality certificates

Thank you!

1 Maximizing the Weighted Number of Spanning Trees (arXiv)
2 Tree-Connectivity: Evaluating the Graphical Structure of SLAM (ICRA'16)
3 Good, Bad and Ugly Graphs for SLAM (RSS'15 Workshop)
4 Novel Insights Into the Impact of Graph Structure on SLAM (IROS'14)

kasra.github.io

δ-ESP*

$$
\begin{array}{ll}
\underset{\mathcal{E} \subseteq \mathcal{C}}{\operatorname{minimize}} & |\mathcal{E}| \\
\text { subject to } & \operatorname{tree}_{w}\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right) \geq \delta
\end{array}
$$

δ-ESP*

$$
\begin{array}{ll}
\underset{\mathcal{E} \subseteq \mathcal{C}}{\operatorname{minimize}} & |\mathcal{E}| \\
\text { subject to } & \operatorname{tree}_{w}\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right) \geq \delta
\end{array}
$$

- Performance guarantees

$$
k_{\text {greedy }} \leq \zeta^{*} k_{\mathrm{OPT}}
$$

δ-ESP*

$$
\begin{array}{ll}
\underset{\mathcal{E} \subseteq \mathcal{C}}{\operatorname{minimize}} & |\mathcal{E}| \\
\text { subject to } & \text { tree }_{w}\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right) \geq \delta
\end{array}
$$

- Performance guarantees

$$
k_{\text {greedy }} \leq \zeta^{*} k_{\mathrm{OPT}}
$$

- Near-optimality certificates

$$
\max \left\{\left\lceil\frac{1}{\zeta^{*}} k_{\text {greedy }}\right\rceil,\left\lceil\sum_{i=1}^{c} \pi_{i}^{\star}\right\rceil\right\} \leq k_{\mathrm{OPT}} \leq \min \left\{k_{\text {greedy }}, k_{\mathrm{cvx}}\right\}
$$

δ-ESP*

$$
\begin{array}{ll}
\underset{\mathcal{E} \subseteq \mathcal{C}}{\operatorname{minimize}} & |\mathcal{E}| \\
\text { subject to } & \operatorname{tree}_{w}\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right) \geq \delta
\end{array}
$$

- Performance guarantees

$$
k_{\text {greedy }} \leq \zeta^{*} k_{\mathrm{OPT}}
$$

- Near-optimality certificates

$$
\underbrace{\max \left\{\left\lceil\frac{1}{\zeta^{*}} k_{\text {greedy }}\right\rceil,\left[\sum_{i=1}^{c} \pi_{i}^{\star}\right\rceil\right\}}_{\mathcal{L}} \leq k_{\mathrm{OPT}} \leq \underbrace{\min \left\{k_{\text {greedy }}, k_{\mathrm{cvx}}\right\}}_{u}
$$

δ-ESP*

$$
\begin{array}{ll}
\underset{\mathcal{E} \subseteq \mathcal{C}}{\operatorname{minimize}} & |\mathcal{E}| \\
\text { subject to } & \operatorname{tree}_{w}\left(\mathcal{E}_{\text {init }} \cup \mathcal{E}\right) \geq \delta
\end{array}
$$

- Performance guarantees

$$
k_{\text {greedy }} \leq \zeta^{*} k_{\mathrm{OPT}}
$$

- Near-optimality certificates

$$
\underbrace{\max \left\{\left\lceil\frac{1}{\zeta^{*}} k_{\text {greedy }}\right\rceil,\left\lceil\sum_{i=1}^{c} \pi_{i}^{\star}\right\rceil\right\}}_{\mathcal{L}} \leq k_{\mathrm{OPT}} \leq \underbrace{\min \left\{k_{\text {greedy }}, k_{\mathrm{cvx}}\right\}}_{\mathcal{u}} .
$$

- Given any design with $k_{\mathcal{A}}$ edges,

$$
\min \left\{0, k_{\mathcal{A}}-u\right\} \leq \underbrace{k_{\mathcal{A}}-k_{\mathrm{OPT}}}_{\text {gap }} \leq k_{\mathcal{A}}-\mathcal{L}
$$

Kirchhoff's Matrix-Tree Theorems

Kirchhoff's Matrix-Tree Theorems

$$
\mathbb{V}_{w}(\mathcal{T})=1 \times 2 \times \frac{1}{2} \times 3=3
$$

Kirchhoff's Matrix-Tree Theorems

Kirchhoff's Matrix-Tree Theorems

$$
t_{w}(\mathcal{G}) \triangleq \sum_{\mathcal{T} \in \mathbb{T}(\mathcal{G})} \mathbb{V}_{w}(\mathcal{T}) \stackrel{(\mathrm{MT})}{=} \operatorname{det} \mathbf{L}_{w}
$$

\mathbf{L}_{w} : reduced weighted graph Laplacian

$$
\mathbb{V}_{w}(\mathcal{T})=1 \times 2 \times \frac{1}{2} \times 3=3
$$

Varying k for $|\mathcal{V}|=50$ and $\left|\mathcal{E}_{\text {init }}\right|=200$

