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Spanning Trees

A subgraph that

includes all vertices

is a tree
» connected 1
» no cycles (i.e., minimally connected)
V2 Us
e # of spanning trees: t(G) £ |T(9)|
e edge-weighted graphs: Vs Vs

tw(9) 2 Yaerig) [ece ) wle)

e Matrix-Tree Theorem:
tw(9) = det L, (G) — reduced Laplacian
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Graphical Representation of SLAM

Vertices: n robot poses in d-dimensional space
— Edges: noisy pairwise measurements

O Edge Weights: measurement precision

find the “optimal” embedding (drawing) in SE(d)"

3/21



Graphical Representation of SLAM

Vertices: n robot poses in d-dimensional space
— Edges: noisy pairwise measurements

O Edge Weights: measurement precision

find the “optimal” embedding (drawing) in SE(d)"

3/21



Graphical Representation of SLAM

Vertices: n robot poses in d-dimensional space
— Edges: noisy pairwise measurements

O Edge Weights: measurement precision

find the “optimal” embedding (drawing) in SE(d)"

3/21



Graphical Representation of SLAM

Vertices: n robot poses in d-dimensional space
— Edges: noisy pairwise measurements

O Edge Weights: measurement precision

find the “optimal” embedding (drawing) in SE(d)"

3/21



A Tale of Two Cities: Manhattan vs. Cityl0K
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SLAM: estimation over graph (ICRA 2016)

Key observation:

Fisher information < graph Laplacian

volume of uncertainty ellipsoids <+ weighted number of spanning trees

Theorems:

» Known orientation with dimension d (e.g., d € {2,3})

det Cov[Xmie = t(G) ™
— ]

| IS |
hypervolume of uncertainty hyperellipsoid weighted number of spanning trees

» 2D pose-graph:

lim det Cov|[&rme] =ty (G) 72ty (9)

~—0
L

1
hypervolume of uncertainty hyperellipsoid

weighted number of spanning trees
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Conclusion:

min. det Cov[Xmie] < max. £, (9)

Determinant(D)-optimality tree(t)-optimality
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Conclusion:

min. det Cov[Xmee] < max. t,(9)

Determinant(D)-optimality tree(t)-optimality

subject to sparsity constraints
This paper:

approximation algorithms for designing sparse t-optimal graphs
+

provable guarantees
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Edge Selection Problem (ESP)

» P1: Given a set of ¢ new measurements (edges), pick k < c.

» P2: Given a c-subset of existing measurements (edges), prune k < c.
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» P1: Given a set of ¢ new measurements (edges), pick k < c.

» P2: Given a c-subset of existing measurements (edges), prune k < c.

V2
Ll
U3 A2
1
-I-
1
:%I O U1
-1
1
1
O‘~~r-|
(2 13
O
Us

equivalent classes of problems
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k-ESP

Ginit = (V,&init,w) — connected
C candidate edges
maximize Tree (EnprUE) st |E] =k

ece I —| | I
D-optimality sparsity

(k-ESP)
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() Has been studied in other fields (e.g., network reliability)

Characterizing t-optimal graphs — open problem

() Exhaustive search is not tractable

k =1 (IROS'14):

» Optimal candidate: maximum effective resistance Ref

(k-ESP)

- Reg: A metric to define a “distance” between two vertices in §

- Optimal policy: connect the vertices that are furthest from each other

8/21



Approximation Alg. 1: Greedy

For k times:
- Compute the effective resistance of the remaining candidates

- Pick the candidate with the highest effective resistance
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Monotone: iff f(AU {z}) > f(A)

. Submodular: iff f exhlblts the dlmlmshmg returns property, e.g.,

Wlnll'lg an ;

.K

e Main Result: & — Tree (&t U €) is monotone log-submodular

e Value of greedy is within a constant-factor of OPT (see the paper)
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Approximation Alg. 2: Convex relaxation

> Selectors: 7 2 [r1 ... w]T € {0,1}¢
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» if ™ € {0,1}° = optimal solution

- otherwise need a rounding scheme:  [0,1]° 3 7w* — & € {0,1}¢ s.t. ||®|o =k
- e.g., pick the k candidate edges that correspond to the k largest 7's
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» relaxation: hard — soft objective and constraints
» justification for deterministic rounding (picking the & largest 7))

» randomized rounding schemes
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Certifying near-optimality

(notation: 7 £ log Tree)

Corollary:

: *
max {Tgreedyachx} S IO PTI § min {aTgreedy + (1 - a)Tinitachx}
intractable

where o 2 (1 —1/e)”" ~ 1.58
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Certifying near-optimality

(notation: 7 £ log Tree)

Corollary:

max {Tgreedy,chx} < OPT < min {(MTgreedy +(1- (Y)Tinit,Tc*\,x}

L u

where o 2 (1 —1/e)”" ~ 1.58

» given any (suboptimal) design A,

max {O,L —TA} <OPT—74<U—174
—_
gap
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Intel Research Lab Dataset

k=161 Tyeeay = 2.079 +04 U = 2.097¢ + 04

15

101

-5

—-10+

-5 0 5 10 15 20

Greedy design for k = 161 loop-closure edges (18% of candidates)
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Other Applications

e Relevant applications:

» Network reliability under random edge failure

(e.g., power or communication networks)

v

D-optimal incomplete block designs

v

Molecular physics
RNA modelling

Estimation over sensor networks (e.g., time synchronization)

\4

v

v

Connectivity controller for multi-robot systems
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Dirty Laundry & Conclusion

Active SLAM: (work in progress — not addressed here)

» Dimensionality reduction for D-optimal planning:

sensitive to topology and not to a particular embedding

» Hierarchical planning: topology — embedding
» Advantages:

> Agnostic to sensor readings and not confined to a particular embedding
> Robust against local minima and linearization errors

> A compact and almost lossless representation

Contributions:
» A new submodular graph invariant: log Jree
» First near-optimal approximation algorithms for designing t-optimal graphs
» A new narrative for MAXDET-like convex relaxation

» Near-optimality certificates
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Thank you!

Maximizing the Weighted Number of Spanning Trees (arXiv)
Tree-Connectivity: Evaluating the Graphical Structure of SLAM (ICRA’16)
Good, Bad and Ugly Graphs for SLAM (RSS'15 Workshop)

Novel Insights Into the Impact of Graph Structure on SLAM (IROS’14)

kasra.github.io
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minimize ||
ece

subject to  tree,, (Enir U E) > 0.

» Performance guarantees
kgreedy < C*kOPT
» Near-optimality certificates

1 c
max { ’VFkgreedy—‘ ) (Z W:—‘ } < kOPT < min {kgreedya kcvx} .
=1

u

£
» Given any design with k4 edges,
min {0,k — U} < ka = kopr < ka — £
—_——

gap
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Kirchhoff’'s Matrix-Tree Theorems

ZV ) det L,

TET(S)

L., : reduced weighted graph Laplacian

Vu(T) =1x2x3x3=3
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