
Development and Implementation of SLAM Algorithms

Kasra Khosoussi
Supervised by: Dr. Hamid D. Taghirad

Advanced Robotics and Automated Systems (ARAS)

Industrial Control Laboratory

K.N. Toosi University of Technology

July 13, 2011

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 1 / 43

Outline

1 Introduction
SLAM Problem
Bayesian Filtering
Particle Filter

2 RBPF-SLAM

3 Monte Carlo Approximation of the Optimal Proposal Distribution
Introduction
LRS
LIS-1
LIS-2

4 Results
Simulation Results
Experiments On Real Data

5 Conclusion

6 Future Work

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 2 / 43

Introduction

Table of Contents

1 Introduction
SLAM Problem
Bayesian Filtering
Particle Filter

2 RBPF-SLAM

3 Monte Carlo Approximation of the Optimal Proposal Distribution
Introduction
LRS
LIS-1
LIS-2

4 Results
Simulation Results
Experiments On Real Data

5 Conclusion

6 Future Work

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 3 / 43

Introduction SLAM Problem

Autonomous Mobile Robots

The ultimate goal of mobile robotics is to design autonomous mobile
robots.

“The ability to simultaneously localize a robot and accurately map its
environment is a key prerequisite of truly autonomous robots.”

SLAM stands for Simultaneous Localization and Mapping.

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 4 / 43

Introduction SLAM Problem

Autonomous Mobile Robots

The ultimate goal of mobile robotics is to design autonomous mobile
robots.

“The ability to simultaneously localize a robot and accurately map its
environment is a key prerequisite of truly autonomous robots.”

SLAM stands for Simultaneous Localization and Mapping.

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 4 / 43

Introduction SLAM Problem

Autonomous Mobile Robots

The ultimate goal of mobile robotics is to design autonomous mobile
robots.

“The ability to simultaneously localize a robot and accurately map its
environment is a key prerequisite of truly autonomous robots.”

SLAM stands for Simultaneous Localization and Mapping.

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 4 / 43

Introduction SLAM Problem

Autonomous Mobile Robots

The ultimate goal of mobile robotics is to design autonomous mobile
robots.

“The ability to simultaneously localize a robot and accurately map its
environment is a key prerequisite of truly autonomous robots.”

SLAM stands for Simultaneous Localization and Mapping.

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 4 / 43

Introduction SLAM Problem

Autonomous Mobile Robots

The ultimate goal of mobile robotics is to design autonomous mobile
robots.

“The ability to simultaneously localize a robot and accurately map its
environment is a key prerequisite of truly autonomous robots.”

SLAM stands for Simultaneous Localization and Mapping.

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 4 / 43

Introduction SLAM Problem

Autonomous Mobile Robots

The ultimate goal of mobile robotics is to design autonomous mobile
robots.

“The ability to simultaneously localize a robot and accurately map its
environment is a key prerequisite of truly autonomous robots.”

SLAM stands for Simultaneous Localization and Mapping.

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 4 / 43

Introduction SLAM Problem

Autonomous Mobile Robots

The ultimate goal of mobile robotics is to design autonomous mobile
robots.

“The ability to simultaneously localize a robot and accurately map its
environment is a key prerequisite of truly autonomous robots.”

SLAM stands for Simultaneous Localization and Mapping.

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 4 / 43

Introduction SLAM Problem

The SLAM Problem

Assumptions

No a priori knowledge about the environment (i.e. map)

No independent position information (i.e. GPS)

Static environment

Given

Observations of the environment

Control signals

Goal

Estimate the map of the environment (e.g. locations of the features)

Estimate the position and orientation (pose) of the robot

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 5 / 43

Introduction SLAM Problem

The SLAM Problem

Assumptions

No a priori knowledge about the environment (i.e. map)

No independent position information (i.e. GPS)

Static environment

Given

Observations of the environment

Control signals

Goal

Estimate the map of the environment (e.g. locations of the features)

Estimate the position and orientation (pose) of the robot

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 5 / 43

Introduction SLAM Problem

The SLAM Problem

Assumptions

No a priori knowledge about the environment (i.e. map)

No independent position information (i.e. GPS)

Static environment

Given

Observations of the environment

Control signals

Goal

Estimate the map of the environment (e.g. locations of the features)

Estimate the position and orientation (pose) of the robot

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 5 / 43

Introduction SLAM Problem

Map Representation

Topological maps

Grid maps

Feature-based maps

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 6 / 43

Introduction SLAM Problem

Map Representation

Topological maps

Grid maps

Feature-based maps

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 6 / 43

Introduction SLAM Problem

Map Representation

Topological maps

Grid maps

Feature-based maps

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 6 / 43

Introduction Bayesian Filtering

Probabilistic Methods

Probabilistic methods outperform deterministic algorithms

Describe uncertainty in data, models
and estimates

Bayesian estimation

- Robot pose st

- Robot pose is assumed to be a Markov
process with initial distribution p(s0)

- Feature’s location θi

- Map θ = {θ1, . . . , θN}
- Observation zt, and control input ut

- xt = [st θ]T

- x1:t , {x1, . . . ,xt}

Filtering distribution:
p(st,θ|z1:t,u1:t)

Smoothing distribution:
p(s0:t,θ|z1:t,u1:t)

MMSE estimate:
x̂t = E[xt|z1:t,u1:t]
x̂0:t = E[x0:t|z1:t,u1:t]

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 7 / 43

Introduction Bayesian Filtering

Probabilistic Methods

Probabilistic methods outperform deterministic algorithms

Describe uncertainty in data, models
and estimates

Bayesian estimation

- Robot pose st

- Robot pose is assumed to be a Markov
process with initial distribution p(s0)

- Feature’s location θi

- Map θ = {θ1, . . . , θN}
- Observation zt, and control input ut

- xt = [st θ]T

- x1:t , {x1, . . . ,xt}

Filtering distribution:
p(st,θ|z1:t,u1:t)

Smoothing distribution:
p(s0:t,θ|z1:t,u1:t)

MMSE estimate:
x̂t = E[xt|z1:t,u1:t]
x̂0:t = E[x0:t|z1:t,u1:t]

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 7 / 43

Introduction Bayesian Filtering

Probabilistic Methods

Probabilistic methods outperform deterministic algorithms

Describe uncertainty in data, models
and estimates

Bayesian estimation

- Robot pose st

- Robot pose is assumed to be a Markov
process with initial distribution p(s0)

- Feature’s location θi

- Map θ = {θ1, . . . , θN}
- Observation zt, and control input ut

- xt = [st θ]T

- x1:t , {x1, . . . ,xt}

Filtering distribution:
p(st,θ|z1:t,u1:t)

Smoothing distribution:
p(s0:t,θ|z1:t,u1:t)

MMSE estimate:
x̂t = E[xt|z1:t,u1:t]
x̂0:t = E[x0:t|z1:t,u1:t]

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 7 / 43

Introduction Bayesian Filtering

Probabilistic Methods

Probabilistic methods outperform deterministic algorithms

Describe uncertainty in data, models
and estimates

Bayesian estimation

- Robot pose st

- Robot pose is assumed to be a Markov
process with initial distribution p(s0)

- Feature’s location θi

- Map θ = {θ1, . . . , θN}
- Observation zt, and control input ut

- xt = [st θ]T

- x1:t , {x1, . . . ,xt}

Filtering distribution:
p(st,θ|z1:t,u1:t)

Smoothing distribution:
p(s0:t,θ|z1:t,u1:t)

MMSE estimate:
x̂t = E[xt|z1:t,u1:t]
x̂0:t = E[x0:t|z1:t,u1:t]

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 7 / 43

Introduction Bayesian Filtering

Probabilistic Methods

Probabilistic methods outperform deterministic algorithms

Describe uncertainty in data, models
and estimates

Bayesian estimation

- Robot pose st

- Robot pose is assumed to be a Markov
process with initial distribution p(s0)

- Feature’s location θi

- Map θ = {θ1, . . . , θN}
- Observation zt, and control input ut

- xt = [st θ]T

- x1:t , {x1, . . . ,xt}

Filtering distribution:
p(st,θ|z1:t,u1:t)

Smoothing distribution:
p(s0:t,θ|z1:t,u1:t)

MMSE estimate:
x̂t = E[xt|z1:t,u1:t]
x̂0:t = E[x0:t|z1:t,u1:t]

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 7 / 43

Introduction Bayesian Filtering

Probabilistic Methods

Probabilistic methods outperform deterministic algorithms

Describe uncertainty in data, models
and estimates

Bayesian estimation

- Robot pose st

- Robot pose is assumed to be a Markov
process with initial distribution p(s0)

- Feature’s location θi

- Map θ = {θ1, . . . , θN}
- Observation zt, and control input ut

- xt = [st θ]T

- x1:t , {x1, . . . ,xt}

Filtering distribution:
p(st,θ|z1:t,u1:t)

Smoothing distribution:
p(s0:t,θ|z1:t,u1:t)

MMSE estimate:
x̂t = E[xt|z1:t,u1:t]
x̂0:t = E[x0:t|z1:t,u1:t]

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 7 / 43

Introduction Bayesian Filtering

Probabilistic Methods

Probabilistic methods outperform deterministic algorithms

Describe uncertainty in data, models
and estimates

Bayesian estimation

- Robot pose st

- Robot pose is assumed to be a Markov
process with initial distribution p(s0)

- Feature’s location θi

- Map θ = {θ1, . . . , θN}
- Observation zt, and control input ut

- xt = [st θ]T

- x1:t , {x1, . . . ,xt}

Filtering distribution:
p(st,θ|z1:t,u1:t)

Smoothing distribution:
p(s0:t,θ|z1:t,u1:t)

MMSE estimate:
x̂t = E[xt|z1:t,u1:t]
x̂0:t = E[x0:t|z1:t,u1:t]

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 7 / 43

Introduction Bayesian Filtering

State-Space Equations

Robot motion equation:

st = f(st−1,ut,vt)

Observation equation:

zt = g(st, θnt ,wt)

f(·, ·, ·) and g(·, ·, ·) are non-linear functions

vt and wt are zero-mean white Gaussian noises with covariances
matrices Qt and Rt

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 8 / 43

Introduction Bayesian Filtering

State-Space Equations

Robot motion equation:

st = f(st−1,ut,vt)

Observation equation:

zt = g(st, θnt ,wt)

f(·, ·, ·) and g(·, ·, ·) are non-linear functions

vt and wt are zero-mean white Gaussian noises with covariances
matrices Qt and Rt

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 8 / 43

Introduction Bayesian Filtering

State-Space Equations

Robot motion equation:

st = f(st−1,ut,vt)

Observation equation:

zt = g(st, θnt ,wt)

f(·, ·, ·) and g(·, ·, ·) are non-linear functions

vt and wt are zero-mean white Gaussian noises with covariances
matrices Qt and Rt

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 8 / 43

Introduction Bayesian Filtering

Bayes Filter

How to estimate the posterior distribution recursively in time? Bayes filter!

1 Prediction

2 Update

p(xt|z1:t−1,u1:t) =

∫
p(xt|xt−1,ut) p(xt−1|z1:t−1,u1:t−1) dxt−1 (1)

p(xt|z1:t,u1:t) =
p(zt|xt) p(xt|z1:t−1,u1:t)∫
p(zt|xt)p(xt|z1:t−1,u1:t)dxt

(2)

Motion model Observation model

There is a similar recursive formula for the smoothing density

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 9 / 43

Introduction Bayesian Filtering

Bayes Filter

How to estimate the posterior distribution recursively in time? Bayes filter!

1 Prediction

2 Update

p(xt|z1:t−1,u1:t) =

∫
p(xt|xt−1,ut) p(xt−1|z1:t−1,u1:t−1) dxt−1 (1)

p(xt|z1:t,u1:t) =
p(zt|xt) p(xt|z1:t−1,u1:t)∫
p(zt|xt)p(xt|z1:t−1,u1:t)dxt

(2)

Motion model Observation model

There is a similar recursive formula for the smoothing density

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 9 / 43

Introduction Bayesian Filtering

Bayes Filter

How to estimate the posterior distribution recursively in time? Bayes filter!

1 Prediction

2 Update

p(xt|z1:t−1,u1:t) =

∫
p(xt|xt−1,ut) p(xt−1|z1:t−1,u1:t−1) dxt−1 (1)

p(xt|z1:t,u1:t) =
p(zt|xt) p(xt|z1:t−1,u1:t)∫
p(zt|xt)p(xt|z1:t−1,u1:t)dxt

(2)

Motion model Observation model

There is a similar recursive formula for the smoothing density

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 9 / 43

Introduction Bayesian Filtering

Bayes Filter

How to estimate the posterior distribution recursively in time? Bayes filter!

1 Prediction

2 Update

p(xt|z1:t−1,u1:t) =

∫
p(xt|xt−1,ut) p(xt−1|z1:t−1,u1:t−1) dxt−1 (1)

p(xt|z1:t,u1:t) =
p(zt|xt) p(xt|z1:t−1,u1:t)∫
p(zt|xt)p(xt|z1:t−1,u1:t)dxt

(2)

Motion model Observation model

There is a similar recursive formula for the smoothing density

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 9 / 43

Introduction Bayesian Filtering

Bayes Filter

How to estimate the posterior distribution recursively in time? Bayes filter!

1 Prediction

2 Update

p(xt|z1:t−1,u1:t) =

∫
p(xt|xt−1,ut) p(xt−1|z1:t−1,u1:t−1) dxt−1 (1)

p(xt|z1:t,u1:t) =
p(zt|xt) p(xt|z1:t−1,u1:t)∫
p(zt|xt)p(xt|z1:t−1,u1:t)dxt

(2)

Motion model Observation model

There is a similar recursive formula for the smoothing density

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 9 / 43

Introduction Bayesian Filtering

Bayes Filter

How to estimate the posterior distribution recursively in time? Bayes filter!

1 Prediction

2 Update

p(xt|z1:t−1,u1:t) =

∫
p(xt|xt−1,ut) p(xt−1|z1:t−1,u1:t−1) dxt−1 (1)

p(xt|z1:t,u1:t) =
p(zt|xt) p(xt|z1:t−1,u1:t)∫
p(zt|xt)p(xt|z1:t−1,u1:t)dxt

(2)

Motion model Observation model

There is a similar recursive formula for the smoothing density

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 9 / 43

Introduction Bayesian Filtering

Bayes Filter

How to estimate the posterior distribution recursively in time? Bayes filter!

1 Prediction

2 Update

p(xt|z1:t−1,u1:t) =

∫
p(xt|xt−1,ut) p(xt−1|z1:t−1,u1:t−1) dxt−1 (1)

p(xt|z1:t,u1:t) =
p(zt|xt) p(xt|z1:t−1,u1:t)∫
p(zt|xt)p(xt|z1:t−1,u1:t)dxt

(2)

Motion model Observation model

There is a similar recursive formula for the smoothing density

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 9 / 43

Introduction Bayesian Filtering

Bayes Filter Cont’d.

Example

For the case of linear-Gaussian models, Bayes filter equations would be
simplified into the Kalman filter equations.

But . . .

In general, it is impossible to implement the exact Bayes filter because it
requires the ability to evaluate complex high-dimensional integrals.

So we have to use approximation . . .

Extended Kalman Filter (EKF)

Unscented Kalman Filter (UKF)

Gaussian-Sum Filter

Extended Information Filter (EIF)

Particle Filter (A.K.A. Sequential Monte Carlo Methods)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 10 / 43

Introduction Bayesian Filtering

Bayes Filter Cont’d.

Example

For the case of linear-Gaussian models, Bayes filter equations would be
simplified into the Kalman filter equations.

But . . .

In general, it is impossible to implement the exact Bayes filter because it
requires the ability to evaluate complex high-dimensional integrals.

So we have to use approximation . . .

Extended Kalman Filter (EKF)

Unscented Kalman Filter (UKF)

Gaussian-Sum Filter

Extended Information Filter (EIF)

Particle Filter (A.K.A. Sequential Monte Carlo Methods)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 10 / 43

Introduction Bayesian Filtering

Bayes Filter Cont’d.

Example

For the case of linear-Gaussian models, Bayes filter equations would be
simplified into the Kalman filter equations.

But . . .

In general, it is impossible to implement the exact Bayes filter because it
requires the ability to evaluate complex high-dimensional integrals.

So we have to use approximation . . .

Extended Kalman Filter (EKF)

Unscented Kalman Filter (UKF)

Gaussian-Sum Filter

Extended Information Filter (EIF)

Particle Filter (A.K.A. Sequential Monte Carlo Methods)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 10 / 43

Introduction Bayesian Filtering

Bayes Filter Cont’d.

Example

For the case of linear-Gaussian models, Bayes filter equations would be
simplified into the Kalman filter equations.

But . . .

In general, it is impossible to implement the exact Bayes filter because it
requires the ability to evaluate complex high-dimensional integrals.

So we have to use approximation . . .

Extended Kalman Filter (EKF)

Unscented Kalman Filter (UKF)

Gaussian-Sum Filter

Extended Information Filter (EIF)

Particle Filter (A.K.A. Sequential Monte Carlo Methods)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 10 / 43

Introduction Particle Filter

Perfect Monte Carlo Sampling

Q. How to compute expected values such as Ep(x)[h(x)] =
∫
h(x)p(x)dx

for any integrable function h(·)?

Perfect Monte Carlo (A.K.A. Monte Carlo Integration)

1 Generate N i.i.d. samples {x[i]}Ni=1 according to p(x)

2 Estimate the PDF as PN (x) , 1
N

∑N
i=1 δ(x− x[i])

3 Estimate Ep(x)[h(x)] ≈
∫
h(x)PN (x)dx = 1

N

∑N
i=1 h(x

[i])

Convergence theorems for N →∞ using central limit theorem and
strong law of large numbers

Error decreases with O(N−1/2) regardless of the dimension of x

But . . .

It is usually impossible to sample directly from the filtering or smoothing
distribution (high-dimensional, non-standard, only known up to a constant)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 11 / 43

Introduction Particle Filter

Perfect Monte Carlo Sampling

Q. How to compute expected values such as Ep(x)[h(x)] =
∫
h(x)p(x)dx

for any integrable function h(·)?

Perfect Monte Carlo (A.K.A. Monte Carlo Integration)

1 Generate N i.i.d. samples {x[i]}Ni=1 according to p(x)

2 Estimate the PDF as PN (x) , 1
N

∑N
i=1 δ(x− x[i])

3 Estimate Ep(x)[h(x)] ≈
∫
h(x)PN (x)dx = 1

N

∑N
i=1 h(x

[i])

Convergence theorems for N →∞ using central limit theorem and
strong law of large numbers

Error decreases with O(N−1/2) regardless of the dimension of x

But . . .

It is usually impossible to sample directly from the filtering or smoothing
distribution (high-dimensional, non-standard, only known up to a constant)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 11 / 43

Introduction Particle Filter

Perfect Monte Carlo Sampling

Q. How to compute expected values such as Ep(x)[h(x)] =
∫
h(x)p(x)dx

for any integrable function h(·)?

Perfect Monte Carlo (A.K.A. Monte Carlo Integration)

1 Generate N i.i.d. samples {x[i]}Ni=1 according to p(x)

2 Estimate the PDF as PN (x) , 1
N

∑N
i=1 δ(x− x[i])

3 Estimate Ep(x)[h(x)] ≈
∫
h(x)PN (x)dx = 1

N

∑N
i=1 h(x

[i])

Convergence theorems for N →∞ using central limit theorem and
strong law of large numbers

Error decreases with O(N−1/2) regardless of the dimension of x

But . . .

It is usually impossible to sample directly from the filtering or smoothing
distribution (high-dimensional, non-standard, only known up to a constant)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 11 / 43

Introduction Particle Filter

Perfect Monte Carlo Sampling

Q. How to compute expected values such as Ep(x)[h(x)] =
∫
h(x)p(x)dx

for any integrable function h(·)?

Perfect Monte Carlo (A.K.A. Monte Carlo Integration)

1 Generate N i.i.d. samples {x[i]}Ni=1 according to p(x)

2 Estimate the PDF as PN (x) , 1
N

∑N
i=1 δ(x− x[i])

3 Estimate Ep(x)[h(x)] ≈
∫
h(x)PN (x)dx = 1

N

∑N
i=1 h(x

[i])

Convergence theorems for N →∞ using central limit theorem and
strong law of large numbers

Error decreases with O(N−1/2) regardless of the dimension of x

But . . .

It is usually impossible to sample directly from the filtering or smoothing
distribution (high-dimensional, non-standard, only known up to a constant)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 11 / 43

Introduction Particle Filter

Importance Sampling (IS)

Idea

Generate samples from another distribution called the importance function

like π(x), and weight these samples according to w∗(x[i]) = p(x[i])

π(x[i])
:

Ep(x)[h(x)] =
∫

h(x) p(x)π(x) π(x)dx =
1

N

N∑
i=1

w∗(x[i])h(x[i])

But . . .

How to do this recursively in time?

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 12 / 43

Introduction Particle Filter

Importance Sampling (IS)

Idea

Generate samples from another distribution called the importance function

like π(x), and weight these samples according to w∗(x[i]) = p(x[i])

π(x[i])
:

Ep(x)[h(x)] =
∫

h(x) p(x)π(x) π(x)dx =
1

N

N∑
i=1

w∗(x[i])h(x[i])

But . . .

How to do this recursively in time?

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 12 / 43

Introduction Particle Filter

Importance Sampling (IS)

Idea

Generate samples from another distribution called the importance function

like π(x), and weight these samples according to w∗(x[i]) = p(x[i])

π(x[i])
:

Ep(x)[h(x)] =
∫

h(x) p(x)π(x) π(x)dx =
1

N

N∑
i=1

w∗(x[i])h(x[i])

But . . .

How to do this recursively in time?

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 12 / 43

Introduction Particle Filter

Sequential Importance Sampling (SIS)

Sampling from scratch from the importance function π(x0:t|z1:t,u1:t)
implies growing computational complexity for each step over time

Q. How to estimate p(x0:t|z1:t,u1:t) using importance sampling
recursively?

Sequential Importance Sampling

At time t, generate x
[i]
t according to π(xt|x[i]

0:t−1, z1:t,u1:t) (proposal

distribution), and merge it with the previous samples x
[i]
0:t−1 drawn from

π(x0:t−1|z1:t−1,u1:t−1):

x
[i]
0:t = {x

[i]
0:t−1,x

[i]
t } ∼ π(x0:t|z1:t,u1:t)

w(x
[i]
0:t) = w(x

[i]
0:t−1)

p(zt|x[i]
t)p(x

[i]
t |x

[i]
t−1,ut)

π(x
[i]
t |x

[i]
0:t−1, z1:t,u1:t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 13 / 43

Introduction Particle Filter

Sequential Importance Sampling (SIS)

Sampling from scratch from the importance function π(x0:t|z1:t,u1:t)
implies growing computational complexity for each step over time

Q. How to estimate p(x0:t|z1:t,u1:t) using importance sampling
recursively?

Sequential Importance Sampling

At time t, generate x
[i]
t according to π(xt|x[i]

0:t−1, z1:t,u1:t) (proposal

distribution), and merge it with the previous samples x
[i]
0:t−1 drawn from

π(x0:t−1|z1:t−1,u1:t−1):

x
[i]
0:t = {x

[i]
0:t−1,x

[i]
t } ∼ π(x0:t|z1:t,u1:t)

w(x
[i]
0:t) = w(x

[i]
0:t−1)

p(zt|x[i]
t)p(x

[i]
t |x

[i]
t−1,ut)

π(x
[i]
t |x

[i]
0:t−1, z1:t,u1:t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 13 / 43

Introduction Particle Filter

Sequential Importance Sampling (SIS)

Sampling from scratch from the importance function π(x0:t|z1:t,u1:t)
implies growing computational complexity for each step over time

Q. How to estimate p(x0:t|z1:t,u1:t) using importance sampling
recursively?

Sequential Importance Sampling

At time t, generate x
[i]
t according to π(xt|x[i]

0:t−1, z1:t,u1:t) (proposal

distribution), and merge it with the previous samples x
[i]
0:t−1 drawn from

π(x0:t−1|z1:t−1,u1:t−1):

x
[i]
0:t = {x

[i]
0:t−1,x

[i]
t } ∼ π(x0:t|z1:t,u1:t)

w(x
[i]
0:t) = w(x

[i]
0:t−1)

p(zt|x[i]
t)p(x

[i]
t |x

[i]
t−1,ut)

π(x
[i]
t |x

[i]
0:t−1, z1:t,u1:t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 13 / 43

Introduction Particle Filter

Degeneracy and Resampling

Degeneracy Problem

After a few steps, all but one of the particles (samples) would have very
insignificant normalized weight

Resampling

Eliminate particles with low normalized weights and multiply those with
high normalized weights in a probabilistic manner

Resampling will cause sample impoverishment

Effective sample size (ESS) is a measure of the degeneracy of SIS
that can be used in order to avoid unnecessary resampling steps

N̂eff =
1∑N

i=1 w̃(x
[i]
0:t)

2

Perform resampling only if Neff is lower than a fixed threshold NT

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 14 / 43

Introduction Particle Filter

Degeneracy and Resampling

Degeneracy Problem

After a few steps, all but one of the particles (samples) would have very
insignificant normalized weight

Resampling

Eliminate particles with low normalized weights and multiply those with
high normalized weights in a probabilistic manner

Resampling will cause sample impoverishment

Effective sample size (ESS) is a measure of the degeneracy of SIS
that can be used in order to avoid unnecessary resampling steps

N̂eff =
1∑N

i=1 w̃(x
[i]
0:t)

2

Perform resampling only if Neff is lower than a fixed threshold NT

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 14 / 43

Introduction Particle Filter

Degeneracy and Resampling

Degeneracy Problem

After a few steps, all but one of the particles (samples) would have very
insignificant normalized weight

Resampling

Eliminate particles with low normalized weights and multiply those with
high normalized weights in a probabilistic manner

Resampling will cause sample impoverishment

Effective sample size (ESS) is a measure of the degeneracy of SIS
that can be used in order to avoid unnecessary resampling steps

N̂eff =
1∑N

i=1 w̃(x
[i]
0:t)

2

Perform resampling only if Neff is lower than a fixed threshold NT

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 14 / 43

Introduction Particle Filter

Degeneracy and Resampling

Degeneracy Problem

After a few steps, all but one of the particles (samples) would have very
insignificant normalized weight

Resampling

Eliminate particles with low normalized weights and multiply those with
high normalized weights in a probabilistic manner

Resampling will cause sample impoverishment

Effective sample size (ESS) is a measure of the degeneracy of SIS
that can be used in order to avoid unnecessary resampling steps

N̂eff =
1∑N

i=1 w̃(x
[i]
0:t)

2

Perform resampling only if Neff is lower than a fixed threshold NT

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 14 / 43

Introduction Particle Filter

Proposal Distribution

Selecting an appropriate proposal distribution π(xt|x0:t−1, z1:t,u1:t)
plays an important role in the success of particle filter

The simplest and most common choice is the motion model
(transition density) p(xt|xt−1,ut)
p(xt|xt−1, zt ,ut) is known as the optimal proposal distribution
and limits the degeneracy of the particle filter by minimizing the
conditional variance of unnormalized weights

Importance weights for the optimal proposal distribution can be
obtained as:

w(x
[i]
0:t) = w(x

[i]
0:t−1)p(zt|x

[i]
t−1)

But . . .

In SLAM, neither p(xt|xt−1, zt,ut) nor p(zt|x[i]
t−1) can be computed in

closed form and we have to use approximation

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 15 / 43

Introduction Particle Filter

Proposal Distribution

Selecting an appropriate proposal distribution π(xt|x0:t−1, z1:t,u1:t)
plays an important role in the success of particle filter

The simplest and most common choice is the motion model
(transition density) p(xt|xt−1,ut)
p(xt|xt−1, zt ,ut) is known as the optimal proposal distribution
and limits the degeneracy of the particle filter by minimizing the
conditional variance of unnormalized weights

Importance weights for the optimal proposal distribution can be
obtained as:

w(x
[i]
0:t) = w(x

[i]
0:t−1)p(zt|x

[i]
t−1)

But . . .

In SLAM, neither p(xt|xt−1, zt,ut) nor p(zt|x[i]
t−1) can be computed in

closed form and we have to use approximation

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 15 / 43

Introduction Particle Filter

Proposal Distribution

Selecting an appropriate proposal distribution π(xt|x0:t−1, z1:t,u1:t)
plays an important role in the success of particle filter

The simplest and most common choice is the motion model
(transition density) p(xt|xt−1,ut)
p(xt|xt−1, zt ,ut) is known as the optimal proposal distribution
and limits the degeneracy of the particle filter by minimizing the
conditional variance of unnormalized weights

Importance weights for the optimal proposal distribution can be
obtained as:

w(x
[i]
0:t) = w(x

[i]
0:t−1)p(zt|x

[i]
t−1)

But . . .

In SLAM, neither p(xt|xt−1, zt,ut) nor p(zt|x[i]
t−1) can be computed in

closed form and we have to use approximation

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 15 / 43

Introduction Particle Filter

Proposal Distribution

Selecting an appropriate proposal distribution π(xt|x0:t−1, z1:t,u1:t)
plays an important role in the success of particle filter

The simplest and most common choice is the motion model
(transition density) p(xt|xt−1,ut)
p(xt|xt−1, zt ,ut) is known as the optimal proposal distribution
and limits the degeneracy of the particle filter by minimizing the
conditional variance of unnormalized weights

Importance weights for the optimal proposal distribution can be
obtained as:

w(x
[i]
0:t) = w(x

[i]
0:t−1)p(zt|x

[i]
t−1)

But . . .

In SLAM, neither p(xt|xt−1, zt,ut) nor p(zt|x[i]
t−1) can be computed in

closed form and we have to use approximation

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 15 / 43

Introduction Particle Filter

Proposal Distribution

Selecting an appropriate proposal distribution π(xt|x0:t−1, z1:t,u1:t)
plays an important role in the success of particle filter

The simplest and most common choice is the motion model
(transition density) p(xt|xt−1,ut)
p(xt|xt−1, zt ,ut) is known as the optimal proposal distribution
and limits the degeneracy of the particle filter by minimizing the
conditional variance of unnormalized weights

Importance weights for the optimal proposal distribution can be
obtained as:

w(x
[i]
0:t) = w(x

[i]
0:t−1)p(zt|x

[i]
t−1)

But . . .

In SLAM, neither p(xt|xt−1, zt,ut) nor p(zt|x[i]
t−1) can be computed in

closed form and we have to use approximation

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 15 / 43

RBPF-SLAM

Table of Contents

1 Introduction
SLAM Problem
Bayesian Filtering
Particle Filter

2 RBPF-SLAM

3 Monte Carlo Approximation of the Optimal Proposal Distribution
Introduction
LRS
LIS-1
LIS-2

4 Results
Simulation Results
Experiments On Real Data

5 Conclusion

6 Future Work

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 16 / 43

RBPF-SLAM

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

Motion model is used as the proposal distribution in FastSLAM 1.0

FastSLAM 2.0 linearizes the observation equation and approximates
the optimal proposal distribution with a Gaussian distribution

FastSLAM 2.0 outperforms FastSLAM 1.0

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 17 / 43

RBPF-SLAM

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

Motion model is used as the proposal distribution in FastSLAM 1.0

FastSLAM 2.0 linearizes the observation equation and approximates
the optimal proposal distribution with a Gaussian distribution

FastSLAM 2.0 outperforms FastSLAM 1.0

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 17 / 43

RBPF-SLAM

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

Motion model is used as the proposal distribution in FastSLAM 1.0

FastSLAM 2.0 linearizes the observation equation and approximates
the optimal proposal distribution with a Gaussian distribution

FastSLAM 2.0 outperforms FastSLAM 1.0

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 17 / 43

RBPF-SLAM

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

Motion model is used as the proposal distribution in FastSLAM 1.0

FastSLAM 2.0 linearizes the observation equation and approximates
the optimal proposal distribution with a Gaussian distribution

FastSLAM 2.0 outperforms FastSLAM 1.0

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 17 / 43

RBPF-SLAM

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

Motion model is used as the proposal distribution in FastSLAM 1.0

FastSLAM 2.0 linearizes the observation equation and approximates
the optimal proposal distribution with a Gaussian distribution

FastSLAM 2.0 outperforms FastSLAM 1.0

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 17 / 43

RBPF-SLAM

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

Motion model is used as the proposal distribution in FastSLAM 1.0

FastSLAM 2.0 linearizes the observation equation and approximates
the optimal proposal distribution with a Gaussian distribution

FastSLAM 2.0 outperforms FastSLAM 1.0

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 17 / 43

RBPF-SLAM

FastSLAM 2.0

Linearization error

Gaussian approximation

Linear motion models with respect to the noise variable vt

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 18 / 43

RBPF-SLAM

FastSLAM 2.0

Linearization error

Gaussian approximation

Linear motion models with respect to the noise variable vt

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 18 / 43

RBPF-SLAM

FastSLAM 2.0

Linearization error

Gaussian approximation

Linear motion models with respect to the noise variable vt

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 18 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution

Table of Contents

1 Introduction
SLAM Problem
Bayesian Filtering
Particle Filter

2 RBPF-SLAM

3 Monte Carlo Approximation of the Optimal Proposal Distribution
Introduction
LRS
LIS-1
LIS-2

4 Results
Simulation Results
Experiments On Real Data

5 Conclusion

6 Future Work

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 19 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

FastSLAM 2.0 v.s. The Proposed Algorithms

FastSLAM 2.0

1 Approximate the optimal proposal distribution with a Gaussian using
the linearized observation equation. Sample from this Gaussian

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using the linearized observation
equation

4 Perform resampling

Proposed Algorithms

1 Sample from the optimal proposal distribution using Monte Carlo
sampling methods

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using Monte Carlo integration

4 Perform resampling only if it is necessary according to ESS

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 20 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

FastSLAM 2.0 v.s. The Proposed Algorithms

FastSLAM 2.0

1 Approximate the optimal proposal distribution with a Gaussian using
the linearized observation equation. Sample from this Gaussian

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using the linearized observation
equation

4 Perform resampling

Proposed Algorithms

1 Sample from the optimal proposal distribution using Monte Carlo
sampling methods

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using Monte Carlo integration

4 Perform resampling only if it is necessary according to ESS

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 20 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

FastSLAM 2.0 v.s. The Proposed Algorithms

FastSLAM 2.0

1 Approximate the optimal proposal distribution with a Gaussian using
the linearized observation equation. Sample from this Gaussian

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using the linearized observation
equation

4 Perform resampling

Proposed Algorithms

1 Sample from the optimal proposal distribution using Monte Carlo
sampling methods

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using Monte Carlo integration

4 Perform resampling only if it is necessary according to ESS

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 20 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

FastSLAM 2.0 v.s. The Proposed Algorithms

FastSLAM 2.0

1 Approximate the optimal proposal distribution with a Gaussian using
the linearized observation equation. Sample from this Gaussian

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using the linearized observation
equation

4 Perform resampling

Proposed Algorithms

1 Sample from the optimal proposal distribution using Monte Carlo
sampling methods

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using Monte Carlo integration

4 Perform resampling only if it is necessary according to ESS

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 20 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

FastSLAM 2.0 v.s. The Proposed Algorithms

FastSLAM 2.0

1 Approximate the optimal proposal distribution with a Gaussian using
the linearized observation equation. Sample from this Gaussian

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using the linearized observation
equation

4 Perform resampling

Proposed Algorithms

1 Sample from the optimal proposal distribution using Monte Carlo
sampling methods

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using Monte Carlo integration

4 Perform resampling only if it is necessary according to ESS

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 20 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

FastSLAM 2.0 v.s. The Proposed Algorithms

FastSLAM 2.0

1 Approximate the optimal proposal distribution with a Gaussian using
the linearized observation equation. Sample from this Gaussian

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using the linearized observation
equation

4 Perform resampling

Proposed Algorithms

1 Sample from the optimal proposal distribution using Monte Carlo
sampling methods

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using Monte Carlo integration

4 Perform resampling only if it is necessary according to ESS

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 20 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

FastSLAM 2.0 v.s. The Proposed Algorithms

FastSLAM 2.0

1 Approximate the optimal proposal distribution with a Gaussian using
the linearized observation equation. Sample from this Gaussian

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using the linearized observation
equation

4 Perform resampling

Proposed Algorithms

1 Sample from the optimal proposal distribution using Monte Carlo
sampling methods

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using Monte Carlo integration

4 Perform resampling only if it is necessary according to ESS

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 20 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

FastSLAM 2.0 v.s. The Proposed Algorithms

FastSLAM 2.0

1 Approximate the optimal proposal distribution with a Gaussian using
the linearized observation equation. Sample from this Gaussian

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using the linearized observation
equation

4 Perform resampling

Proposed Algorithms

1 Sample from the optimal proposal distribution using Monte Carlo
sampling methods

2 Update the landmarks EKFs for the observed features

3 Compute the importance weights using Monte Carlo integration

4 Perform resampling only if it is necessary according to ESS

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 20 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

MC Approximation of The Optimal Proposal Dist.

MC sampling methods such as importance sampling (IS) and
rejection sampling (RS) can be used in order to sample from the

optimal proposal distribution p(st|s[i]t−1, zt,ut)

Instead of sampling directly from the optimal proposal distribution . . .

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and then weight those samples

proportional to
p(st|s[i]t−1,zt,ut)

q(st|s[i]t−1,zt,ut)
Local Importance Sampling (LIS)

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and accept some of them as samples
of the optimal proposal distribution according to rejection sampling
criteria Local Rejection Sampling (LRS)

q(st|s[i]t−1,ut, zt) = p(st|s[i]t−1,ut)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 21 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

MC Approximation of The Optimal Proposal Dist.

MC sampling methods such as importance sampling (IS) and
rejection sampling (RS) can be used in order to sample from the

optimal proposal distribution p(st|s[i]t−1, zt,ut)

Instead of sampling directly from the optimal proposal distribution . . .

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and then weight those samples

proportional to
p(st|s[i]t−1,zt,ut)

q(st|s[i]t−1,zt,ut)

Local Importance Sampling (LIS)

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and accept some of them as samples
of the optimal proposal distribution according to rejection sampling
criteria Local Rejection Sampling (LRS)

q(st|s[i]t−1,ut, zt) = p(st|s[i]t−1,ut)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 21 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

MC Approximation of The Optimal Proposal Dist.

MC sampling methods such as importance sampling (IS) and
rejection sampling (RS) can be used in order to sample from the

optimal proposal distribution p(st|s[i]t−1, zt,ut)

Instead of sampling directly from the optimal proposal distribution . . .

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and then weight those samples

proportional to
p(st|s[i]t−1,zt,ut)

q(st|s[i]t−1,zt,ut)
Local Importance Sampling (LIS)

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and accept some of them as samples
of the optimal proposal distribution according to rejection sampling
criteria Local Rejection Sampling (LRS)

q(st|s[i]t−1,ut, zt) = p(st|s[i]t−1,ut)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 21 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

MC Approximation of The Optimal Proposal Dist.

MC sampling methods such as importance sampling (IS) and
rejection sampling (RS) can be used in order to sample from the

optimal proposal distribution p(st|s[i]t−1, zt,ut)

Instead of sampling directly from the optimal proposal distribution . . .

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and then weight those samples

proportional to
p(st|s[i]t−1,zt,ut)

q(st|s[i]t−1,zt,ut)
Local Importance Sampling (LIS)

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and accept some of them as samples
of the optimal proposal distribution according to rejection sampling
criteria

Local Rejection Sampling (LRS)

q(st|s[i]t−1,ut, zt) = p(st|s[i]t−1,ut)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 21 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

MC Approximation of The Optimal Proposal Dist.

MC sampling methods such as importance sampling (IS) and
rejection sampling (RS) can be used in order to sample from the

optimal proposal distribution p(st|s[i]t−1, zt,ut)

Instead of sampling directly from the optimal proposal distribution . . .

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and then weight those samples

proportional to
p(st|s[i]t−1,zt,ut)

q(st|s[i]t−1,zt,ut)
Local Importance Sampling (LIS)

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and accept some of them as samples
of the optimal proposal distribution according to rejection sampling
criteria Local Rejection Sampling (LRS)

q(st|s[i]t−1,ut, zt) = p(st|s[i]t−1,ut)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 21 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution Introduction

MC Approximation of The Optimal Proposal Dist.

MC sampling methods such as importance sampling (IS) and
rejection sampling (RS) can be used in order to sample from the

optimal proposal distribution p(st|s[i]t−1, zt,ut)

Instead of sampling directly from the optimal proposal distribution . . .

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and then weight those samples

proportional to
p(st|s[i]t−1,zt,ut)

q(st|s[i]t−1,zt,ut)
Local Importance Sampling (LIS)

We can generate M samples {s[i,j]t }Mj=1 according to another

distribution like q(st|s[i]t−1, zt,ut) and accept some of them as samples
of the optimal proposal distribution according to rejection sampling
criteria Local Rejection Sampling (LRS)

q(st|s[i]t−1,ut, zt) = p(st|s[i]t−1,ut)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 21 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LRS

Local Rejection Sampling (LRS)

graphics by M. Jordan

Rejection Sampling

1 Generate u[i] ∼ U [0, 1] and s
[i,j]
t ∼ p(st|s[i]t−1,ut)

2 Accept s
[i,j]
t if u[i] ≤ p(s

[i,j]
t |s[i]t−1,zt,ut)

C·p(s[i,j]t |s[i]t−1,ut)
=

p(zt|s[i,j]t)

max
j
p(zt|s[i,j]t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 22 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LRS

Local Rejection Sampling (LRS)

graphics by M. Jordan

Rejection Sampling

1 Generate u[i] ∼ U [0, 1] and s
[i,j]
t ∼ p(st|s[i]t−1,ut)

2 Accept s
[i,j]
t if u[i] ≤ p(s

[i,j]
t |s[i]t−1,zt,ut)

C·p(s[i,j]t |s[i]t−1,ut)
=

p(zt|s[i,j]t)

max
j
p(zt|s[i,j]t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 22 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LRS

Local Rejection Sampling (LRS)

graphics by M. Jordan

Rejection Sampling

1 Generate u[i] ∼ U [0, 1] and s
[i,j]
t ∼ p(st|s[i]t−1,ut)

2 Accept s
[i,j]
t if u[i] ≤ p(s

[i,j]
t |s[i]t−1,zt,ut)

C·p(s[i,j]t |s[i]t−1,ut)

=
p(zt|s[i,j]t)

max
j
p(zt|s[i,j]t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 22 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LRS

Local Rejection Sampling (LRS)

graphics by M. Jordan

Rejection Sampling

1 Generate u[i] ∼ U [0, 1] and s
[i,j]
t ∼ p(st|s[i]t−1,ut)

2 Accept s
[i,j]
t if u[i] ≤ p(s

[i,j]
t |s[i]t−1,zt,ut)

C·p(s[i,j]t |s[i]t−1,ut)
=

p(zt|s[i,j]t)

max
j
p(zt|s[i,j]t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 22 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LRS

LRS Cont’d.

Now we have to compute the importance weights for the set of accepted
samples

We should compute p(zt|s[i]t−1)

p(zt|s[i]t−1) =
∫
p(zt|st)p(st|s[i]t−1,ut)dst ≈

MC Intergration

1

M

M∑
j=1

p(zt|s[i,j]t)

p(zt|s[i,j]t) can be approximated by a Gaussian

MC Integration ⇒ Large number of local particles M

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 23 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LRS

LRS Cont’d.

Now we have to compute the importance weights for the set of accepted
samples

We should compute p(zt|s[i]t−1)

p(zt|s[i]t−1) =
∫
p(zt|st)p(st|s[i]t−1,ut)dst ≈

MC Intergration

1

M

M∑
j=1

p(zt|s[i,j]t)

p(zt|s[i,j]t) can be approximated by a Gaussian

MC Integration ⇒ Large number of local particles M

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 23 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LRS

LRS Cont’d.

Now we have to compute the importance weights for the set of accepted
samples

We should compute p(zt|s[i]t−1)

p(zt|s[i]t−1) =
∫
p(zt|st)p(st|s[i]t−1,ut)dst ≈

MC Intergration

1

M

M∑
j=1

p(zt|s[i,j]t)

p(zt|s[i,j]t) can be approximated by a Gaussian

MC Integration ⇒ Large number of local particles M

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 23 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LRS

LRS Cont’d.

Now we have to compute the importance weights for the set of accepted
samples

We should compute p(zt|s[i]t−1)

p(zt|s[i]t−1) =
∫
p(zt|st)p(st|s[i]t−1,ut)dst ≈

MC Intergration

1

M

M∑
j=1

p(zt|s[i,j]t)

p(zt|s[i,j]t) can be approximated by a Gaussian

MC Integration ⇒ Large number of local particles M

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 23 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LRS

LRS Cont’d.

Now we have to compute the importance weights for the set of accepted
samples

We should compute p(zt|s[i]t−1)

p(zt|s[i]t−1) =
∫
p(zt|st)p(st|s[i]t−1,ut)dst ≈

MC Intergration

1

M

M∑
j=1

p(zt|s[i,j]t)

p(zt|s[i,j]t) can be approximated by a Gaussian

MC Integration

⇒ Large number of local particles M

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 23 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LRS

LRS Cont’d.

Now we have to compute the importance weights for the set of accepted
samples

We should compute p(zt|s[i]t−1)

p(zt|s[i]t−1) =
∫
p(zt|st)p(st|s[i]t−1,ut)dst ≈

MC Intergration

1

M

M∑
j=1

p(zt|s[i,j]t)

p(zt|s[i,j]t) can be approximated by a Gaussian

MC Integration ⇒ Large number of local particles M

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 23 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LIS-1

Local Importance Sampling (LIS)
LIS-1

LIS-1

1 Similar to LRS, we have to generate M random samples {s[i,j]t }Mj=1

according to p(st|s[i]t−1,ut)

2 Local IS weights: w(LIS)(s
[i,j]
t) = p(zt|s[i,j]t) ∝ p(s

[i,j]
t |s[i]t−1,zt,ut)

p(s
[i,j]
t |s[i]t−1,ut)

3 Local resampling among {s[i,j]t }Mj=1 using w(LIS)(s
[i,j]
t)

4 Main weights: w(s
∗[i,j]
t) = w(s

[i]
t−1)p(zt|s

[i]
t−1)

5 p(zt|s[i]t−1) ≈
MC Integration

1
M

∑M
j=1 p(zt|s

[i,j]
t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 24 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LIS-1

Local Importance Sampling (LIS)
LIS-1

LIS-1

1 Similar to LRS, we have to generate M random samples {s[i,j]t }Mj=1

according to p(st|s[i]t−1,ut)

2 Local IS weights: w(LIS)(s
[i,j]
t) = p(zt|s[i,j]t) ∝ p(s

[i,j]
t |s[i]t−1,zt,ut)

p(s
[i,j]
t |s[i]t−1,ut)

3 Local resampling among {s[i,j]t }Mj=1 using w(LIS)(s
[i,j]
t)

4 Main weights: w(s
∗[i,j]
t) = w(s

[i]
t−1)p(zt|s

[i]
t−1)

5 p(zt|s[i]t−1) ≈
MC Integration

1
M

∑M
j=1 p(zt|s

[i,j]
t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 24 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LIS-1

Local Importance Sampling (LIS)
LIS-1

LIS-1

1 Similar to LRS, we have to generate M random samples {s[i,j]t }Mj=1

according to p(st|s[i]t−1,ut)

2 Local IS weights: w(LIS)(s
[i,j]
t) = p(zt|s[i,j]t) ∝ p(s

[i,j]
t |s[i]t−1,zt,ut)

p(s
[i,j]
t |s[i]t−1,ut)

3 Local resampling among {s[i,j]t }Mj=1 using w(LIS)(s
[i,j]
t)

4 Main weights: w(s
∗[i,j]
t) = w(s

[i]
t−1)p(zt|s

[i]
t−1)

5 p(zt|s[i]t−1) ≈
MC Integration

1
M

∑M
j=1 p(zt|s

[i,j]
t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 24 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LIS-1

Local Importance Sampling (LIS)
LIS-1

LIS-1

1 Similar to LRS, we have to generate M random samples {s[i,j]t }Mj=1

according to p(st|s[i]t−1,ut)

2 Local IS weights: w(LIS)(s
[i,j]
t) = p(zt|s[i,j]t) ∝ p(s

[i,j]
t |s[i]t−1,zt,ut)

p(s
[i,j]
t |s[i]t−1,ut)

3 Local resampling among {s[i,j]t }Mj=1 using w(LIS)(s
[i,j]
t)

4 Main weights: w(s
∗[i,j]
t) = w(s

[i]
t−1)p(zt|s

[i]
t−1)

5 p(zt|s[i]t−1) ≈
MC Integration

1
M

∑M
j=1 p(zt|s

[i,j]
t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 24 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LIS-1

Local Importance Sampling (LIS)
LIS-1

LIS-1

1 Similar to LRS, we have to generate M random samples {s[i,j]t }Mj=1

according to p(st|s[i]t−1,ut)

2 Local IS weights: w(LIS)(s
[i,j]
t) = p(zt|s[i,j]t) ∝ p(s

[i,j]
t |s[i]t−1,zt,ut)

p(s
[i,j]
t |s[i]t−1,ut)

3 Local resampling among {s[i,j]t }Mj=1 using w(LIS)(s
[i,j]
t)

4 Main weights: w(s
∗[i,j]
t) = w(s

[i]
t−1)p(zt|s

[i]
t−1)

5 p(zt|s[i]t−1) ≈
MC Integration

1
M

∑M
j=1 p(zt|s

[i,j]
t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 24 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LIS-1

Local Importance Sampling (LIS)
LIS-1

LIS-1

1 Similar to LRS, we have to generate M random samples {s[i,j]t }Mj=1

according to p(st|s[i]t−1,ut)

2 Local IS weights: w(LIS)(s
[i,j]
t) = p(zt|s[i,j]t) ∝ p(s

[i,j]
t |s[i]t−1,zt,ut)

p(s
[i,j]
t |s[i]t−1,ut)

3 Local resampling among {s[i,j]t }Mj=1 using w(LIS)(s
[i,j]
t)

4 Main weights: w(s
∗[i,j]
t) = w(s

[i]
t−1)p(zt|s

[i]
t−1)

5 p(zt|s[i]t−1) ≈
MC Integration

1
M

∑M
j=1 p(zt|s

[i,j]
t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 24 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LIS-2

Local Importance Sampling (LIS)
LIS-2

LIS-2

Similar to LRS and LIS-1, we have to generate M random samples

{s[i,j]t }Mj=1 according to p(st|s[i]t−1,ut)

Total weights of generated particles {s[i,j]t }
N,M
(i,j)=(1,1) = local weights

× SIS weights

Instead of eliminating local weights through local resamplings (LIS-1),
total weights are computed in LIS-2

It is proved in the thesis that total weights would be equal to

w(s
[i,j]
0:t) = w(s

[i]
0:t−1)p(zt|s

[i,j]
t)

Local weights are used in LIS-2 to filter those samples with low p(zt|s[i,j]t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 25 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LIS-2

Local Importance Sampling (LIS)
LIS-2

LIS-2

Similar to LRS and LIS-1, we have to generate M random samples

{s[i,j]t }Mj=1 according to p(st|s[i]t−1,ut)

Total weights of generated particles {s[i,j]t }
N,M
(i,j)=(1,1) = local weights

× SIS weights

Instead of eliminating local weights through local resamplings (LIS-1),
total weights are computed in LIS-2

It is proved in the thesis that total weights would be equal to

w(s
[i,j]
0:t) = w(s

[i]
0:t−1)p(zt|s

[i,j]
t)

Local weights are used in LIS-2 to filter those samples with low p(zt|s[i,j]t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 25 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LIS-2

Local Importance Sampling (LIS)
LIS-2

LIS-2

Similar to LRS and LIS-1, we have to generate M random samples

{s[i,j]t }Mj=1 according to p(st|s[i]t−1,ut)

Total weights of generated particles {s[i,j]t }
N,M
(i,j)=(1,1) = local weights

× SIS weights

Instead of eliminating local weights through local resamplings (LIS-1),
total weights are computed in LIS-2

It is proved in the thesis that total weights would be equal to

w(s
[i,j]
0:t) = w(s

[i]
0:t−1)p(zt|s

[i,j]
t)

Local weights are used in LIS-2 to filter those samples with low p(zt|s[i,j]t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 25 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LIS-2

Local Importance Sampling (LIS)
LIS-2

LIS-2

Similar to LRS and LIS-1, we have to generate M random samples

{s[i,j]t }Mj=1 according to p(st|s[i]t−1,ut)

Total weights of generated particles {s[i,j]t }
N,M
(i,j)=(1,1) = local weights

× SIS weights

Instead of eliminating local weights through local resamplings (LIS-1),
total weights are computed in LIS-2

It is proved in the thesis that total weights would be equal to

w(s
[i,j]
0:t) = w(s

[i]
0:t−1)p(zt|s

[i,j]
t)

Local weights are used in LIS-2 to filter those samples with low p(zt|s[i,j]t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 25 / 43

Monte Carlo Approximation of the Optimal Proposal Distribution LIS-2

Local Importance Sampling (LIS)
LIS-2

LIS-2

Similar to LRS and LIS-1, we have to generate M random samples

{s[i,j]t }Mj=1 according to p(st|s[i]t−1,ut)

Total weights of generated particles {s[i,j]t }
N,M
(i,j)=(1,1) = local weights

× SIS weights

Instead of eliminating local weights through local resamplings (LIS-1),
total weights are computed in LIS-2

It is proved in the thesis that total weights would be equal to

w(s
[i,j]
0:t) = w(s

[i]
0:t−1)p(zt|s

[i,j]
t)

Local weights are used in LIS-2 to filter those samples with low p(zt|s[i,j]t)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 25 / 43

Results

Table of Contents

1 Introduction
SLAM Problem
Bayesian Filtering
Particle Filter

2 RBPF-SLAM

3 Monte Carlo Approximation of the Optimal Proposal Distribution
Introduction
LRS
LIS-1
LIS-2

4 Results
Simulation Results
Experiments On Real Data

5 Conclusion

6 Future Work

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 26 / 43

Results Simulation Results

Simulation

50 Monte Carlo runs with different seeds

200m × 200m simulated environment

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

80

meters

m
et
er
s

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 27 / 43

Results Simulation Results

Number of Resamplings

Table: Average number of resampling steps over 50 MC simulations

N FastSLAM 2.0
LRS LIS-2

(M = 50) (M = 3)

20 221.01 180.84 188.85

30 229.79 186 193.13

40 235.71 186.55 195.33

50 237.80 188.96 196.32

60 239.55 189.62 195.99

70 240.10 189.40 197.85

80 243.61 190.39 197.96

90 244.16 190.94 198.73

100 245.70 192.69 199.50

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 28 / 43

Results Simulation Results

Runtime

Table: Average Runtime over 50 MC simulations

N FastSLAM 2.0
LRS LIS-2

(M = 50) (M = 3)
(sec) (sec) (sec)

20 36 318 38

30 52 480 56

40 68 635 75

50 84 794 93

60 103 953 112

70 117 1106 130

80 134 1265 148

90 149 1413 165

100 167 1588 183

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 29 / 43

Results Simulation Results

Mean Square Error

10
1

10
2

0

10

20

30

40

50

60

70

Number of Particles

av
er
ag
e
M
S
E
ov
er

ti
m
e
(m

2
)

FastSLAM2.0

LRS

LIS−2

Figure: Average MSE of estimated robot pose over time. The parameter M is set
to 50 for LRS and 3 for LIS-2.

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 30 / 43

Results Simulation Results

Mean Square Error Cont’d.

0 25 50 75 100 125 150 175 200
0

20

40

60

80

100

120

140

time (sec)

av
er
ag
e
M
S
E

ov
er

50
M
C

si
m
u
la
ti
on

s
(m

2
)

FastSLAM2.0

LRS (L=50)

LRS (L=20)

LIS−2 (L=20)

LIS−2 (L=3)

Figure: Average MSE of estimated robot position over 50 Monte Carlo
simulations.

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 31 / 43

Results Experiments On Real Data

Victoria Park Dataset

Victoria Park dataset by E. Nebot and J. Guivant

Large environment 200m × 300m
More than 108,000 controls and observations

−100 −50 0 50 100 150 200 250
−50

0

50

100

150

200

Figure: Estimated Robot Path

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 32 / 43

Results Experiments On Real Data

Victoria Park Dataset

Victoria Park dataset by E. Nebot and J. Guivant
Large environment 200m × 300m

More than 108,000 controls and observations

−100 −50 0 50 100 150 200 250
−50

0

50

100

150

200

Figure: Estimated Robot Path

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 32 / 43

Results Experiments On Real Data

Victoria Park Dataset

Victoria Park dataset by E. Nebot and J. Guivant
Large environment 200m × 300m
More than 108,000 controls and observations

−100 −50 0 50 100 150 200 250
−50

0

50

100

150

200

Figure: Estimated Robot Path

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 32 / 43

Results Experiments On Real Data

Victoria Park Dataset

Victoria Park dataset by E. Nebot and J. Guivant
Large environment 200m × 300m
More than 108,000 controls and observations

−100 −50 0 50 100 150 200 250
−50

0

50

100

150

200

Figure: Estimated Robot Path

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 32 / 43

Conclusion

Table of Contents

1 Introduction
SLAM Problem
Bayesian Filtering
Particle Filter

2 RBPF-SLAM

3 Monte Carlo Approximation of the Optimal Proposal Distribution
Introduction
LRS
LIS-1
LIS-2

4 Results
Simulation Results
Experiments On Real Data

5 Conclusion

6 Future Work

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 33 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Conclusion

Conclusion

LRS and LIS can describe non-Gaussian (e.g. multi-modal) proposal
distributions

Nonlinear motion models

Linearization error

LRS and LIS have control over the accuracy of the approximation
through M

Much lower number of resampling steps in LRS and LIS-2 than in
FastSLAM 2.0 ⇒ Slower rate of degeneracy ⇒ Better approximation
of the optimal proposal distribution ⇒ Sample impoverishment
problem

Monte Carlo Integration in LRS and LIS-1 ⇒ Large M ⇒ High
computational cost

Accurate results of LRS come at the cost of large runtime

LIS-2 (M=3) outperform FastSLAM 2.0 and LRS (M=50) for
moderate number of particles (N)

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 34 / 43

Future Work

Table of Contents

1 Introduction
SLAM Problem
Bayesian Filtering
Particle Filter

2 RBPF-SLAM

3 Monte Carlo Approximation of the Optimal Proposal Distribution
Introduction
LRS
LIS-1
LIS-2

4 Results
Simulation Results
Experiments On Real Data

5 Conclusion

6 Future Work

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 35 / 43

Future Work

Future Work

How to guess an “appropriate” value for M?

More Monte Carlo runs

Hybrid algorithm (linearization + Monte Carlo sampling)

Repeat the simulations for the case of unknown data association

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 36 / 43

Future Work

Future Work

How to guess an “appropriate” value for M?

More Monte Carlo runs

Hybrid algorithm (linearization + Monte Carlo sampling)

Repeat the simulations for the case of unknown data association

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 36 / 43

Future Work

Future Work

How to guess an “appropriate” value for M?

More Monte Carlo runs

Hybrid algorithm (linearization + Monte Carlo sampling)

Repeat the simulations for the case of unknown data association

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 36 / 43

Future Work

Future Work

How to guess an “appropriate” value for M?

More Monte Carlo runs

Hybrid algorithm (linearization + Monte Carlo sampling)

Repeat the simulations for the case of unknown data association

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 36 / 43

Papers

Papers

IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) 2011: Monte-Carlo Approximation of The Optimal
Proposal Distribution in RBPF-SLAM (submitted)

. . .

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 37 / 43

Thank You

Thank You . . .

Figure: Melon: The Semi-autonomous Mobile Robot of K.N. Toosi Univ. of
Tech.

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 38 / 43

Thank You

Thank You . . .

Figure: Melon: The Semi-autonomous Mobile Robot of K.N. Toosi Univ. of
Tech.

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 38 / 43

Thank You

Thank you . . .

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 39 / 43

Thank You

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

We can estimate p(s0:t|z1:t,u1:t) using a particle filter

p(θk|s
[i]
0:t, z1:t,u1:t) can be estimated using an EKF for each robot

path particle s
[i]
0:t

A map (estimated locations of the features) is attached to each robot
path particle

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 40 / 43

Thank You

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

We can estimate p(s0:t|z1:t,u1:t) using a particle filter

p(θk|s
[i]
0:t, z1:t,u1:t) can be estimated using an EKF for each robot

path particle s
[i]
0:t

A map (estimated locations of the features) is attached to each robot
path particle

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 40 / 43

Thank You

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

We can estimate p(s0:t|z1:t,u1:t) using a particle filter

p(θk|s
[i]
0:t, z1:t,u1:t) can be estimated using an EKF for each robot

path particle s
[i]
0:t

A map (estimated locations of the features) is attached to each robot
path particle

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 40 / 43

Thank You

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

We can estimate p(s0:t|z1:t,u1:t) using a particle filter

p(θk|s
[i]
0:t, z1:t,u1:t) can be estimated using an EKF for each robot

path particle s
[i]
0:t

A map (estimated locations of the features) is attached to each robot
path particle

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 40 / 43

Thank You

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

We can estimate p(s0:t|z1:t,u1:t) using a particle filter

p(θk|s
[i]
0:t, z1:t,u1:t) can be estimated using an EKF for each robot

path particle s
[i]
0:t

A map (estimated locations of the features) is attached to each robot
path particle

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 40 / 43

Thank You

Rao-Blackwellized Particle Filter in SLAM

SLAM is a very high-dimensional problem

Estimating the p(s0:t,θ|z1:t,u1:t) using a particle filter can be very
inefficient

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

We can estimate p(s0:t|z1:t,u1:t) using a particle filter

p(θk|s
[i]
0:t, z1:t,u1:t) can be estimated using an EKF for each robot

path particle s
[i]
0:t

A map (estimated locations of the features) is attached to each robot
path particle

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 40 / 43

Thank You

Importance Sampling

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 41 / 43

Thank You

Importance Sampling (IS)

Idea

Generate samples from another distribution called the importance function

like π(x), and weight these samples according to w∗(x[i]) = p(x[i])

π(x[i])
:

Ep(x)[h(x)] =
∫

h(x) p(x)π(x) π(x)dx =
1

N

N∑
i=1

w∗(x[i])h(x[i])

In practice we compute importance weights w(x) proportional to p(x)
π(x) and

normalize them to estimate the expected value as:

Ep(x)[h(x)] ≈
N∑
i=1

w(x[i])∑N
j=1w(x

[j])
h(x[i])

But . . .

How to do this recursively in time?
K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 42 / 43

Thank You

Importance Sampling (IS)

Idea

Generate samples from another distribution called the importance function

like π(x), and weight these samples according to w∗(x[i]) = p(x[i])

π(x[i])
:

Ep(x)[h(x)] =
∫

h(x) p(x)π(x) π(x)dx =
1

N

N∑
i=1

w∗(x[i])h(x[i])

In practice we compute importance weights w(x) proportional to p(x)
π(x) and

normalize them to estimate the expected value as:

Ep(x)[h(x)] ≈
N∑
i=1

w(x[i])∑N
j=1w(x

[j])
h(x[i])

But . . .

How to do this recursively in time?
K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 42 / 43

Thank You

Importance Sampling (IS)

Idea

Generate samples from another distribution called the importance function

like π(x), and weight these samples according to w∗(x[i]) = p(x[i])

π(x[i])
:

Ep(x)[h(x)] =
∫

h(x) p(x)π(x) π(x)dx =
1

N

N∑
i=1

w∗(x[i])h(x[i])

In practice we compute importance weights w(x) proportional to p(x)
π(x) and

normalize them to estimate the expected value as:

Ep(x)[h(x)] ≈
N∑
i=1

w(x[i])∑N
j=1w(x

[j])
h(x[i])

But . . .

How to do this recursively in time?
K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 42 / 43

Thank You

Importance Sampling (IS)

Idea

Generate samples from another distribution called the importance function

like π(x), and weight these samples according to w∗(x[i]) = p(x[i])

π(x[i])
:

Ep(x)[h(x)] =
∫

h(x) p(x)π(x) π(x)dx =
1

N

N∑
i=1

w∗(x[i])h(x[i])

In practice we compute importance weights w(x) proportional to p(x)
π(x) and

normalize them to estimate the expected value as:

Ep(x)[h(x)] ≈
N∑
i=1

w(x[i])∑N
j=1w(x

[j])
h(x[i])

But . . .

How to do this recursively in time?
K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 42 / 43

Thank You

SIR

K. Khosoussi (ARAS) Development of SLAM Algorithms July 13, 2011 43 / 43

	Introduction
	SLAM Problem
	Bayesian Filtering
	Particle Filter

	RBPF-SLAM
	Monte Carlo Approximation of the Optimal Proposal Distribution
	Introduction
	LRS
	LIS-1
	LIS-2

	Results
	Simulation Results
	Experiments On Real Data

	Conclusion
	Future Work

