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ws(v) quantifies the “size” of scan Sv collected at the
corresponding pose. Then, the communication cost incurred
as a result of executing policy ⇡ can be modelled as

f�(⇡) ,
X

v2V
ws(v)⇡(v). (2)

In the special case of uniform weights, f� reflects the number
of exchanges made by ⇡ (up to a constant).
2) Induced Division of Labor: Upon executing an exchange
policy, each robot has to perform sensor registration on a
subset of L. The exchange policy implicitly determines the
distribution of the workload between the robots. The second
objective captures this induced workload. To quantify this
workload, first note that any admissible policy ⇡ divides the
initial candidate set into L = L⇡

1 [ L⇡
2 in which L⇡

1 (resp.,
L⇡
2 ) is the set of edges incident to V2 (resp., V1) at a vertex

v such that ⇡(v) = 1. These sets can be empty (monolog)
and are not necessarily disjoint: L⇡

12 , L⇡
1 \ L⇡

2 is the set
of edges like {u,v} 2 L such that ⇡(u) = ⇡(v) = 1 (see
Figure 2b). L⇡

1 \L⇡
2 (resp., L⇡

2 \L⇡
1 ) can only be searched by

the first (resp., second) robot. On the contrary, in principle
both robots can screen the candidates in L⇡

12. We can either
divide the burden of searching in L⇡

12 between the robots,
or simply let each robot screen it on its own. The latter
is preferred due to the following advantages. First, from
a robustness perspective, verifying L⇡

12 separately on each
robot creates a desirable redundancy in case robots are unable
to exchange their newly discovered loop closures due to
problems like communication failure. Furthermore, the cost
of post-exchange communication will be slightly reduced
since we do not need to exchange the loop closures found
in L⇡

12 (Section II-D). Finally, as we will see shortly, this
choice leads to tractable optimization problems.

Suppose the computational cost of verifying candidate
inter-robot loop closure {u,v} is quantified by cuv � 0. The
total computational cost due to sensor registration induced
by exchange policy ⇡ on robot i 2 {1,2} is given by

`⇡i =
X

v2V\Vi

X

u⇠v

cuv⇡(v). (3)

Note that under uniform {cuv}u⇠v , `⇡i is proportional to the
number of potential loop closures that must be verified by
robot i as a result of exchange policy ⇡. Let ↵1 and ↵2 be
non-negative parameters that control the induced workload
balance between the two robots, such that, e.g., increasing
↵i will shift the balance in favor of robot i. For example,
in a heterogeneous data exchange between a typical robot
and a tactical supercomputer, one may seek to choose an
admissible policy such that most of the induced workload is
redirected toward the tactical supercomputer. This narrative
results in

f�(⇡;↵1,↵2) , ↵1`
⇡
1 + ↵2`

⇡
2 (4)

=
X

v2V
w`(v)⇡(v), (5)

in which

w` : v 7!
(
↵2

P
u⇠v cuv v 2 V1,

↵1
P

u⇠v cuv v 2 V2.
(6)

Problem 1 (Optimal Data Exchange Problems (ODEP)).

minimize
⇡

f�(⇡;↵1,↵2)

subject to ⇡ is admissible.
(P1)

minimize
⇡

f�(⇡)

subject to ⇡ is admissible.
(P2)

minimize
⇡

f•(⇡;↵1,↵2,!)

subject to ⇡ is admissible.
(P3)

f•(⇡;↵1,↵2,!) , f�(⇡) + !f�(⇡;↵1,↵2) (7)

=
X

v2V
w•(v)⇡(v), (8)

in which w• : v 7! ws(v) + !w`(v).

C. Solving the Optimal Data Exchange Problem
It is easy to see that P1:3 are all instances of the weighted

minimum bipartite vertex cover problem.1 To see this, first
note that the admissibility constraint needed for guaranteeing
the completeness of search is identical to the constraint
in vertex cover. Translating an instance of one of these
narratives to an equivalent instance of the other (i.e., mapping
a lossless exchange policy to an equivalent vertex cover
⇡ 7! ⇧ and vice versa) is trivial: ⇧ ,

�
v 2 V : ⇡(v) = 1

 

and ⇡ : v 7! 1⇧(v) where

1⇧(v) ,
(
1 if v 2 ⇧,
0 if v 2 V \⇧.

(9)

Finally, note that the cost of ⇡ (in ODEP) is equal to that
of ⇧ in the weighted minimum bipartite vertex cover, and
vice versa. Consequently P1:3 can all be solved using the
same machinery. Furthermore, this result characterizes the
communication cost incurred in the search for inter-robot
loop closures and the induced workload balance in terms of
the graph topology and vertex/edge weights through a well-
understood graph invariant.

Algorithm
Although the weighted minimum vertex cover problem is

NP-hard in general, it can be solved efficiently in bipartite
graphs; see, e.g., [19]. Therefore, by virtue of the above-
mentioned observation, we can solve any ODEP efficiently
by casting it as a weighted minimum bipartite vertex cover
problem. Moreover, Algorithm 1 can be slightly restructured
to execute the vertex cover translation of an optimal policy—
see Algorithm 2. It remains to describe an algorithm based
on linear programming (LP) for efficiently solving ODEP.
Let w 2 {w`, ws, w•}. The corresponding ODEP can then
be formulated as the following integer linear program (ILP):

minimize
⇡

X

v2V
w(v)⇡(v)

subject to ⇡(u) + ⇡(v) � 1 u ⇠ v,

⇡(u) 2 {0,1} u 2 V.

(PILP)

1Finding a subset of vertices in a vertex-weighted bipartite graph with
the minimum sum of vertex weights such that it covers every edge.
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Deciding b-verifiability: Vertex Cover Problem (NP-complete)

max
L✓LAll

f(L)

s.t. L is b-verifiable

NP-hard
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ws(v) quantifies the “size” of scan Sv collected at the
corresponding pose. Then, the communication cost incurred
as a result of executing policy ⇡ can be modelled as

f�(⇡) ,
X

v2V
ws(v)⇡(v). (2)

In the special case of uniform weights, f� reflects the number
of exchanges made by ⇡ (up to a constant).
2) Induced Division of Labor: Upon executing an exchange
policy, each robot has to perform sensor registration on a
subset of L. The exchange policy implicitly determines the
distribution of the workload between the robots. The second
objective captures this induced workload. To quantify this
workload, first note that any admissible policy ⇡ divides the
initial candidate set into L = L⇡

1 [ L⇡
2 in which L⇡

1 (resp.,
L⇡
2 ) is the set of edges incident to V2 (resp., V1) at a vertex

v such that ⇡(v) = 1. These sets can be empty (monolog)
and are not necessarily disjoint: L⇡

12 , L⇡
1 \ L⇡

2 is the set
of edges like {u,v} 2 L such that ⇡(u) = ⇡(v) = 1 (see
Figure 2b). L⇡

1 \L⇡
2 (resp., L⇡

2 \L⇡
1 ) can only be searched by

the first (resp., second) robot. On the contrary, in principle
both robots can screen the candidates in L⇡

12. We can either
divide the burden of searching in L⇡

12 between the robots,
or simply let each robot screen it on its own. The latter
is preferred due to the following advantages. First, from
a robustness perspective, verifying L⇡

12 separately on each
robot creates a desirable redundancy in case robots are unable
to exchange their newly discovered loop closures due to
problems like communication failure. Furthermore, the cost
of post-exchange communication will be slightly reduced
since we do not need to exchange the loop closures found
in L⇡

12 (Section II-D). Finally, as we will see shortly, this
choice leads to tractable optimization problems.

Suppose the computational cost of verifying candidate
inter-robot loop closure {u,v} is quantified by cuv � 0. The
total computational cost due to sensor registration induced
by exchange policy ⇡ on robot i 2 {1,2} is given by

`⇡i =
X

v2V\Vi

X

u⇠v

cuv⇡(v). (3)

Note that under uniform {cuv}u⇠v , `⇡i is proportional to the
number of potential loop closures that must be verified by
robot i as a result of exchange policy ⇡. Let ↵1 and ↵2 be
non-negative parameters that control the induced workload
balance between the two robots, such that, e.g., increasing
↵i will shift the balance in favor of robot i. For example,
in a heterogeneous data exchange between a typical robot
and a tactical supercomputer, one may seek to choose an
admissible policy such that most of the induced workload is
redirected toward the tactical supercomputer. This narrative
results in

f�(⇡;↵1,↵2) , ↵1`
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1 + ↵2`
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2 (4)

=
X

v2V
w`(v)⇡(v), (5)

in which

w` : v 7!
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↵2

P
u⇠v cuv v 2 V1,

↵1
P

u⇠v cuv v 2 V2.
(6)

Problem 1 (Optimal Data Exchange Problems (ODEP)).

minimize
⇡
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subject to ⇡ is admissible.
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minimize
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(P3)

f•(⇡;↵1,↵2,!) , f�(⇡) + !f�(⇡;↵1,↵2) (7)

=
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w•(v)⇡(v), (8)

in which w• : v 7! ws(v) + !w`(v).

C. Solving the Optimal Data Exchange Problem
It is easy to see that P1:3 are all instances of the weighted

minimum bipartite vertex cover problem.1 To see this, first
note that the admissibility constraint needed for guaranteeing
the completeness of search is identical to the constraint
in vertex cover. Translating an instance of one of these
narratives to an equivalent instance of the other (i.e., mapping
a lossless exchange policy to an equivalent vertex cover
⇡ 7! ⇧ and vice versa) is trivial: ⇧ ,

�
v 2 V : ⇡(v) = 1

 

and ⇡ : v 7! 1⇧(v) where

1⇧(v) ,
(
1 if v 2 ⇧,
0 if v 2 V \⇧.

(9)

Finally, note that the cost of ⇡ (in ODEP) is equal to that
of ⇧ in the weighted minimum bipartite vertex cover, and
vice versa. Consequently P1:3 can all be solved using the
same machinery. Furthermore, this result characterizes the
communication cost incurred in the search for inter-robot
loop closures and the induced workload balance in terms of
the graph topology and vertex/edge weights through a well-
understood graph invariant.

Algorithm
Although the weighted minimum vertex cover problem is

NP-hard in general, it can be solved efficiently in bipartite
graphs; see, e.g., [19]. Therefore, by virtue of the above-
mentioned observation, we can solve any ODEP efficiently
by casting it as a weighted minimum bipartite vertex cover
problem. Moreover, Algorithm 1 can be slightly restructured
to execute the vertex cover translation of an optimal policy—
see Algorithm 2. It remains to describe an algorithm based
on linear programming (LP) for efficiently solving ODEP.
Let w 2 {w`, ws, w•}. The corresponding ODEP can then
be formulated as the following integer linear program (ILP):

minimize
⇡

X
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w(v)⇡(v)

subject to ⇡(u) + ⇡(v) � 1 u ⇠ v,

⇡(u) 2 {0,1} u 2 V.

(PILP)

1Finding a subset of vertices in a vertex-weighted bipartite graph with
the minimum sum of vertex weights such that it covers every edge.
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same machinery. Furthermore, this result characterizes the
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loop closures and the induced workload balance in terms of
the graph topology and vertex/edge weights through a well-
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see Algorithm 2. It remains to describe an algorithm based
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since we do not need to exchange the loop closures found
in L⇡

12 (Section II-D). Finally, as we will see shortly, this
choice leads to tractable optimization problems.

Suppose the computational cost of verifying candidate
inter-robot loop closure {u,v} is quantified by cuv � 0. The
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`⇡i =
X

v2V\Vi

X

u⇠v

cuv⇡(v). (3)
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robot i as a result of exchange policy ⇡. Let ↵1 and ↵2 be
non-negative parameters that control the induced workload
balance between the two robots, such that, e.g., increasing
↵i will shift the balance in favor of robot i. For example,
in a heterogeneous data exchange between a typical robot
and a tactical supercomputer, one may seek to choose an
admissible policy such that most of the induced workload is
redirected toward the tactical supercomputer. This narrative
results in
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minimum bipartite vertex cover problem.1 To see this, first
note that the admissibility constraint needed for guaranteeing
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Finally, note that the cost of ⇡ (in ODEP) is equal to that
of ⇧ in the weighted minimum bipartite vertex cover, and
vice versa. Consequently P1:3 can all be solved using the
same machinery. Furthermore, this result characterizes the
communication cost incurred in the search for inter-robot
loop closures and the induced workload balance in terms of
the graph topology and vertex/edge weights through a well-
understood graph invariant.

Algorithm
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graphs; see, e.g., [19]. Therefore, by virtue of the above-
mentioned observation, we can solve any ODEP efficiently
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problem. Moreover, Algorithm 1 can be slightly restructured
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of ⇧ in the weighted minimum bipartite vertex cover, and
vice versa. Consequently P1:3 can all be solved using the
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robot i as a result of exchange policy ⇡. Let ↵1 and ↵2 be
non-negative parameters that control the induced workload
balance between the two robots, such that, e.g., increasing
↵i will shift the balance in favor of robot i. For example,
in a heterogeneous data exchange between a typical robot
and a tactical supercomputer, one may seek to choose an
admissible policy such that most of the induced workload is
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results in
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Finally, note that the cost of ⇡ (in ODEP) is equal to that
of ⇧ in the weighted minimum bipartite vertex cover, and
vice versa. Consequently P1:3 can all be solved using the
same machinery. Furthermore, this result characterizes the
communication cost incurred in the search for inter-robot
loop closures and the induced workload balance in terms of
the graph topology and vertex/edge weights through a well-
understood graph invariant.
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graphs; see, e.g., [19]. Therefore, by virtue of the above-
mentioned observation, we can solve any ODEP efficiently
by casting it as a weighted minimum bipartite vertex cover
problem. Moreover, Algorithm 1 can be slightly restructured
to execute the vertex cover translation of an optimal policy—
see Algorithm 2. It remains to describe an algorithm based
on linear programming (LP) for efficiently solving ODEP.
Let w 2 {w`, ws, w•}. The corresponding ODEP can then
be formulated as the following integer linear program (ILP):
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as a result of executing policy ⇡ can be modelled as
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In the special case of uniform weights, f� reflects the number
of exchanges made by ⇡ (up to a constant).
2) Induced Division of Labor: Upon executing an exchange
policy, each robot has to perform sensor registration on a
subset of L. The exchange policy implicitly determines the
distribution of the workload between the robots. The second
objective captures this induced workload. To quantify this
workload, first note that any admissible policy ⇡ divides the
initial candidate set into L = L⇡
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2 in which L⇡

1 (resp.,
L⇡
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12. We can either
divide the burden of searching in L⇡

12 between the robots,
or simply let each robot screen it on its own. The latter
is preferred due to the following advantages. First, from
a robustness perspective, verifying L⇡

12 separately on each
robot creates a desirable redundancy in case robots are unable
to exchange their newly discovered loop closures due to
problems like communication failure. Furthermore, the cost
of post-exchange communication will be slightly reduced
since we do not need to exchange the loop closures found
in L⇡

12 (Section II-D). Finally, as we will see shortly, this
choice leads to tractable optimization problems.

Suppose the computational cost of verifying candidate
inter-robot loop closure {u,v} is quantified by cuv � 0. The
total computational cost due to sensor registration induced
by exchange policy ⇡ on robot i 2 {1,2} is given by
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number of potential loop closures that must be verified by
robot i as a result of exchange policy ⇡. Let ↵1 and ↵2 be
non-negative parameters that control the induced workload
balance between the two robots, such that, e.g., increasing
↵i will shift the balance in favor of robot i. For example,
in a heterogeneous data exchange between a typical robot
and a tactical supercomputer, one may seek to choose an
admissible policy such that most of the induced workload is
redirected toward the tactical supercomputer. This narrative
results in
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note that the admissibility constraint needed for guaranteeing
the completeness of search is identical to the constraint
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Finally, note that the cost of ⇡ (in ODEP) is equal to that
of ⇧ in the weighted minimum bipartite vertex cover, and
vice versa. Consequently P1:3 can all be solved using the
same machinery. Furthermore, this result characterizes the
communication cost incurred in the search for inter-robot
loop closures and the induced workload balance in terms of
the graph topology and vertex/edge weights through a well-
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to execute the vertex cover translation of an optimal policy—
see Algorithm 2. It remains to describe an algorithm based
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