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Abstract—We propose a scalable algorithm to take advantage
of the separable structure of simultaneous localization and map-
ping (SLAM). Separability is an overlooked structure of SLAM
that distinguishes it from a generic nonlinear least-squares prob-
lem. The standard relative-pose and relative-position measurement
models in SLAM are affine with respect to robot and features’
positions. Therefore, given an estimate for robot orientation, the
conditionally optimal estimate for the rest of the state variables
can be easily computed by solving a sparse linear least-squares
problem. We propose an algorithm to exploit this intrinsic prop-
erty of SLAM by stripping the problem down to its nonlinear core,
while maintaining its natural sparsity. Our algorithm can be used
in conjunction with any Newton-based solver and is applicable to
2-D/3-D pose-graph and feature-based SLAM. Our results suggest
that iteratively solving the nonlinear core of SLAM leads to a fast
and reliable convergence as compared to the state-of-the-art sparse
back-ends.

Index Terms—Simultaneous localization and mapping (SLAM)
back-end, sparse separable nonlinear least squares, variable
projection.

I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) has
been investigated for more than two decades [14]. Mathe-

matically, SLAM is modeled as a high-dimensional nonlinear
estimation problem whose goal is to find the “optimal” esti-
mate for robot poses and map using noisy measurements and
uncertain priors. The first successful solutions posed SLAM as
a filtering problem [11]. It was revealed later that the smooth-
ing formulation brings not only accuracy, but also scalability,
through exploiting the sparse structure of SLAM. The most dis-
tinctive property of modern SLAM algorithms is the exploitation
of this natural sparsity [10].

Under the assumption of Gaussian noise and Gaussian prior,
finding the maximum likelihood (ML) and maximum a poste-
riori (MAP) estimate in the smoothing form of SLAM reduces
to solving a nonlinear least-squares (NLS) problem. Given a
“sufficiently good” initial guess, this problem can be solved by
employing iterative schemes such as Gauss–Newton (GN). In
each iteration of GN, the measurement function is approximated
by its first-order Taylor expansion around the current estimate,
followed by solving the resulting linear least-squares problem.
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GN and other Newton-based algorithms treat the measurement
function (residuals) as a generic smooth nonlinear function of
states. However, the widely used measurement model associated
with the range-bearing sensors in 2-D/3-D feature-based/pose-
graph SLAM has a significant structure. This measurement func-
tion is affine in robot/landmark positions. Therefore, given the
orientation of robot throughout its trajectory θ, the conditionally
optimal estimate—in ML or MAP sense—for positions p can
be computed by solving a (sparse) linear least-squares problem.

In the least-squares literature, NLS problems with partially
linear residuals are called separable [16], [3]. In statistical terms,
such problems are associated with conditionally linear-Gaussian
state-space models [12] since estimating the linear variables,
given the nonlinear ones and the measurements corrupted by a
Gaussian noise, corresponds to a linear-Gaussian system.

Golub and Pereyra proposed the variable projection (VP)
algorithm to solve general separable NLS problems [15]. The
main idea behind VP is to explicitly eliminate the linear variables
and solve the resulting reduced NLS problem (i.e., the nonlinear
core of the problem). This technique has been applied to a wide
range of applications. Both theoretically [30] and empirically, it
has been shown that compared to solving the full NLS problem,
VP techniques typically exhibit a faster convergence rate (see
[16] and the references therein).

In this paper, we show how different VP algorithms can
be applied to various forms of SLAM without any restrictive
assumption on the structure of the noise covariance matrix.
Unfortunately, these algorithms—in their existing forms—are
incapable of maintaining the sparse structure of SLAM and,
therefore, lead to solutions with cubic time and quadratic space
complexity. To address this issue, we propose an equivalent VP
algorithm that is capable of exploiting both separability and
sparsity at the same time.

A. Contributions

The contributions made in this paper are summarized as
follows.
1) Investigating an important, yet overlooked, structure of

SLAM, as well as establishing the link between SLAM and
the vast literature on separable NLS problems.

2) Proposing a new SLAM back-end that combines the advan-
tages of exploiting sparsity and separability.

3) Providing new insights into the link between the separable
NLS and conditionally linear-Gaussian problems.

This paper is an extension of our previous work [23]. In this
work, we improve our algorithm in [23] by introducing the idea
of conditional projection. We use this idea to quantify the gain
achieved by exploiting the separable structure of SLAM. This
ultimately allows us to decide whether the benefits of leveraging
the separable structure of SLAM outweigh the computational
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cost of solving an extra linear system. Furthermore, in this pa-
per, we describe the architecture of our new implementation
that requires only a minor modification of the existing sparse
back-ends. We also expand our experiments and discussion of
the results to identify cases in which exploiting separability is
more/less beneficial. The proofs, derivations, and implementa-
tion details that were omitted from [23] due to space limitation
are included in this paper. Finally, our implementation1 and
Monte Carlo test suite2 now are publicly available.

B. Outline

In Section II, we review the related works. In Section III, we
provide a mathematical formulation of SLAM. In Section IV,
we show how the VP algorithm can be applied to exploit the
separable structure of SLAM. We propose a new algorithm in
Section V to exploit both separability and sparsity. Furthermore,
we look at the separable structure of SLAM from a new per-
spective by factorizing the SLAM posterior. We point out several
implementation details in Section VI. The results obtained us-
ing both synthetic and real datasets are provided in Section VII.
This is followed by the conclusion in Section VIII. Finally, the
proofs are provided in the Appendix.

C. Notation

Throughout this paper, bold lowercase and uppercase let-
ters are reserved for vectors and matrices, respectively. Sets are
shown by uppercase letters. For convenience, our notation does
not distinguish between random variables (e.g., z) and their re-
alizations. |X | denotes the cardinality of set X . I and 0 are the
identity and zero matrices with appropriate sizes, respectively.
We use vec(q1 , . . . ,qn ) to denote the column vector obtained
by stacking {qi}n

i=1 . S1 � S2 means S1 − S2 is positive def-
inite. The Kronecker product is denoted by ⊗. The Euclidean
norm is shown by ‖ · ‖. The weighted Euclidean norm of vector
e with matrix W � 0 is denoted by ‖e‖W �

√
e�We. We

denote by diag(W1 , . . . ,Wk ) the block-diagonal matrix with
matrices W1 , . . . ,Wk as blocks on its main diagonal. dim(x)
denotes the length of vector x. range(X) and null(X) are the
column and null spaces of X, respectively. [n] is defined as
[n] � {1, 2, . . . , n}. Finally, SO(d) (special orthogonal group)
is defined as

SO(d) � {R ∈ Rd×d : R�R = Id ,det(R) = 1}.

II. RELATED WORKS

A theoretical analysis of the convergence properties of VP
methods is due to Ruhe and Wedin [30], [31]. An extensive
survey of VP applications can be found in [16]. The high-
dimensional state space of SLAM is one of its distinctive fea-
tures in comparison with many other applications of VP. This is
the reason why retaining and exploiting sparsity is vital to the
scalability of SLAM solvers.

1http://github.com/kasra/vp-g2o
2http://github.com/kasra/atlas

A common way of approaching conditionally linear-Gaussian
state-space models is to use Rao–Blackwellized particle filters
(RBPF) (see, e.g., Doucet [12]). RBPF typically uses the stan-
dard sequential importance resampling filter to represent p(θ|z)
using p weighted samples {θ[i]}p

i=1 drawn independently from
a proposal distribution, i.e.

p(θ|z) ≈
p∑

i=1

wi · δ(θ − θ[i]) (1)

where δ is the Dirac delta function. Then, for each sample, the
conditionally optimal estimate for p is recovered analytically
by computing the mean of p(p|θ[i], z) using the Kalman filter
(i.e., recursive linear least squares). It is worth noting that this
approach naturally leads to the minimum mean-square-error
point estimate (i.e., the mean of the posterior instead of its
mode).

Zikos and Petridis in L-SLAM [37], [38] utilized this idea to
exploit the separable structure of feature-based SLAM. In their
RBPF, rather than partitioning the variables into landmarks and
poses, which was used in FastSLAM [26], they divide the vari-
ables into θ and p. L-SLAM has two major drawbacks. First
and foremost, any sequential Monte Carlo method employed in a
high-dimensional state space will eventually suffer from degen-
eracy and, subsequently, sample impoverishment [13]. Sample
impoverishment has a negative impact on estimating θ due to
the loss of sample diversity; after some time t 	 t0 , all of the
particles will share the same estimate of {θi}t0

i=1 for some t0
(i.e., effectively only one sample is drawn from the correspond-
ing region of state space). Furthermore, by partitioning variables
based on p versus θ, the conditional independence property ex-
ploited in FastSLAM to gain computational efficiency will be
lost.

Wang et al. [36] proposed to explicitly eliminate the linear
variables of 2-D feature-based problems with isotropic noise to
obtain a smaller optimization problem over θ. This approach
is similar to Golub and Pereyra’s VP [15], but with numerical
differentiation and Newton iterations. Their algorithm is unable
to maintain the sparse structure of the problem. Consequently,
the algorithm proposed in [36] is computationally much more
expensive than the standard sparse NLS solvers.

LAGO [5], [6] uses the separable structure of 2-D pose-graph
SLAM to bootstrap GN. First, a refined estimate for θ is com-
puted by only considering the relative rotational measurements.
Using this initial estimate of θ, LAGO then recovers the condi-
tionally optimal estimate for p. The outcome is used to initialize
GN. From this perspective, our algorithm can be roughly inter-
preted as a constant use of LAGO’s bootstrapping approach,
without the initial phase of approximating θ (which makes our
algorithm robust to strong correlations between the noise com-
ponents [6], [19]). Unlike our algorithm, LAGO is limited to
2-D pose graphs.

The equivalence between the minima of the original opti-
mization problem and those of the reduced problem makes it
possible to study various properties of SLAM by examining the
reduced problem. For instance, [34], [35] analyze the number
of local minima in some small special cases based on this idea.
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Fig. 1. Graph G = ([5] ∪ {0}, E) depicted represents a pose-graph SLAM
problem. The blue solid edges correspond to the odometry measurements. The
red edges show the loop closures. Ã is the incidence matrix of this graph. Each
column of Ã corresponds to an edge, while its rows correspond to the vertices.
The reduced incidence matrix A after anchoring a vertex v⊥ (e.g., v⊥ = 0) is
obtained by removing the corresponding row from Ã.

Similarly, Carlone [4] uses the reduced problem to analyze the
convergence of GN in 2-D pose graphs with isotropic noise.

III. PROBLEM FORMULATION AND PRELIMINARIES

A. Graphical Representation of Simultaneous Localization
and Mapping

SLAM problems can be naturally represented by a directed
graph G = (V, E). In this paper, V = [n] ∪ {0}, E ⊆ V × V ,
and |E| = m. There is a one-to-one correspondence between
the vertices of G and the state variables of the SLAM prob-
lem. Each edge represents the relative measurement between
the corresponding vertices. Therefore, (i, j) ∈ E corresponds to
the relative measurement from xi to xj . A simple example is
shown in Fig. 1. Due to the relative nature of measurements in
SLAM, we must define a global reference frame and anchor one
of the nodes to it. Without loss of generality, we can assume x0
is the origin of our global coordinates system.

Remark 1: It is easy to see that the SLAM problem will be
an ill-posed problem if G is not weakly connected. Any SLAM
problem with c ≥ 2 connected components is essentially equiva-
lent to c separate SLAM problems with respect to c independent
reference frames. In such cases, the relative transformation be-
tween the frames will be unobservable. Thus, without loss of
generality, we can assume that G is weakly connected.

The reduced incidence matrix of G after anchoring x0 (i.e.,
deleting the corresponding row from the original incidence ma-
trix Ã) is denoted by A ∈ {−1, 0, 1}n×m . Let ek � (ik , jk ) ∈
E be the kth edge. Then, Ãik +1,k = −1 and Ãjk +1,k = 1. The
remaining elements of Ã are all zero. See Fig. 1 for an ex-
ample. Similarly, A◦ ∈ {−1, 0, 1}n×n is the reduced incidence
matrix of the subgraph of G consisting only of robot poses
and odometry measurements. Note that A◦ can be uniquely

determined by the number of poses np (see the left block of
Ã in Fig. 1). The �-expansion of A refers to A� � A ⊗ I� for
� ∈ Z≥2 . The reduced weighted incidence matrix Aw is defined
with respect to a given positive weight function w : E → R>0 .
Let W � diag(w(e1), . . . , w(em )) ∈ Rm×m denote the weight
matrix. Then, Aw � AW1/2 .

B. Measurement Model

Conventionally, the state vector in SLAM is defined as
vec(x1 , . . . ,xn ). For reasons that will become clear shortly,
we permute the standard state vector and define our state vec-
tor as x � vec(p,θ). In 2-D SLAM, p ∈ R2n is the vector of
x and y coordinates of robot poses and landmark positions,
and θ ∈ [−π, π)np −1 is the vector of robot orientations. Each
observation zij (from node i to node j) is corrupted by an inde-
pendently drawn additive Gaussian noise εij ∼ N (0,Σij )

zij = hij (xi ,xj ) + εij . (2)

The measurement function hij (·, ·) for any (i, j) ∈ E has the
form

hij (xi ,xj ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
δxij

δyij

]
= R(θi)�(pj − pi) , if j ∈ Sf

⎡

⎢⎣
δxij

δyij

δθij

⎤

⎥⎦ =

[
R(θi)�(pj − pi)

wrap (θj − θi)

]
, if j ∈ Sp

(3)
where R(θi) ∈ SO(2) is the rotation matrix corresponding to
θi , wrap : R → [−π, π) maps its argument to the equivalent
angle in [−π, π), and Sp and Sf are the disjoint sets of indices
of robot poses and features, respectively. Let us define

Rθ � diag
(
R(θk1 ), . . . ,R(θkm

)
)
. (4)

Here, ki is the index of robot pose making the ith observation.
zp and zθ denote the stacked vector of δxij and δyij , and δθij

measurements, respectively. We permute the measurement vec-
tor accordingly to obtain z � vec(zp , zθ ). Similarly, the stacked
vector of noise variables and its covariance matrix are denoted by
ε � vec(εp , εθ ) and Σ, respectively. The measurement model
can be expressed in a compact form as

z = h(x) + ε, where ε ∼ N (0,Σ) (5)

p(z|x) = N (z;h(x),Σ). (6)

Remark 2: Note that (3) admits both pose-graph and feature-
based SLAM problems as special cases. In pose-graph SLAM,
Sf = ∅, while in feature-based SLAM, relative pose measure-
ments are limited to odometry measurements.

Remark 3: As the title suggests, in this paper, we focus on
developing a new SLAM back-end to exploit the separable struc-
ture of SLAM. Therefore, we assume that the data association is
given. Solving the data association problem can be challenging
and thus needs to be dealt with separately in the SLAM front-
end [17]. It is also common to make the back-end robust in order
to deal with any remaining false positive associations (see, e.g.,
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[1] and [33]). The separable structure of SLAM is preserved in
such robust formulations.

According to (3), the stacked measurement function of 2-D
SLAM is given by

h(x) = H(θ)x �
[
R�

θ A�
2 0

0 Λ�

]
x

Λ =
{

A, pose graph
A◦, feature based

(7)

where A2 � A ⊗ I2 . We assume that the correct regularization
terms are applied to the measurements [5]. Note that (7) can be
rewritten as h(x) = H1(θ)p + H2θ, where

H1(θ) �
[
R�

θ A�
2

0

]
, H2 �

[
0
Λ�

]
. (8)

Although H1(θ) depends on θ, hereafter, we drop the argument
of H1 for convenience.

Remark 4: The standard relative pose-pose and pose-point
measurement models in 3-D SLAM are also affine with re-
spect to robot’s and landmarks’ positions. The stacked vector
of noise-free translational measurements in 3-D SLAM can be
written as R�

θ A�
3 p, where p is the stacked vector of positions,

A3 � A ⊗ I3 , and Rθ is a block-diagonal matrix similar to
(4) but with 3 × 3 rotation matrices. Note that rotational mea-
surements do not depend on p. To simplify our notation and
without loss of generality, we mainly focus on the 2-D SLAM
measurement model in the following sections. We will revisit
the case of 3-D SLAM in Remark 6 and explain how our algo-
rithm can be generalized to 3-D pose-graph and feature-based
SLAM. Although in this paper we do not consider a specific
choice of sensors, the use of inertial sensor in 3-D SLAM is
quite common [25]. Therefore, it is worth noting that inertial
measurements do not violate the separable structure of SLAM
as such measurements are affine in p (see e.g., [25]).

Remark 5: This paper investigates pose-graph and feature-
based SLAM problems with standard relative pose-pose and
pose-point measurements. Such measurements can be obtained
from range-bearing sensors after a “reparameterization” of the
original measurements or matching two scans. These mod-
els have become standard choices over the past decade (see,
e.g., [17]). Unfortunately, this process often involves a non-
linear transformation of the original data. Thus, the com-
puted covariance matrices are affected by the linearization er-
ror, and furthermore, the additive Gaussian noise assumption
may not be valid anymore for the new model. In the con-
text of this work, such transformations can be thought as a
reparameterization performed to introduce separability. Note
that directly using range-bearing measurements does not result
in a separable NLS.

C. Point Estimation Criterion

In the Bayesian approach to SLAM, x is modeled as a random
vector with prior p(x) = N (x;μx ,Σx). The MAP estimate

x̂MAP is the maximizer of the posterior density

x̂MAP = arg max
x

p(x|z) = arg max
x

p(z|x) p(x). (9)

For convenience, we minimize the negative log-posterior

x̂MAP = arg min
x

(
‖z − h(x)‖2

Σ−1 + ‖x − μx‖2
Σ−1

x

)
. (10)

In the absence of an informative prior over x,3 one may seek the
maximizer of the likelihood function p(z|x) in order to obtain
the ML estimate x̂ML. Dropping the prior in (10) results in x̂ML

x̂ML = arg min
x

‖z − h(x)‖2
Σ−1 . (11)

Our emphasis in this paper is mostly on x̂ML, as it is fairly rare to
have an informative prior over x in real applications. Neverthe-
less, our approach can be straightforwardly generalized to the
Bayesian formulation (10) as well. To simplify our notation, we
denote the optimal estimate for any variable like c with c� . Here,
c� is either ĉML or ĉMAP. Similarly, we denote the (full) NLS
cost function by f(p,θ), where f could be the cost function
appeared either in (10) or (11).

IV. EXPLOITING SEPARABILITY IN SIMULTANEOUS

LOCALIZATION AND MAPPING

In the previous section, we showed that, under some standard
assumptions, finding the ML/MAP estimates in SLAM boils
down to solving an NLS problem. By further inspection of
(8), one can see that the nonlinearity is due to the rotational
components. Hence, given the robot orientation θ throughout its
trajectory, measurements are affine with respect to the robot and
features’ positions p. Consequently, the ML and MAP estimates
for p can be computed by solving linear least-squares problems.
Such problems are often called separable NLS [16]. This special
structure distinguishes SLAM from a generic NLS problem. In
this section, we show how this structure can be exploited in
SLAM.

A. Variable Projection

VP is an algorithm proposed by Golub and Pereyra to exploit
this structure [15]. Here, we explain how their approach can be
applied to SLAM. Golub and Pereyra proved that, under some
regularity conditions, the solution of the original problem (10)
or (11) (for general separable NLS problems) can be obtained
using the following procedure (see [15], Th. 2.1).
1) Find p�(θ), the conditionally optimal estimate for p as a

function of θ by minimizing the original cost function in p.
2) Replace p with p�(θ) in the original problem and min-

imize the new objective function in θ to obtain θ� . Af-
ter this step, the optimal p� = p�(θ�) can be recovered
instantly.

1) Phase I—p�(θ): Consider the symmetric positive-
definite square root of the noise precision matrix Σ− 1

2 � 0.
To simplify our notation, we express the weighted Euclidean

3In this case, x is treated as a vector of unknown deterministic parameters in
the measurement model.
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norm minimization in (11) as the following unweighted least
squares:

x� = arg min
x

‖z̃ − H̃1p − H̃2θ‖2 (12)

where z̃ � Σ− 1
2 z, H̃1 � Σ− 1

2 H1 , and H̃2 � Σ− 1
2 H2 .

Lemma 1 follows directly from the fact that the incidence matrix
of a weakly connected directed graph is full rank.

Lemma 1: For the measurement models defined in
Section III, if the corresponding graph is weakly connected,
H̃1 is full column rank regardless of θ.

Proof: See Appendix A for the proof. �
As mentioned before, given θ, (12) is a linear least-squares

problem in p. Lemma 1 assures us that for any given θ, the
optimal choice for p as a function of θ is uniquely given by

p�(θ) � arg min
p

‖z̃ − H̃1p − H̃2θ‖2 (13)

= H̃†
1(z̃ − H̃2θ) (14)

where H̃†
1 � (H̃�

1 H̃1)−1H̃�
1 is the Moore–Penrose pseudoin-

verse of H̃1 (see, e.g., [3]).
2) Phase II—Reduced Nonlinear Least Squares: By substi-

tuting p in the original objective function (12) with p�(θ) in
(14) and solving the resulting optimization problem, we obtain
θ� � arg minθ g(θ), where

g(θ) � ‖(I − H̃1H̃
†
1)(z̃ − H̃2θ)‖2 . (15)

Note that g is a function of only robot headings θ, while the origi-
nal optimization problem (12) was over both p and θ. Therefore,
we have reduced the parameter space from R2n × [−π, π)np −1

to [−π, π)np −1 . Pθ � H̃1H̃
†
1 is the orthogonal projection onto

range(H̃1), while P⊥
θ � I − H̃1H̃

†
1 is its orthogonal comple-

ment. Let us define rvp � P⊥
θ (z̃ − H̃2θ).

To solve (15) using Newton-based NLS solvers, we need to
compute the Jacobian matrix of rvp , i.e., Jvp � ∂

∂θ rvp . Com-

puting Jvp requires differentiating pseudoinverses (H̃†
1) and,

therefore, is more complex than computing the Jacobian matrix
of the original full problem, i.e., J � ∂

∂x r, where r � z − h(x).
Although it is possible to approximate Jvp using finite differ-
ences (see [16] and the references therein), here, we use the
exact analytical expression for Jvp , which is based on the work
of [15]. The only difference between (15) and the case that was
originally examined by [15] is the extra linear term −H̃2 θ.

Theorem 1: The jth column of Jvp is given by

[Jvp ]·,j =−

⎛

⎝
(

P⊥
θ

∂H̃1

∂θj
H̃†

1

)
+

(
P⊥

θ

∂H̃1

∂θj
H̃†

1

)�
⎞

⎠(
z̃ −H̃2 θ

)

− P⊥
θ [H̃2 ]·,j . (16)

Proof: See Appendix B. �
After finding θ� � arg min g(θ) using an iterative NLS

solver such as GN, we can recover the optimal p� according
to (14), i.e., by solving (H̃�

1 H̃1)p� = H̃�
1 (z̃ − H̃2θ

�). In gen-
eral, VP iterations are computationally more expensive than
GN iterations on the full problem. Hence, solving the reduced
problem does not necessarily improve the overall runtime.

Algorithm 1: SLAM Solver Based on [22].
1: repeat
2: Compute the full QR factorization of H̃1 (18)
3: Recover p� by solving

R̃1 p�(θ(i)) = Q�
1 (z̃ − H̃2θ(i))

4: Compute the modified residual and Jacobian (21)
5: Construct the normal equations for the reduced

problem
6: Solve the normal equations to obtain δθ(i)
7: θ(i+1) ← θ(i) + δθ(i)
8: until convergence
9: p� ← p�(θ�) according to (14)

B. Kaufman’s Algorithm

Kaufman [22] proposed to approximate the jth column of
Jvp according to

[JK
vp]·,j � −

(
P⊥

θ

∂H̃1

∂θj
H̃†

1

)
(z̃ − H̃2 θ) − P⊥

θ [H̃2 ]·,j . (17)

In small-residual problems, the impact of the term neglected in
JK

vp on the convergence rate of the algorithm will be negligible,
as shown in [22]. This is rigorously investigated in [30] and has
been verified empirically in various domains [16]. In the case
of SLAM, the residuals will be “small” if the measurements are
“sufficiently consistent” with each other, or equivalently, when
the realized noise is “sufficiently small.” It is worth noting that
even GN, as an approximation of Newton’s method, relies on a
small-residual assumption [3].

Kaufman’s simplification reduces the time per iteration of VP
up to 25% [30]. As a result, Kaufman’s method has become the
preferred algorithm for solving separable NLS problems [16].
As we will see shortly, in sparse separable NLS problems (such
as SLAM), Kaufman’s modification, in a slightly different form,
plays an even more crucial role by enabling us to preserve the
sparse structure of the problem.

Algorithm 1 summarizes a SLAM solver based on an effi-
cient implementation of VP using Kaufman’s modification. In
the rest of this section, we discuss some important details about
implementing an efficient version of VP with Kaufman’s mod-
ification using the QR decomposition of H̃1 . First, we need to
compute the full QR factorization of H̃1

H̃1 = QR =
[
Q1 Q2

] [
R̃1
0

]
. (18)

The sparse structure of H̃1 can be exploited in this stage by us-
ing optimized software packages such as SuiteSparseQR [9].
Define dz � dim(z) and dp � dim(p). Then, Q1 ∈ Rdz ×dp

and Q2 ∈ Rdz ×(dz −dp ) are orthogonal matrices, and R̃1 ∈
Rdp ×dp is an upper triangular matrix. The columns of Q1
and Q2 form orthonormal bases for range(H̃1) and null(H̃�

1 ),
respectively. Consequently, Pθ = Q1Q�

1 and P⊥
θ = Q2Q�

2 .
The residual vector of VP functional can be simplified
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using (18)

rvp = P⊥
θ (z̃ − H̃2θ) = Q2Q�

2 (z̃ − H̃2θ). (19)

To evaluate the reduced NLS cost function g, we can use the
QR decomposition of H̃1 in (18) and the fact that the Euclidean
norm is invariant under orthogonal transformations. Therefore,
we have g(θ) = ‖Q�

2 (z̃ − H̃2θ)‖2 . According to (17), the jth
column of JK

vp is given by

[JK
vp]·,j = −Q2Q�

2

(
∂H̃1

∂θj
p�(θ) + [H̃2 ]·,j

)
. (20)

Note that for a given θ, p�(θ) can be easily computed by solv-
ing R̃1 p�(θ) = Q�

1 (z̃ − H̃2θ) by back-substitution. It can be
easily verified that multiplying both the residual vector and Ja-
cobian matrix from left by an orthogonal matrix does not change
the GN direction. Hence, we can eliminate Q2 by multiplying
(19) and (20) by Q�

2 from left

Q�
2 rvp = Q�

2 (z̃ − H̃2θ)

[
Q�

2 JK
vp

]
·,j = −Q�

2

(
∂H̃1

∂θj
p�(θ) + [H̃2 ]·,j

)
. (21)

Note that Q2 cannot be “eliminated” in the original VP (i.e.,
without using Kaufman’s simplification of the Jacobian).

V. SPARSE VARIABLE PROJECTION

At first glance, it may seem that applying Algorithm 1 can
be computationally advantageous, as it reduces the size of the
normal equations from (2n + np) to only np . However, the lin-
ear system that emerges from the reduced problem in SLAM
is generally dense. Hence, VP as implemented in Algorithm 1
does not lead to a scalable algorithm, as we would need at least
O(n2

p) space and O(n3
p) time per iteration to solve the result-

ing dense linear system. Hence, it is sensible to ask ourselves
whether we can take advantage of separability without giving
up the intrinsic sparse structure of SLAM.

Barham and Drane [2] proposed an intuitive algorithm to
solve separable NLS problems. Unlike the VP algorithm, in
their approach, the linear variables are not entirely eliminated
from the optimization problem. Instead, they use the Schur com-
plement in each iteration to solve the normal equations of the
original full NLS only for the nonlinear variables. Then, in-
stead of back-substituting the resulting estimate into the normal
equations, they exploit the separable structure of the problem
by computing the conditionally optimal estimate for the linear
variables. This process is repeated until convergence. This intu-
itive algorithm may first seem like a simple heuristic. However,
it has been shown that this procedure leads to the same iterations
as the Kaufman’s algorithm [28].

Now, if the original system of normal equations is sparse
(as in SLAM), computing the Schur complement, in general,
can destroy the sparsity. Nevertheless, instead of computing the
Schur complement, we can simply solve the normal equations
for both linear and nonlinear variables and then replace the
resulting estimate for the linear ones with the conditionally
optimal values (14). By doing so, the sparse structure of the

problem is preserved in the process of exploiting separability.
In what follows, we explain how this idea can be applied to
SLAM.

A. Retaining Sparsity

Consider the normal equations of the original problem

J̃�J̃ δx(i) = −J̃�r̃. (22)

Here, δx(i) � vec(δp(i) , δθ(i)) denotes the ith GN direction, r̃
is the residual vector r̃ � Σ− 1

2 r, and J̃ � ∂
∂x r̃, both evaluated

at x(i) . Let II � J̃�J̃ be the approximated Hessian. Note that J̃
can be divided into two blocks: J̃ = [J̃p J̃θ ], where J̃p � ∂

∂p r̃

and J̃θ � ∂
∂θ r̃. Therefore, we can expand (22) as
[

IIp IIp,θ

II�p,θ IIθ

] [
δp(i)

δθ(i)

]
=

[
−J̃�

p r̃

−J̃�
θ r̃

]
. (23)

Barham and Drane [2] proposed to eliminate δp(i) from (23)
using the Schur complement of II with respect to IIp

(
IIθ − II�p,θ II

−1
p IIp,θ

)
δθ(i) =

(
− J̃�

θ + II�p,θ II
−1
p J̃�

p

)
r̃. (24)

Solving (24) results in δθ(i) . Back-substituting this solution into
(23) and recovering δp(i) leads to the standard GN direction for
the original cost function. Instead, Barham and Drane proposed
to pair θ(i+1) = θ(i) + δθ(i) with the conditionally optimal es-
timate for p(i+1) [2]. This estimate can be computed by solving
the following sparse linear system:

(H̃�
1 H̃1)p(i+1) = H̃�

1

(
z̃ − H̃2θ(i+1)

)
. (25)

It is important to note that here H̃1 is evaluated at θ(i+1) . Re-
peating this procedure until convergence leads to a sequence of
steps along which the cost function (11) has a zero gradient with
respect to p. This algorithm is summarized in Algorithm 2.

As mentioned earlier, the Schur complement in the reduced
linear system (24) is generally dense. Needless to say, in each
iteration of Algorithm 2, the solution of the reduced system
(24) is identical to the δθ(i) obtained by solving the full system
(23). Unlike the Schur complement, the full system of normal
equations is sparse. Hence, instead of eliminating linear vari-
ables based on the Schur complement, the same result can be
achieved by solving the sparse full system (23), discarding the
obtained δp(i) and instead computing the conditionally opti-
mal p(i+1) according to (25). This procedure is summarized in
Algorithm 3.

It is of utmost importance to note that our proposed algo-
rithm produces (mathematically) identical steps to those of
Algorithms 1 and 2 (see [28] for the equivalence between Kauf-
man’s method and the algorithm proposed by Barham and Drane
[2]). However, unlike those algorithms, Algorithm 3 only re-
quires solving two sparse linear systems in each iteration, which
leads to a crucial computational benefit:
1) Full step: The first sparse linear system is the normal equa-

tions of the original full NLS problem (23). Solving this
system results in δθ(i) and θ(i+1) consequently.
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TABLE I
SUMMARY OF RELATED ALGORITHMS SORTED BY THEIR COST

PER ITERATION IN DESCENDING ORDER

Algorithm Separability Sparsity

Algorithm 1 [22] � ✗

Algorithm 2 [2] � ✗

Algorithm 3 � �
Full Least Squares ✗ �

Fig. 2. In this figure, we see the contour lines of a simplified version of SLAM
cost function. The green points show the local minima. The magenta curve is
p� (θ), a function that maps any given θ to the corresponding conditionally
optimal estimate for p. The blue vector shows the ith step of Algorithm 1—
which is identical to the ith step of Algorithms 2 and 3. The red vector is the GN
step obtained by starting from xGNi . The dashed red vectors are the intermediate
GN steps obtained by starting from xVPi . Algorithm 3 corrects this intermediate
step by projecting the obtained solution back on p� (θ) (dashed line). Note that
Algorithm 1 computes the blue vector directly by performing a GN iteration on
the reduced problem (15) with quadratic space and cubic time complexity. By
contrast, our indirect approach in Algorithm 3 enables us to preserve the sparse
structure of the original problem.

2) Projection: In the second sparse linear system, we recover
the conditionally optimal estimate p(i+1) by solving (25).
This is where we exploit the separable structure of SLAM.

Our algorithm benefits from the advantages of both
Algorithms 1 and 2. First and foremost, the equivalence be-
tween Algorithms 1 and 3 (through their equivalence to Algo-
rithm 2 [28]) provides a rigorous justification for our approach
and connects us to the rich literature on VP and the performance
of Kaufman’s algorithm. Furthermore, the equivalence between
Algorithms 2 and 3, besides providing an intuitive interpretation
for Kaufman’s approximation, enables us to preserve the sparse
structure of the problem. Algorithm 3 can be easily implemented
by a simple modification of the existing state-of-the-art back-
ends: we only need to solve an extra sparse linear system (25)
(e.g., using a sparse Cholesky solver). Table I provides a summa-
rized comparison between these algorithms, sorted by their cost
per iteration in descending order. An efficient implementation

of our algorithm is discussed in Section VI. Fig. 2 pictorially
illustrates the proposed algorithm.

Remark 6: As mentioned in Remark 4, our approach can be
easily extended to 3-D pose-graph and feature-based SLAM
with the standard relative pose-pose and pose-point measure-
ment models. Without loss of generality, let us assume that the
translational and rotational noise components are uncorrelated.
With a little abuse of notation, the cost function in these prob-
lems can be expressed as

f(p,θ) = fp(p,θ) + fθ (θ) (26)

where fp(p,θ) � ‖zp − R�
θ A�

3 p‖2
Σ−1

p
and

fθ (θ) �
∑

(i,j )∈Ep

‖Log(R�
zi j

R�
i Rj )‖2

Σ−1
θ i j

(27)

where Log : SO(3) → R3 maps a 3 × 3 rotation matrix to the
corresponding rotation vector (i.e., axis-angle representation),
Ep ⊆ E is the subset of edges that correspond to pose-pose mea-
surements, Rzi j

is the observed rotational measurement (cor-
rupted by noise), Σθi j

is the corresponding covariance matrix,
and Ri ∈ SO(3) is the rotation matrix of the ith robot pose.
The state-of-the-art sparse back-ends use a minimal parame-
terization (e.g., rotation vector) for θ in each iteration of the
standard iterative schemes such as GN. Let θ(k+1) be the esti-
mate obtained at the (k + 1)th iteration of GN using the update
rule θ(k+1) = θ(k) � δθ(k) . Here, � generalizes + and can be
defined based on, for example, the exponential map for SO(3)

Algorithm 2: SLAM Solver Based on [2].
1: Repeat
2: Construct the normal equations (23)
3: Eliminate δp(i) using the Schur complement (24)
4: Solve (24) to obtain δθ(i)
5: θ(i+1) ← θ(i) + δθ(i)
6: until convergence
7: p(i+1) ← p�(θ(i+1)) according to (25)

[18]. Now, given θ(k+1) , the conditionally optimal estimate for
p that minimizes (26) is the solution of

H̃◦�
1 H̃◦

1 p(k+1) = H̃◦�
1 zp (28)

where H̃◦
1 � Σ− 1

2
p R�

θ A�
3 , in which Rθ is evaluated at θ(k+1) .

The proof of Lemma 1 can be easily extended to show that H̃◦
1

is always full rank if the underlying graph is weakly connected.

Algorithm 3: Sparse Variable Projection.
1: repeat
2: Construct the normal equations (23)
3: Use the sparse Cholesky solver to solve (23)
4: θ(i+1) ← θ(i) + δθ(i)
5: p(i+1) ← p�(θ(i+1)) according to (25) using the

sparse Cholesky solver
6: until convergence
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B. Projection Gain

Algorithm 3 and the conventional approach can be seen as
the two ends of a spectrum of solvers. On one end, conventional
methods provide cheap sparse iterations without exploiting the
separable structure of the problem. On the other end of this
spectrum, Algorithm 3 performs an extra projection step at the
end of every iteration, which increases the effectiveness of each
iteration at the cost of solving an extra (but smaller) sparse linear
system (25) per iteration. Our empirical observations indicate
that performing projection is crucial in the first few iterations,
where it also exhibits a bootstrapping effect [19]. After few iter-
ations and upon getting sufficiently close to a local minimizer,
the effectiveness of f -iterations become similar to that of VP
iterations. This is where allocating resources to the projection
step is not justified anymore, and one can safely switch back to
cheap f -iterations.

To design a switching scheme, first, it is necessary to quantify
the concept of projection gain. At the ith iteration, we have

f�
i �f(p�(θ(i)),θ(i)) = min

p
f(p,θ(i)) ≤ f(p(i) ,θ(i)) � f ◦

i .

(29)
Here, p(i) and θ(i) specify the solution obtained after perform-
ing a GN iteration at iteration i on the full cost function (see the
black point connected to, e.g., xVP0 via the red-dashed vector in
Fig. 2) and f ◦

i is the value of (the original) cost function at this
point. Similarly, p�(θ(i)) and θ(i) specify the solution obtained
after performing the projection step (see xVP1 in Fig. 2), whose
cost is denoted by f�

i . To quantify the projection gain, we define
the relative gain as

γi � (f ◦
i − f�

i )/f ◦
i . (30)

By definition, 0 ≤ γi ≤ 1. Note that computing the projection
gain only requires an extra evaluation of the cost function f be-
fore performing the projection step. At i = 0, γi is usually close
to 1 (which indicates a high projection gain) unless the initial
guess is already close to a local minimum. Generally speaking,
γi exhibits a decreasing (but not necessarily monotonic) trend.
Upon convergence to a solution, the gain will diminish, and
therefore, γi = 0 (see Fig. 3). Therefore, a sensible switching
heuristic is to perform projections only, while γi is larger than
a threshold, γT .

C. Maximum a Posteriori Estimation

Note that (10) is also a separable NLS problem. Therefore,
Algorithm 3 can be easily modified to find the MAP estimate
assuming a Gaussian prior over x is available. Nevertheless,
here, we address the Bayesian formulation from a slightly dif-
ferent perspective that gives us new insights into the structure
of SLAM.

The posterior density p(p,θ|z) can be factored according to

p(p,θ|z) = p(θ|z) p(p|θ, z). (31)

Using the Bayes rule as shown in Appendix C, we have
p(p|θ, z) ∝ p(z|x) p(p|θ). To simplify our notation and with-
out losing any generality, let us assume p(p|θ) = p(p). As men-
tioned earlier, this prior is assumed to be Gaussian with mean

Fig. 3. Evolution of the projection gain γi � (f ◦
i − f �

i )/f ◦
i in ten simulated

datasets. The projection gain is maximum when γ is close to one. At the sixth
iteration, γ = 0 upon convergence to the optimal estimate.

μp and covariance Σp . The innovation covariance is defined as

S � H1ΣpH�
1 + Σ. (32)

For any given θ, p(p|θ, z) = N
(
p;μ(θ),Σ(θ)

)
, where

Σ(θ) =
(
H�

1 Σ−1H1 + Σ−1
p

)−1

(33)

μ(θ) = Σ(θ)
(
H�

1 Σ−1(z − H2θ) + Σ−1
p μp

)
(34)

= μp + ΣpH�
1 S−1

(
z − H2θ − H1μp

)
(35)

in which we have used the matrix inversion lemma. Therefore,
recovering the optimal p given θ reduces to a simple linear-
Gaussian estimation problem. Such problems are often called
conditionally linear-Gaussian. By definition, the MAP estimate
is the maximizer of the posterior distribution (31)

x� = arg max
p,θ

p(θ|z) p(p|θ, z). (36)

It is easy to see that for any given θ, maximizing the above
product implies maximizing p(p|θ, z) with respect to p

p�(θ) = arg max
p

p(p|θ, z). (37)

As in any Gaussian density, the mean of p(p|θ, z) is equal to its
mode, and therefore, μ(θ) is the solution of (37). Maximizing
p(p,θ|z) subject to p = μ(θ) reduces to an NLS problem that
can be solved like before. After obtaining the MAP estimate for
θ, we can recover p� by evaluating (37) at θ� . In practice, we
should use the approach taken in Algorithm 3 in order to retain
the sparse structure of SLAM.

VI. IMPLEMENTATION

In this section, we outline an efficient implementation of
sparse VP that requires minor modification of existing SLAM
solvers such as g2o [24]. In each iteration of sparse VP, we
need to construct and solve the sparse linear system in (25).
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First note that there is a close relation between the coefficient
matrix in the left-hand side of (25) and the top-left block (IIp ) in
the full approximated Hessian (23). It can be easily verified that
these two terms are the same expression evaluated at different
points. The former is evaluated at θ(i+1) , whereas the latter is
computed at θ(i) . In other words

H̃�
1 H̃1 =

|E|∑

k=1

∂rk

∂p

�
Σ−1

k

∂rk

∂p
. (38)

The Jacobians appearing in (38) are already available in any
conventional Newton-based SLAM solver. Our implementation
benefits from this insight by relying on g2o for computing the
coefficient matrix of (25). Similar to g2o, we exploit the block
structure of the coefficient matrix, which enables us to process
the information terms for edges in parallel. The right-hand side
of (25) can also be computed using the existing routines for
computing the right-hand side of the full normal equations (23).
Any of the existing sparse linear solvers can be used to efficiently
solve (25).

Let us denote the covariance matrix of the translational com-
ponent of the ith measurement with Σpi

. An interesting special
case emerges when Σpi

is spherical, i.e., Σpi
= σ2

pi
I2 . Noting

that Rθ is orthogonal, it is easy to show that in such SLAM
problems

H̃�
1 H̃1 = Lw ⊗ I2

where Lw � AwAw
� is the reduced weighted Laplacian matrix

of graph G with the following weight function:

w : E → R>0

ei �→ σ−2
pi

. (39)

A similar structure emerges from the 3-D SLAM problems with
spherical noise covariance matrices. Therefore, in such cases,
the coefficient matrix of (25) remains constant throughout the
iterations and needs to be factorized only once at the first iter-
ation. In such cases, the following VP iterations only need to
solve sparse triangular linear systems with different right-hand
sides using backward and forward substitutions. As shown in
Section VII, exploiting this structure significantly reduces the
extra cost of projection in VP.

VII. RESULTS AND EXPERIMENTS

We performed experiments on both real and synthetic datasets
to evaluate the performance of the proposed algorithm. We have
used g2o’s implementation of GN [24] (without line search).
CHOLMOD [8] is used as the linear solver with the approx-
imate minimum degree ordering. Our Algorithm 3 (VP)4 is
implemented in C++ as a g2o solver. Our fully integrated
code is available at http://github.com/kasra/vp-
g2o. An Intel Core i5-2400 CPU operating at 3.1 GHz is
used for all of the experiments in this paper. We verified

4In this section, VP refers to our proposed algorithm, not to be confused with
the original or Kaufman’s VP algorithms.

the equivalence between the iterations of Algorithms 1–3
numerically.

We usedg2o’s 2-D simulator to generate Manhattan-like [27]
pose-graph datasets. This simulator generates a random walk in
plane with either 1 m forward motion or 90◦ rotation per step.
The valid sensor range for scan matching is between 1 and 5
m within the 135◦ field of view. In reality, scan matching is an
expensive operation. Therefore, extracting each and every (po-
tential) loop closure is practically intractable. We imitate this
practical limitation by imposing an upper bound on the degree
of each vertex in the simulator. For our Monte Carlo analy-
sis, we created Atlas, a collection of 500 simulated datasets
available at http://github.com/kasra/atlas. At-
las consists of five test suites, each of which is composed
of 100 randomly generated pose-graph datasets with 104

poses per dataset. Each test suite corresponds to a fixed
noise level α ∈ {1, . . . , 5}. Noise covariance for each suite
is Σα = (0.01α)2I.

A. Convergence

For each dataset, we performed 50 iterations of different
solvers. Solvers are initialized using odometry data. The out-
come of each run is one of the following.
1) Global Min: The global minimizer is found within 50 itera-

tions.
2) Local Min: A local minimizer (other than the global mini-

mizer) is found within 50 iterations.
3) Not Converged: The solver has not converged to a solution

before 50 iterations.
We treat the solution of GN initialized with the ground

truth as the global minimizer and use this to verify if an ob-
tained solution is the global minimizer.5 If the absolute dif-
ference between the cost of the last two iterations is larger
than a threshold, we categorize that case as an instance of
Not Converged. Similarly, if the absolute difference between
the final cost and the minimum of the NLS cost function is
larger than a threshold, we categorize that case as an instance
of Local Min.

Table II summarizes the outcome under different noise levels.
Although the two algorithms exhibit comparable performances
in terms of converging to the optimal solution, our algorithm
significantly outperforms GN in avoiding divergence or
extremely slow convergence. Therefore, as reported in many
other domains [16], VP iterations lead to a faster and more
reliable convergence than solving the full NLS problem. As
expected, both algorithms tend to converge to local minima as α
increases; a “good” initial guess is crucial for converging to the
optimal solution. This can be avoided by using a “sufficiently
good” initial guess [19]. It is worth noting that in the case of
converging to local minima, the results obtained by both solvers
were generally inaccurate and far from the optimal estimate.
Out of the 500 synthetic datasets used in Table II, there are 89
cases for which both GN and VP converge to local minima.
In 38 of those instances, GN and VP converge to the same

5This strategy may fail especially when the realized noise is large.
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TABLE II
OUTCOME (%) OF GN AND VP AFTER 50 ITERATIONS UNDER

DIFFERENT NOISE LEVELS

Noise Level Solver Global Min Local Min Not Converged

α = 1 GN 100 0 0
VP 100 0 0

α = 2 GN 91 8 1
VP 94 6 0

α = 3 GN 76 16 8
VP 78 19 3

α = 4 GN 56 36 8
VP 57 41 2

α = 5 GN 37 50 13
VP 39 60 1

TABLE III
OUTCOME (%) OF LM AND VP-LM AFTER 50 AND 100 ITERATIONS UNDER

DIFFERENT NOISE LEVELS

Noise Level Solver Global Min Local Min Not Converged

50 iter. 100 iter. 50 iter. 100 iter. 50 iter. 100 iter.

α = 1 LM 53 79 10 7 37 14
VP-LM 97 97 3 3 0 0

α = 2 LM 17 41 22 13 61 46
VP-LM 90 90 10 10 0 0

α = 3 LM 9 18 18 25 73 57
VP-LM 72 73 27 27 1 0

α = 4 LM 1 8 15 24 84 68
VP-LM 48 48 49 52 3 0

α = 5 LM 2 6 16 24 82 70
VP-LM 32 33 63 66 5 1

local minimum. Furthermore, in 74 of those (89) cases, the
local minima found by GN and VP are both at least 10% larger
than the true minimum. In addition to the results shown in
Table II, we performed another experiment by generating ran-
dom initial guesses through sampling uniformly from the surface
of the hypersphere centered at the global minimum with varying
radii. As in Table II, we did not observe a statistically significant
difference in the tendency of VP and GN for converging to
local minima.

Table III shows the results obtained by Levenberg–Marquardt
(LM) and a trust-region version of Algorithm 3 using LM (VP-
LM). Note that VP-LM is equivalent to performing LM on the
reduced cost function under Kaufman’s approximation. For both
solvers, we use g2o’s default settings (e.g., strategy to update
the damping parameter). Due to the slow progress of LM, here,
we report the results after both 50 and 100 iterations. According
to Table III, LM exhibits extremely slow convergence, while the
performance of VP-LM within 50 iterations is comparable to
that of GN and VP. Nevertheless, the success rates of GN and
VP are slightly higher than VP-LM. It is also remarkable how
VP-LM, due to its trust-region mechanism, avoids divergence
after a sufficient number of iterations.

Fig. 4 shows the average number of iterations performed to
converge to the optimal solution under different noise levels.
It clearly indicates that the proposed algorithm can converge

Fig. 4. Average number of iterations performed to converge to the global
minimum (ML estimate) under different noise levels (α) in the Atlas datasets.
For each noise level, 100 random datasets with 10000 poses has been generated.
The error bars show the 95% confidence interval. The increasing length of error
bars is partly due to the decreasing number of successful samples (see Table II).
Note that there is a one-to-one correspondence between iterations of Algorithm 3
and those of Algorithm 1 performed on the reduced problem (15).

to the optimal solution in less number of iterations than GN.
To correctly interpret this result, it is crucial to note that
there is a one-to-one correspondence between iterations of
Algorithm 3 and those of Algorithm 1 performed on the reduced
problem (15). This observation is consistent with numerous re-
ports from other researchers who have applied VP to separable
NLS problems in other contexts [16].

B. Runtime

Reducing the number of iterations does not necessarily re-
duce the total computation time since each VP iteration is
more costly than that of GN. In fact, for SLAM, original VP
[15], Kaufman’s approach [22] (see Algorithm 1) and Barham
and Drane’s method [2] (see Algorithm 2) are all significantly
slower than the state-of-the-art SLAM solvers, since they are
all incapable of exploiting sparsity. By contrast, Algorithm 3
is designed to retain the sparse structure of SLAM. Never-
theless, recall that in each iteration of our algorithm, com-
pared to GN, we have an additional (but smaller) sparse linear
system to solve. Therefore, each iteration of our algorithm is
still slightly more expensive than that of GN. Informally speak-
ing, Fig. 4 suggests that by exploiting the separable struc-
ture of SLAM, we can achieve more effective iterations at
the cost of solving an additional sparse linear system in each
iteration.

To compare the overall runtimes, we generated ten large-scale
Manhattan-like random walks, each with 105 poses. Relative
measurements are corrupted by additive Gaussian noise with
a nonspherical covariance matrix. The marginal variances are
equal to those of α = 1 noise level.6 Each problem was solved
iteratively using GN, VP, and VP with the relative projection
gain threshold γT = 0.2 (see Section V-B). The average
runtimes are listed in Table IV. In all but one of the datasets,

6Given the large number of poses, higher noise levels lead to convergence
failure (for both GN and VP) and hence are not considered here.
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TABLE IV
TOTAL RUNTIME FOR TEN RANDOM WALKS WITH 105 POSES AND

NONSPHERICAL NOISE WITH MARGINAL VARIANCES OF α = 1 NOISE LEVEL

# |E| GN VPγ T = 0 . 2 Saving versus GN VP Saving versus GN
(sec) (sec) (% ) (sec) (% )

1 344 364 15.14 14.99 1.01 15.53 −2.58
2 343 436 15.99 12.60 21.17 13.00 18.70
3 346 019 31.52 25.93 17.73 26.85 14.82
4 345 249 24.63 20.41 17.15 20.33 17.44
5 343 864 − 91.53 − 95.41 −
6 345 842 29.45 24.35 17.32 24.56 16.59
7 345 864 22.41 22.74 −1.51 23.51 −4.94
8 343 642 18.52 16.68 9.95 17.19 7.21
9 344 730 24.84 18.45 25.72 19.15 22.92
10 343 685 18.31 16.93 7.51 17.76 3.00

all algorithms converged to the optimal solution. In all of the
datasets, except two cases, VP with γT exhibits the fastest
performance, while VP outperforms GN in eight datasets.
VP with γT outperforms GN because of its more effective
iterations on the nonlinear core of SLAM (i.e., projection
steps). On the other hand, as expected, it outperforms VP by
avoiding unnecessary costly projection steps when the gain is
insignificant.

We conducted another experiment to compare the overall
runtime of VP and GN under varying edge density. For this
purpose, first, we generated a Manhattan-like random walk with
105 poses. Two pose-graph datasets were generated based on
this random walk by simulating noisy measurements for the
following noise models: 1) α = 1; and 2) nonspherical noise
covariance matrix with marginal variances similar to α = 1.
To study the effect of edge density on the overall runtime, we
generated 100 scenarios based on each simulated dataset. The
ith scenario contains odometry edges plus i percent of the loop
closures of the original simulation (including the ones that were
included in the (i − 1)th scenario). Note that the original simu-
lation is a realistic sparse SLAM problem with a density similar
to commonly used benchmarks. Loop closures are selected ran-
domly (i.e., with no particular order) to achieve realistic and
balanced scenarios. Fig. 5 shows the overall runtime as a func-
tion of loop closure density for each noise model. According
to Fig. 5, in the vast majority of cases, VP has been faster than
GN. This shows that reducing the number of iterations has paid
off the additional cost paid for each iteration. There are few
cases where GN is slightly faster than VP. This situation hap-
pens mainly in extremely trivial (sparse) scenarios, in which the
initial guess based on odometry is already close to the maximum
likelihood estimate (MLE), and thus, GN can find the solution
immediately. Such scenarios are often too sparse to be con-
sidered as realistic cases. Once again, our results indicate that
taking the (expected) projection gain into account is generally
beneficial as it helps to avoid unnecessary projection steps.

Datasets with spherical noise covariance matrices possess an
additional structure that can be exploited to significantly reduce
the cost per iteration of Algorithm 3. Recall that in each it-
eration of our algorithm, we need to solve an additional lin-
ear system to recover the conditionally optimal estimate of

linear variables. The cost of this extra step is dominated by
the Cholesky factorization of H̃�

1 H̃1 in (25). As explained
in Section VI, this term is constant (i.e., independent of the
current estimate) when the noise covariance matrix is spher-
ical. Thus, in such cases, the Cholesky factorization has to
be computed only once (i.e., in the first iteration). In the rest
of iterations, the conditionally optimal estimate for p can be
recovered by solving sparse triangular linear systems via for-
ward and backward substitutions. As illustrated in Fig. 5, this
can reduce the cost per iteration and overall runtime of our
algorithm.

We also used a number of publicly available datasets to evalu-
ate the performance of the proposed algorithm. Table V provides
the number of iterations performed to find the optimal solution,
as well as the average of total computation time over ten runs.
The datasets listed in Table V span the most common forms
of SLAM (2-D/3-D real/synthetic pose graphs). As expected,
VP converges to the optimal estimate in less number of itera-
tions than GN (up to 50%). In most cases, VP also outperforms
GN in terms of the total computation time (up to 30%). Small
datasets and accurate measurements make the SLAM problem
less challenging in terms of convergence [4]. In such cases, ex-
ploiting the separable structure of SLAM can be less effective.
This conclusion is consistent with what we witnessed earlier in
Fig. 5.

For the datasets listed in Table V, both algorithms are able
to converge to MLE starting from the odometry initial guess.
This is true for most of the existing real datasets, although as
seen in Table II for synthetic datasets, a bad initial guess can
cause VP and GN to converge to (different) local minimizers of
the cost function. For example, this is the case for the Victoria
Park dataset. Starting from the same initial guess and after 30
iterations, VP and GN achieve fVP = 13 659 and fGN = 30 611,
respectively. Similar to what we observed before in our Monte
Carlo simulations, even without using line search, the objective
value resulting from VP directions follows a stable decreasing
trend, while in the first few iterations, GN steps cause the cost
function to increase.

VIII. DISCUSSION AND CONCLUSION

We proposed a scalable and efficient algorithm to take ad-
vantage of the separable structure of SLAM. It was shown that
by exploiting this structure, we can achieve a faster and more
reliable convergence than the state-of-the-art solvers. A key con-
tribution of this work comes from establishing the link to the
rich literature on separable NLS problems. In particular, rec-
ognizing the equivalence between Algorithms 1 and 2 enabled
us to retain sparsity while exploiting the separable structure
through Algorithm 3. This link also provides a solid theoretical
justification for the proposed algorithm. Moreover, we demon-
strated how one can avoid performing insignificant projections
by taking the projection gain into account.

The proposed algorithm can be applied to the most common
forms of SLAM (2-D/3-D feature based and pose graphs) with-
out any restrictive assumption on the structure of the noise co-
variance matrix. Our algorithm is not limited to a particular type
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Fig. 5. Overall runtime for converging to MLE as a function of edge density under different noise models. In (b), GN failed to converge to MLE in one scenario
(40). Note that the “100% loop closure density” refers to the 100th scenario, in which all of the loop closures of a realistic sparse SLAM problem with |V| = 105

and |E| ≈ 342 000 are included—not the complete graph. (a) α = 1 (spherical). (b) α = 1 (nonspherical).

TABLE V
SUMMARY OF RESULTS FOR SOME OF THE PUBLICLY AVAILABLE

REAL AND SYNTHETIC DATASETS

Dataset |V| |E| Solver # Iter. Time (s)

City10K 10 000 20 678 GN 7 0.41068
VP 4 0.31617

Manhattan 3500 5598 GN 6 0.07907
VP 4 0.07200

Intel Research Lab 943 1837 GN 3 0.01463
VP 2 0.01607

UTM Downtown 14 549 16 365 GN 10 0.24754
VP 4 0.17719

Sphere2500 2500 9799 GN 5 0.96145
VP 4 0.82080

New College 52 480 52 577 GN 8 2.19560
VP 6 2.00967

In all cases, both algorithms converge to the ML estimate.

of NLS solver and the benefits it brings along are orthogonal to
those of other possible improvements such as a more efficient
implementation (of, e.g., GN) or using different Newton-based
solvers, trust-region, or line search techniques. As an advantage,
our final algorithm can be easily adopted by the existing back-
ends (e.g., LM, Powell’s Dog-leg [29], etc.) without any major
modification. By stripping down SLAM to its nonlinear core and
recovering the conditionally optimal estimate for the linear vari-
ables, our approach yields more effective and reliable iterations
than solving the full NLS problem. The number of iterations
required for solving the reduced problem (15) was shown to be
less than that of the full NLS problem. Exploiting separability
is especially beneficial when GN (or any other Newton-based
solver) iterations are relatively costly and/or when it takes more
than few iterations to solve the full NLS problem.

In this paper, we mainly considered batch solvers. Incremen-
tally solving SLAM [20], [21], [29] is more suitable for online
applications. The separable structure of SLAM is preserved in
the incremental formulation of SLAM and can be exploited by
the same principles and techniques introduced in this paper.
As seen earlier, our results indicate that exploiting separability,

through increasing the convergence rate, is mostly beneficial if
the initial guess is not already “too close” to the solution. One
advantage of incrementally solving SLAM is that one can use
the ML estimate using the data collected up to time t − 1 for
finding the ML estimate at time t. This initial guess is usually
good, and therefore, exploiting separability may not be useful
in such cases. An important exception is when the most recent
measurements (measurements collected at time t) lead to a sig-
nificant update of robot trajectory. For instance, this situation
could arise if, for a period of time, the robot has only access to
noisy odometry data (dead reckoning) and small loop-closures
and then suddenly closes a larger loop. Incremental solvers that
are capable of exploiting separability (using the solver proposed
in this paper) can, therefore, benefit from its faster convergence
in such scenarios. Recall that if the initial guess is already close
to the solution, the projection gain γ will be small. Therefore,
immediately after the first projection step and by computing the
projection gain, the proposed switching scheme in Section V-B
can automatically detect whether or not exploiting separability
is beneficial. In the worst case, after performing a single pro-
jection step, our algorithm may switch to GN steps. However,
if the projection gain happens to be significant (e.g., in the case
of closing larger loops), an incremental solver that is capable of
exploiting separability will exhibit faster convergence. We plan
to investigate the case of iterative solvers in our future work.

APPENDIX A
PROOF OF LEMMA 1

Proof: First note that Σ− 1
2 is full rank. Then, using the rank-

nullity theorem, it is easy to verify that H̃1 = Σ− 1
2 H1 is full

column rank if and only if H1 is full column rank. According to
(8), H1 is full column rank if and only if R�

θ A�
2 (and R�

θ A�
3

in 3-D SLAM) is full column rank. It is obvious that Rθ is
nonsingular. The reduced incidence matrix A is full (row) rank
if and only if the corresponding graph is (weakly) connected
[7], which is the case in well-defined SLAM problem (see the
discussion in Section III-A). Consequently, H1 is full (column)
rank, regardless of the value of θ. �
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APPENDIX B
PROOF OF THEOREM 1

Proof: The jth column of Jvp is given by

[Jvp ]·,j =
∂rvp

∂θj
=

∂

∂θj
[P⊥

θ (z̃ − H̃2θ)]

=
∂P⊥

θ

∂θj
(z̃ − H̃2θ) + P⊥

θ

∂(z̃ − H̃2θ)
∂θj

=
∂P⊥

θ

∂θj
(z̃ − H̃2θ) − P⊥

θ [H̃2 ]·,j

= −∂Pθ

∂θj
(z̃ − H̃2θ) − P⊥

θ [H̃2 ]·,j . (40)

Now, we only need to compute ∂Pθ/∂θj . This term was first
computed by Golub and Pereyra. We briefly mention their proof
as stated in [31]. First note that Pθ is (1) idempotent, i.e.,
(Pθ)2 = Pθ, and 2) symmetric. Also note that PθH̃1 = H̃1 .
Therefore, we have

∂PθH̃1

∂θj
=

∂H̃1

∂θj
=

∂Pθ

∂θj
H̃1 + Pθ

∂H̃1

∂θj
. (41)

Therefore

∂Pθ

∂θj
H̃1 = (I − Pθ)

∂H̃1

∂θj
= P⊥

θ

∂H̃1

∂θj
. (42)

Multiplying both sides by H̃†
1 from right, we get

∂Pθ

∂θj
Pθ = P⊥

θ

∂H̃1

∂θj
H̃†

1 . (43)

Also note that
(
Pθ

∂Pθ

∂θj

)�
=

∂Pθ

∂θj
Pθ. (44)

Now, we use the properties of Pθ as an orthogonal projection

∂Pθ

∂θj
=

∂P2
θ

∂θj
=

∂Pθ

∂θj
Pθ + Pθ

∂Pθ

∂θj
(45)

which can be simplified using (43) and (44)

∂Pθ

∂θj
= P⊥

θ

∂H̃1

∂θj
H̃†

1 +

(
P⊥

θ

∂H̃1

∂θj
H̃†

1

)�

. (46)

Plugging (46) into (40) completes the proof, i.e.,

[Jvp ]·,j = −
[
P⊥

θ

∂H̃1

∂θj
H̃†

1 + (P⊥
θ

∂H̃1

∂θj
H̃†

1)
�

]
(z̃ − H̃2θ)

− P⊥
θ [H̃2 ]·,j . (47)

�

APPENDIX C

DERIVATION OF p(p |θ, z)

p(p|θ, z) =
p(p,θ, z)
p(θ, z)

=
p(z|x) p(x)

p(θ, z)

=
p(z|x) p(p|θ) p(θ)

p(z|θ) p(θ)

=
p(z|x) p(p|θ)

p(z|θ)
. (48)
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