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Abstract— SLAM can be viewed as an estimation problem
over graphs. It is well known that the topology of each dataset
affects the quality of the corresponding optimal estimate. In
this paper we present a formal analysis of the impact of graph
structure on the reliability of the maximum likelihood estimator.
In particular, we show that the number of spanning trees in
the graph is closely related to the D-optimality criterion in
experimental design. We also reveal that in a special class of
linear-Gaussian estimation problems over graphs, the algebraic
connectivity is related to the E-optimality design criterion.
Furthermore, we explain how the average node degree of
the graph is related to the ratio between the minimum of
negative log-likelihood achievable and its value at the ground
truth. These novel insights give us a deeper understanding
of the SLAM problem. Finally we discuss two important
applications of our analysis in active measurement selection
and graph pruning. The results obtained from simulations and
experiments on real data confirm our theoretical findings.

I. INTRODUCTION

A. Motivation

Simultaneous Localization and Mapping (SLAM) has been
a central topic in robotics for more than 15 years [1]. In
the state-of-the-art approaches SLAM is often formulated as
a nonlinear least squares problem. Iterative methods such
as Gauss-Newton (GN) are employed to find the minimizer
of this nonlinear least squares problem which results in the
maximum likelihood (ML) estimate under the assumption
of Gaussian measurement noise. In recent years, through
exploiting various structures and properties of SLAM such
as sparsity of the information matrix, researchers have been
focused on designing efficient algorithms for finding the ML
estimate. As a result, a variety of solvers have been proposed
in the literature, see e.g., [2], [3].

Despite the mature state of SLAM research, reliability is
still a concern. For example, data association has always
been and still is a challenge [4]. Also, all of the existing
methods are subject to local minima [5]. In [6] authors show
that for a special class of pose-graphs with spherical noise
covariance matrices, the nonlinear least squares problem is
equivalent to a one-dimensional problem for which there are
at most 3 minima. Local optimization algorithms such as GN
exhibit different convergence behaviours for different SLAM
problems. Besides obvious factors such as measurement
noise level, it has been shown in [7] that the graphical
structure of the problem plays a role in the convergence of
GN to the optimal solution. Note that the graphical structure
of a dataset is affected by a variety of factors, including but
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Fig. 1. ML estimates for two datasets with identical noise models.

not limited to the environment, chosen trajectory, available
sensors and collected measurements.

It is obvious, but important to note that achieving the
optimal estimate (in the ML sense) does not guarantee
absolute accuracy. Normally the covariance matrix of the
obtained solution is expected to describe the uncertainty
associated to our estimate. But in some cases, errors due to
linearization or even worse, converging to a local minimum,
may prevent the computed covariance matrix from reflecting
the true uncertainties.1 Moreover, updating or storing the
(dense) covariance matrix in full SLAM quickly becomes
intractable as the state vector grows.

Particular features of a given dataset determine the relia-
bility of the associated optimal estimate. The impact of more
direct factors such as the sensor noise and the observation
model has been explored in the literature, see e.g., [8], [9].
It is also well known that structure of the corresponding
graph (e.g., frequency of loop closures) has a great impact on
the reliability of the ML estimate. As an (extreme) example
consider a robot exploring the environment without closing
any loops. In this case, the estimated poses obtained by
performing dead-reckoning using the odometry data will be
the ML estimate. Such an estimate clearly becomes more
and more uncertain and inaccurate as the robot explores
the environment. The graphical representation of such a
dataset is a tree, which has the minimal connectivity among
connected graphs. Intuitively speaking, maintaining a good
“connectivity” in our graph means that our state variables
are well-constrained, and therefore the ML estimate is less
uncertain and more reliable. In order to illustrate this fact, we
constructed two synthetic pose-graph datasets with identical
noise models. Figure 1 shows the ML estimate for each
dataset. Note that the accurate solution of City10K is mainly
due to its better “connectivity”. The bridges highlighted
in Figure 1(a) are perfect examples of bad connectivity.2

1This case is referred to as inconsistency in the SLAM literature.
2In a connected graph, a bridge is an edge whose removal makes the

graph disconnected.



Therefore it is natural to ask questions like: what qualities of
a given graph makes the corresponding ML estimate reliable?
Is it possible to predict the highest achievable accuracy by
just looking at the associated graph? The main purpose of
this work is to address these questions.

B. Contribution
What we intuitively perceive as connectivity can be de-

fined and measured in a number of different ways. Likewise,
the uncertainty encoded in the corresponding covariance
matrix can be measured (by a real number) in various
ways depending on the application. The main contribution
of this paper is to investigate the link between different
definitions of connectivity, and reliability of the ML estimate.
In particular we show that the number of spanning trees in the
graph is closely related to the volume of confidence ellipsoids
and the D-optimality design criterion [10]. Furthermore, we
explain how the “diameter” of confidence ellipsoids and
the E-optimality [10] design criterion are related to the
algebraic connectivity [11] of the corresponding graph in a
special case. We also explain how the average node degree
is related to the ratio between the minimum of the negative
log-likelihood function and its value at the ground truth; a
phenomenon which was reported in [12].

In this work we introduce novel insights into the role of
graph structure in the state-of-the-art formulation of SLAM.
We believe that our analysis can set the stage for future works
in data gathering and active SLAM scenarios, where the
relevant definition of connectivity can be taken into account
in the planning phase. Note that the importance of graph
structure is not limited to SLAM. Connectivity also plays
a major role in many estimation problems over graphs in
e.g., sensor networks. See [13] and references therein for a
number of real-world applications.

C. Outline
This paper is organized as follows. Section II provides

some preliminaries and the problem formulation. Section III
describes the main results relating the graph connectivity
with the accuracy of ML estimate in SLAM. In Section IV,
an application to quantify the value of each edge in a SLAM
graph is provided. Finally a brief discussion and conclusion
are given in Section V.

II. PRELIMINARIES

A. Problem Formulation
Here we focus on the 2D pose-graph SLAM problem.

A (simple) directed graph G = (V, E) is a natural choice
for representing this problem: each node xi ∈ V denotes
a robot pose, and each edge ek , (ik, jk) ∈ E represents a
relative measurement between two robot poses (odometry or
loop-closure). Each (i, j) ∈ E in the graph corresponds to
an observation from xi to xj . Suppose |V| = n + 1 and
|E| = m. We denote the degree of vertex xi by di. In
the absence of an informative prior and due to the relative
nature of measurements we must define a global coordinates
system and anchor one of the nodes to it. Without loss of
generality, we can assume x0 is the origin of our global
coordinates system. The reduced incidence matrix of G is

denoted by A ∈ {−1, 0, 1}n×m. A is obtained by removing
the row that corresponds to x0 in the incidence matrix of G.
For the kth edge ek = (ik, jk) ∈ E we have Aik,k = −1
and Ajk,k = 1. The remaining elements of A are all zero.
The reduced Laplacian matrix of G, after anchoring x0, is
defined as L , AA>. Note that L is the principle submatrix
of the Laplacian matrix L0 after removing the row and
column associated to x0. It can be shown that L is positive
definite if and only if G is weakly connected, which is the
case for a SLAM dataset (see Theorem 2). The reduced
Laplacian matrix has a very simple structure: it can be written
as L = D − W , where D , diag(d1, . . . , dn), and W is
the adjacency matrix of graph after removing the row and
column corresponding to x0.

The corresponding state vector is usually defined as
xold , [x>1 , . . . , x

>
n ]>. Similar to [7], we permute this stan-

dard state vector and define ours as x , [ p>, θ>]>. Here
p ∈ R2n is the vector of x and y coordinates of robot poses,
and θ ∈ [−π, π)n is the vector of robot orientations. Let zij
be the observation from pose i to pose j. We assume each
observation is corrupted by an independently drawn additive
Gaussian noise,3

zij = hij(xi, xj) + wij , (1)

where wij ∼ N (0,Σij). The measurement function hij(·, ·)
is defined as

hij(xi, xj) =

[
δpij

δθij

]
=

[
R(θi)

>(pj − pi)

wrap (θj − θi)

]
, (2)

in which pi denotes the position of the ith robot pose,
R(θi) is the rotation matrix corresponding to θi, and
wrap : R→ [−π, π) is the function that maps its argument
to the equivalent angle in [−π, π). Let zp and zθ denote the
stacked vector of δpij and δθij measurements, respectively.
As in [7], in order to replace wrap (θj − θi) with θj − θi we
need to assume that correct regularization terms have been
computed for the measured δθij [14]. The ML estimate x̂ is
obtained by minimizing the negative log-likelihood function
x̂ = arg min

x
r>Σ−1 r, where for pose-graphs

r ,

[
rp
rθ

]
,

[
zp −R>A>2 p
zθ −A>θ

]
. (3)

Here Σ is obtained by permuting the rows and columns of
the covariance matrix of stacked noise vector, A2 , A⊗ I2,4

and R is defined as

R , diag (R(θk1), . . . , R(θkm)) , (4)

in which ki is the index of robot pose generating the ith
measurement. The Jacobian matrix of r is given by

J ,

[
∂rp
∂p

∂rp
∂θ

∂rθ
∂p

∂rθ
∂θ

]
=

[
−R>A>2 −R̄∆

0 −A>

]
, (5)

3For simplicity, we use the same notation for random variables and their
realization.

4⊗ and Ik denote the Kronecker product and the identity matrix of size
k, respectively.



where

R̄ , diag

(
R(

3π

2
− θk1), . . . , R(

3π

2
− θkm)

)
, (6)

and for each ek = (ik, jk) ∈ E , there is a 2-by-1 block in
∆ ∈ R2m×n that contains[

∆2k−1,ik
∆2k,ik

]
= pjk − pik . (7)

The remaining elements in ∆ are all zero. Finally it is worth
noting that ∆>∆ is a diagonal matrix: (∆>∆)i,i is equal
to the sum of squared distances between the ith robot pose,
and all of the nodes observed by it [7].

Assumption 1. For each measurement (i, j) ∈ E we have
Σij = diag(σ2

pI2, σ
2
θ).

B. The Cramér-Rao Lower Bound
In this section we briefly review the Cramér-Rao lower

bound (see e.g., [15]). Here we treat x as a vector of
(deterministic5) unknown parameters. x̂ is called an unbiased
estimator if Ez [x̂] = x (expectation is over z and with
respect to p(z;x)). The uncertainty associated with the ML
estimate is encoded in the estimation error covariance matrix.

Theorem 1. [Cramér-Rao Lower Bound (CRLB)] Un-
der some regularity conditions [15], the covariance ma-
trix of any unbiased estimator of x, such as x̂, satisfies
Cov [x̂] � I−1(x),6 where I(x) is the Fisher information
matrix (FIM),

I(x) , Ez [
∂

∂x
log p(z;x)

∂>

∂x
log p(z;x)]. (8)

Here the expectation is over z and with respect to p(z;x).
Note that FIM depends only on the true value of x and
p(z;x), and does not depend on any particular realization
of z. An unbiased estimator that achieves CRLB is called
efficient.

Remark 1. For our nonlinear-Gaussian model (1) FIM is
given by I(x) = J>Σ−1J in which J is the Jacobian matrix
of r (see e.g., [15]).

Definition 1. We use the term “compass-SLAM” to refer to
the SLAM problem when the robot heading is known (e.g.,
using a compass).

Definition 2. We use the term “linear-SN” (sensor network)
to refer to the state estimation problem over sensor networks
when z = A>d x + w, in which w is the stacked noise
vector and Ad , A⊗ Id. In particular, here we consider the
case with d = 3 in which each measurement is simply
the difference between the position and orientation of two
nodes, corrupted by zero-mean Gaussian noise. However
note that our results can be straightforwardly generalized for

5This is the most common approach to SLAM, as in most of real scenarios
no a priori information is available about the trajectory and/or map. In a
Bayesian approach, Gaussian prior over poses/features can be incorporated
into the least squares formulation in order to obtain the maximum a
posteriori (MAP) estimate.

6A � B means A − B is positive semidefinite. As a consequence we
have Ai,i ≥ Bi,i. In other words, the diagonal elements of CRLB are lower
bounds on the variance of any unbiased estimator for each parameter.

any integer d ≥ 1. See [13] and references therein for a
number of real-world applications.

Remark 2. In compass-SLAM, J = −R>A>2 . Note that
here R is a constant matrix computed from the true robot ori-
entations. Likewise, the measurement function in linear-SN is
simply the difference between the corresponding components
of two nodes. Let L2 , L ⊗ I2 = A2A

>
2 . Then it is

straightforward to show that

I(x) =

{
1
σ2
p
L2 for compass-SLAM,

diag( 1
σ2
p
L2,

1
σ2
θ
L) for linear-SN.

(9)

From (9) it is clear how graph structure is strongly related
to FIM through L. It is important to note that the maximum
likelihood estimator (MLE) is unbiased and efficient in both
compass-SLAM and linear-SN problems.

III. GRAPH CONNECTIVITY IN SLAM

Although our results cover both the feature-based and
pose-graph problems, here we mainly focus on the pose-
graph formulation in order to simplify our notation. In the
following sections we first look at a heuristic measure of
reliability defined in [12]. Then we focus on the estimation
error covariance matrix of MLE. Let us use x◦ to denote
the true trajectory. Note that A> and A>2 are full column
rank and R is invertible. Therefore J is full column rank
regardless of the value of x. Hence our focus will be on
I−1(x) = (J>Σ−1J)−1. Note that:

1) I(x) evaluated at the ground truth x = x◦, is the FIM.
Therefore I−1(x) evaluated at x◦ gives CRLB, i.e., an
upper bound on the achievable “accuracy” for unbiased
estimators.

2) The covariance matrix of MLE is usually approximated
by evaluating I−1(x) at the ML estimate x̂, known as
the observed Fisher information matrix. Note that this
value, unlike FIM, depends on the given realization of
observations.

Therefore, assuming the back-end has converged to the ML
estimate, I−1(x̂) tells us about the accuracy of MLE, while
I−1(x◦) gives an upper bound on the achievable accuracy
by any unbiased estimator. Note that MLE is asymptotically
unbiased and efficient [15]. Consequently we look at the re-
lation between FIM and different definitions of connectivity.

A. Ratio of Costs ⇔ Average Node Degree

Olson and Kaess [12] briefly discussed the role of graph
structure in SLAM. They looked at the ratio between the
minimum of ML objective function f?, and its value at the
ground truth f◦. For this ratio, γ , f?/f◦, we have: (i)
0 ≤ γ ≤ 1, and (ii) γ → 1 as x̂ → x◦. Therefore γ
can be used as a heuristic measure to reflect the accuracy
of the ML estimate. Through Monte Carlo simulations,
authors in [12] empirically observed that as the average node
degree d̄ = 2m/n in the graph increases, the average of γ
approaches to 1 (see Figure 5 in [12]). Olson and Kaess
interpret γ as a coarse measure of overfitting.

Here we first give a theoretical justification for this empir-
ical observation. Please refer to Section V for a discussion
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of the limitations of d̄ and γ as measures of “connectivity”
and “accuracy”, respectively. For the observation model
described in (1), the value of objective function at the
ground truth x◦ is given by f◦ = w>Σ−1 w in which w
is the stacked noise vector. In pose-graphs, f◦ is distributed
according to a χ2

ν1 distribution with ν1 = 3m degrees of
freedom. Furthermore, it is well known that for linear mea-
surement functions, f? is also distributed according to a χ2

ν2
distribution with ν2 = 3(m − n) degrees of freedom [15].
For sufficiently large number of observations, it is common
to extend this result to nonlinear measurement functions by
linearizing hij(·, ·) at x◦ [16]. Therefore, for sufficiently
large m we have7

E[γ] ≈ E[f?]

E[f◦]
≈ ν2
ν1

= 1− 2

d̄
. (10)

Equation (10) clearly shows how γ, as a measure of accuracy
of the ML solution in SLAM, is related to the average node
degree d̄, as the simplest measure of connectivity in graphs.
Results: The blue points in Figure 2 correspond to the
average of γ in a Monte Carlo simulation over different
SLAM problems with different average node degree (similar
to Figure 5 in [12]). For each random graph we generated 50
iid samples for measurement noise and then computed the
average of γ over those samples. The red points are obtained
using the approximate expected value of γ derived in (10).
Figure 2 clearly indicates that (10) gives a good estimate for
E[γ], and confirms the empirical observation in [12].

B. Volume of Confidence Ellipsoid ⇔ Number of Spanning
Trees

Determinant of the covariance matrix is a well-studied
scalar measure of the quality of an estimate. Geometrically,
for Gaussian random variables, determinant of the covariance
matrix is proportional to the volume of confidence ellipsoids.
Minimizing the determinant of the covariance matrix of MLE
is known as the D-optimality criterion [10]. D-optimality
is a popular criterion in active SLAM [17], especially due
to its information-theoretic meaning for Gaussian random
variables [18].

7This simple estimate is obtained using a first-order Taylor expansion of
γ at f? = E[f?] and f◦ = E[f◦]. Note that in general, approximating the
expected value of ratio by the ratio of expected values does not result in a
reasonable estimate.

Number of spanning trees in a graph, t, is a well-
defined measure of connectivity. Among connected graphs
with n vertices, t is minimum in trees (t = 1), while the
complete graph has the maximum number of spanning trees
(t = nn−2, according to Cayley’s formula). Adding a new
edge to a connected graph always increases the number of
spanning trees. However, the number of spanning trees in the
new graph depends on the current graph structure as well as
the selected edge.

Theorem 2. [Matrix-Tree Theorem [19]] The number
of spanning trees of graph G, i.e., t(G), is given by
t(G) = det(LG). Here LG is the reduced Laplacian matrix
of G after anchoring an arbitrary vertex.

From Theorem 2 and Remark 2 it readily follows:

Corollary 1. Let t be the number of spanning trees in a
given graph. Then the determinant of CRLB (or, equivalently,
detCov[x̂]) in compass-SLAM and linear-SN is given by

det(Cov[x̂]) =

{
σ4n
p t−2 for compass-SLAM,

σ4n
p σ2n

θ t−3 for linear-SN.
(11)

Remark 3. According to Corollary 1, for a fixed noise model
and number of poses, in compass-SLAM and linear-SN
problems, the ratio of number of spanning trees in two
graphs (e.g., datasets or planned trajectories) determines their
relative D-optimality performance. Therefore the D-optimal
“design” is the one with the maximum number of spanning
trees possible.

Now let us consider the nonlinear SLAM problem defined
in Section II. We start by computing a closed-from expres-
sion for I(x) = J>Σ−1J in pose-graphs. Using (5) we have

I(x) ,

[
I11 I12
I>12 I22

]
=

[
σ−2p L2 σ−2p A2Γ∆

σ−2p ∆>Γ>A>2 σ−2θ L+ σ−2p ∆>∆

]
,

(12)
where Γ is the following block-diagonal matrix

Γ , Im ⊗
[

0 1
−1 0

]
. (13)

Remark 4. For feature-based SLAM, instead of L in I22 we
have BnpB

>
np in which Bnp is the reduced incidence matrix

of odometry subgraph. Note that Bnp is uniquely determined
by the number of poses np.

In (12) we obtained a closed-form expression for I(x).
But recall that we are interested in I−1(x), and not in I (x)
itself. First note that det I−1(x) = 1/det I(x). Therefore
we can focus on det I(x). Let us define Ī(x) , σ2

p I(x).
Let S11 be the Schur complement of the top-left block in
Ī(x).

S11 , Ī22 − Ī>12 Ī−111 Ī12
= α2L+ ∆>∆−∆>Γ>A>2 L

−1
2 A2Γ∆, (14)

in which α2 , σ2
p/σ

2
θ . From the Schur determinant formula

[20, Chapter 6.2] we have det Ī(x) = det(Ī11) det(S11).
Here det(Ī11) can be computed in closed-form.

det(Ī11) = det(L2) = det(L)2 =
Theorem 2

t2, (15)



where t is the number of spanning trees of the graph. Now
we only need to compute det(S11). Recall that L � 0. Let
L

1
2 be the symmetric positive definite square root of L, i.e.,

L = L
1
2L

1
2 . Now det(S11) can be rewritten as

det(S11) = det(α2L+ ∆>(I − Γ>A>2 L
−1
2 A2Γ)∆)

= det(L
1
2

[
α2I + T

]
L

1
2 )

= tdet(α2I + T ) (16)

where

T , L−
1
2 ∆>

(
I − Γ>A>2 L

−1
2 A2Γ

)
∆L−

1
2 . (17)

Finally according to (15) and (16) we have:

det Ī(x) = t3 det(α2I + T ), (18)

or, equivalently,

det I(x) = σ−6np t3 det(α2I + T ). (19)

Results: We performed a series of realistic pose-graph
SLAM simulations (for both diagonal and correlated noise
covariance matrices8) and experiments on real data (Intel
Research Lab dataset) in order to understand the behaviour of
det(I+T ). The simulated trajectory was a circle. By select-
ing edges randomly, we created a large set of random graphs
with different structures. According to our observations, for a
large enough α (i.e., sufficiently small orientation noise σ2

θ ),
det(I+T ) becomes close to a constant number, independent
of the graph structure. Based on this observation, for a
given noise model, we can estimate the determinant of FIM
according to det(I(x)) ≈ η t3 in which η is a constant
number. Note that t = 1 for any spanning tree. Therefore
we can estimate η by computing the determinant of FIM for
a spanning tree such as the odometry subgraph. Taking the
logarithm of both sides we get

log det(I(x)) ≈ 3 log(t) + log(η). (20)

Figure 3 shows the results. Similar results were obtained
for part of the Manhattan simulation,9 but are not reported
here due to space limitation. We also performed the same
experiment on the first 180 poses of the Intel Research Lab
dataset.10 We created a large set of random (sub)graphs by
randomly selecting different combinations of loop-closure
edges, and then evaluated the (observed) FIM at the ML
estimate obtained by using the whole dataset. The results
can be seen in Figure 4. Our results indicate that for a fixed
number of poses, a fixed measurement model and a small
enough σθ, similar to compass-SLAM and linear-SN, number
of spanning trees determines the D-optimality performance
of MLE.

Remark 5. It is interesting to see that one can accurately
estimate the determinant of FIM when the orientation mea-
surements are sufficiently accurate. Nevertheless, it is of

8Correlation between the components of each measurement.
9Due to the numerical sensitivity of the determinant, we were limited to

the first 200-300 poses of the Manhattan dataset.
10The Intel Research Lab dataset in g2o format can be found at

http://openslam.org/g2o.html.
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(a) σθ = 0.15 radian
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(b) σθ = 0.1 radian
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(c) σθ = 0.05 radian
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(d) σθ = 0.01 radian (The true and predicted
values are on top of each other.)

Fig. 3. Results of Pose-Graph SLAM Simulation with n = 20 poses and
σp = 0.1 meter. The vertical axis is log det Ī(x), and the horizontal axis
is log(t). Each green point corresponds to a random graph with correlated
noise components. Each red point corresponds to a random graph with
diagonal noise covariance matrix. Magenta and blue markers correspond
to the predicted values according to (20). They both lie on a line with slope
3. The offset of the line is log det(I + T ) which is obtained from the
odometry subgraph.
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Fig. 4. Intel Research Lab Dataset (first 180 poses). σp = 0.04 meter and
σθ = 0.01 radian. The vertical axis is log det Ī(x). Predicted values are
obtained using (20). The offset is computed using the odometry subgraph.

utmost importance to note that according to Figure 3, even
when α is not large enough and therefore our prediction (20)
is not accurate, there is still a substantial positive correlation
between log(t) and log det Ī(x). This suggests that even
for larger orientation measurement noises, the number of
spanning trees is still a reasonable measure of connectivity
in terms of the D-optimality criterion.

C. Diameter of Confidence Ellipsoid ⇔ Algebraic Connec-
tivity

According to Remark 2, the estimation error covariance
matrix in linear-SN and compass-SLAM problems is given
by CRLB. We also showed that in these cases, CRLB is
closely related to the inverse of the reduced Laplacian matrix.
Therefore, using (9) we can show that the largest eigenvalue
of CRLB in linear-SN and compass-SLAM is proportional
to λmin(L)−1, in which λmin(L) is the smallest eigenvalue
of the reduced Laplacian matrix. Recall that L is a principle
submatrix of the Laplacian matrix L0 obtained by deleting
the row and column corresponding to x0. In connected
graphs, the Laplacian matrix L0 is positive semidefinite [19].
It can be easily verified that the smallest eigenvalue of L0 is
zero. In fact, the corresponding eigenvector is the vector of
ones. Let λ2 be the second-smallest eigenvalue of L0, known
as the algebraic connectivity of graph [11]. As its name
suggests, algebraic connectivity is a well-studied measure
of network connectivity and robustness and has been used in
many applications (see e.g., [21] and references therein).

Corollary 2. Theorem 9.1.1 in [19] (Cauchy’s interlace
theorem) implies that the eigenvalues of L interlace the
eigenvalues of L0. In particular we have 0 < λmin(L) ≤ λ2
and therefore, λmin(L)−1 ≥ λ−12 . Consequently in linear-SN
and compass-SLAM problems we have

λmax(Cov[x̂]) ≥ κλ−12 , (21)

where according to (9) κ is given by

κ =

{
σ2
p for compass-SLAM,

max {σ2
p, σ

2
θ} for linear-SN.

(22)

Note that λmax(Cov[x̂]) is the worst case estimation error
variance over all (normalized) directions [22]. Geometrically,
its square root is proportional to the “diameter” of the

confidence ellipsoid for Gaussian random variables. The
conclusion here is that for a given noise model in linear-SN
and compass-SLAM, a necessary condition for having a
“small” worst case error variance is to maintain a sufficiently
large algebraic connectivity in the corresponding graph.

IV. APPLICATIONS: MEASUREMENT SELECTION AND
EDGE PRUNING

Here we look at two relevant applications in SLAM: active
measurement selection and graph pruning. According to the
results presented in the previous section, we can measure
the importance of each edge in a given graph, based on
its influence on the number of spanning trees. It is obvious
that removing an edge reduces the number of spanning trees,
while adding an edge always increases t. Therefore we can
define the followings:
• The least valuable edge in a given graph is the one

whose deletion causes the smallest decrease in t.
• The most valuable edge is the one that adding it to the

given graph increases t the most.
Hence we can prune the graph by removing less valuable
edges, or we can select the most valuable measurement from
a set of available candidates, in order to maintain the sparsity
of information matrix without putting the reliability (in terms
of D-optimality criterion) of MLE at risk.

Suppose G′ is the graph obtained by adding a new edge
e′ , (i, j) to G. Then the reduced incidence matrix of G′
can be written as A′ =

(
A aij

)
, in which the only non-

zero elements of vector aij are aiji = −1 and aijj = 1. The
reduced Laplacian matrix of G′ can be written as

L′ , A′A′> = L+ aijaij
>
. (23)

In this case, the ratio of number of spanning trees is given
in Lemma 1.

Lemma 1. Let t and t′ be the number of spanning trees in
G and G′, respectively. Then we have

t′/t = 1 + aij
>
L−1aij (24)

= 1 + (L−1)i,i + (L−1)j,j − 2 (L−1)i,j . (25)

Proof. See Appendix I for the proof.

A. Active Measurement Selection
According to Lemma 1, given a graph and a set of new

candidate measurements C+, the optimal choice with respect
to the number of spanning trees is given by

(i?, j?) = arg max
(i,j)∈C+

(L−1)i,i + (L−1)j,j − 2 (L−1)i,j . (26)

B. Graph Pruning
Suppose we want to prune the least valuable measurement

(with respect to the number of spanning trees) from a given
graph G = (V, E). Let L be the reduced Laplacian matrix
of G. Then according to Lemma 1, the optimal choice for
pruning a single edge from a given set of candidates C− ⊆ E
is given by

(i?, j?) = arg min
(i,j)∈C−

(L−1)i,i + (L−1)j,j − 2 (L−1)i,j . (27)



Remark 6. It is interesting to see that for linear-SN and
compass-SLAM problems, the objective function in (26) and
(27) is closely related to our uncertainty about x̂j − x̂i,
i.e., the relative state of xj and xi. In other words, for
linear-SN and compass-SLAM, (26) and (27) suggest to
add/remove the edge between two vertices only if we have
the largest/smallest uncertainty in predicting the value of that
edge. See also [23].

C. The Cost of Decision Making

The reduced Laplacian matrix L = D −W is sparse in
realistic SLAM scenarios, while in general L−1 is dense.
Therefore it is obvious that computing L−1 does not lead to
a scalable strategy. The objective function in (26) and (27)
is given by f(i, j) , aij

>
L−1aij . We can evaluate f(i, j) at

any (i, j) ∈ V ×V efficiently using the following procedure.
1) Solve the sparse linear system Lb = aij using the

Cholesky decomposition of PLP> in which P is a
fill-reducing permutation [24].

2) Compute f(i, j) = bj−bi in which bk is the kth element
of vector b.

It is important to note that the Cholesky decomposition needs
to be calculated only once per graph, i.e., only for the first
(i, j) in our candidate set. For the rest of candidates we only
need to perform sparse forward and back substitution which
can be done in parallel for different (i, j).

Now note that |C+| ≤ n(n + 1)/2 − m and |C−| ≤ m.
Fortunately, the number of available new measurements |C+|
is small in practice because of the limited sensor range.
Therefore a simple brute-force algorithm can easily solve
the active measurement selection problem. In graph pruning
brute-force search has to check all of the m candidate.
On an Intel Core i5-2400 CPU, the time required to solve
the graph pruning problem in City10K with C− = E (i.e.,
more than 2 × 104 edges) is less than 3 seconds using our
simple MATLAB implementation. The active measurement
selection problem with |C+| = 100 candidates can be solved
in less than 0.03 second on the same machine.

D. Results

Similar to what we did in Section III-B, here we created
100 random subgraphs (with fixed number of poses and
edges) from the Intel Research Lab and Manhattan (with 4
different σθ) datasets. In this experiment, we used the set of
loop-closure edges as our candidate set C−. In each subgraph,
we sorted the edges in C− according to our objective function
(27), and specified the least valuable edge for pruning. We
also ranked the edges in C− for each subgraph according
to the true D-optimality criterion, and found the (true) least
valuable edge by exhaustive search. In order to compare our
ranking with the correct ranking, we use the Kendall’s τ
rank correlation coefficient [25]. For τ we have: τ ∈ [−1, 1].
Moreover, τ = 1 iff the two ranked lists are identical, and
τ = −1 iff one of the rankings is exactly the reverse of the
other ranking.

Table I shows the results. The average of τ over 100 Monte
Carlo simulations is denoted by τ̄ . The standard errors are
also computed for τ̄ . As we expected (see Remark 5), there

is a substantial positive correlation between our ranking and
the true ranking, even when α is not large enough. Note that
the correlation becomes stronger as σθ decreases. It is also
clear that almost in all of the random subgraphs, our graph
pruning strategy was able to prune the least valuable edge
in terms of the D-optimality criterion.

V. DISCUSSION & CONCLUSION

This paper is the first step towards revealing the important
role played by the graph structure in the accuracy of ML
estimate in SLAM. We started our analysis by discussing a
heuristic measure proposed by Olson and Kaess [12]. We
provided a proof for their empirical observation regarding
the impact of average node degree on the reliability of the
ML estimate. For a fixed number of poses, the average node
degree is basically reflecting the number of measurements,
and cannot distinguish between different distributions of
edges.

Then we revealed the exact relation between the number of
spanning trees and the determinant of the covariance matrix
of MLE in compass-SLAM and linear-SN. According to our
experiments, this result can be extended to the nonlinear
SLAM problem if the orientation noise is relatively small.
It is very important to note that even when the orientation
noise is not sufficiently small, there is still a strong positive
correlation between the number of spanning trees and the D-
optimality criterion. We also revealed the relation between
the algebraic connectivity and the largest eigenvalue of
the covariance of MLE in compass-SLAM and linear-SN.
Finally, we applied our results on active measurement selec-
tion and edge pruning. The outcome confirms the fact that
the number of spanning trees is an important measure of
connectivity and reliability in SLAM.

In order to reveal the impact of graph structure on different
aspects of FIM, we need to isolate its effect from the effect
of other factors, such as the accuracy of each measurement.
Therefore it was deemed necessary to assume that all mea-
surements have the same noise covariance matrix. It is worth
noting that in fact the output of a considerable number of
front-ends as well as many popular datasets are consistent
with this assumption. Additionally, it is also possible to fuse
the structural value of each edge with its information content
(i.e., its noise covariance matrix) heuristically. In some ap-
plications, such as data gathering, it may be highly beneficial
to avoid the expensive task of (exact) scan registration, and
instead focus only on optimizing the quality of the graph
structure. As an alternative strategy, one may prefer to first
look at the potential structural value of a potential loop-
closure, before deciding to perform the expensive task of
scan registration.

Our analysis is useful in comparing the quality of two
graphs (e.g., two datasets or planned trajectories) by just
looking at the structure of the corresponding graphs (e.g.,
created by a simple appearance-based place recognition
front-end) with a reasonable computational cost, without
(or before) solving the actual SLAM problems. Ultimately
our results can help us to collect reliable datasets in active
scenarios. Decision making in active scenarios based on
the graph structure has a major advantage over the existing



TABLE I
GRAPH PRUNING: 100 RANDOM SUBGRAPHS FOR EACH DATASET. HERE τ̄ IS THE SAMPLE MEAN OF KENDALL’S τ RANK CORRELATION COEFFICIENT

[25]. OPTIMAL CHOICE SHOWS THE NUMBER OF TIMES OUR APPROACH (27) HAS REMOVED THE TRUE LEAST VALUABLE EDGE.

Dataset σp (m) σθ (rad) τ̄ Standard Error Optimal Choice (%)
Intel Research Lab (180 poses) 0.0447 0.0141 0.9878 0.0010 92%

Manhattan (200 poses) 0.1495 0.2000 0.8998 0.0034 95%
Manhattan (200 poses) 0.1495 0.1495 0.9236 0.0019 95%
Manhattan (200 poses) 0.1495 0.1000 0.9491 0.0017 96%
Manhattan (200 poses) 0.1495 0.0500 0.9769 0.0009 99%

methods such as [17], in that the risk of converging to a local
minimum or large linearization errors has no adverse impact
on our decision. It is important to note that evaluating the
Jacobian at an inaccurate estimate or a local minimum leads
to an inconsistent estimate of covariance matrix.

For α ≥ 1 we can find lower and upper bounds for
det(I + T ) that depend on the noise variances, graph struc-
ture and the distances between the nodes. In future work
we plan to improve our current bounds and investigate the
relation between the graph structure and reliability of ML
estimate in other SLAM formulations (e.g., 3D). We are
also planning to use our results in practical problems in the
context of sensor networks and active SLAM.

APPENDIX I
PROOF OF LEMMA 1

Proof. According to Theorem 2, the number of spanning
trees in G′ is given by

t′ = detL′ = det(L+ aijaij
>

). (28)

Recall that L � 0 in SLAM. Therefore the rank-one update
of det(L) can be written as [20, Chapter 6.2]

t′ = det(L) (1 + aij
>
L−1aij) (29)

= t (1 + aij
>
L−1aij). (30)

Dividing both sides by t completes the proof. Note that using
the definition of aij we can simplify aij>L−1aij into

aij
>
L−1aij = (L−1)i,i + (L−1)j,j − 2 (L−1)i,j . (31)
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