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Introduction SLAM Problem

Autonomous Mobile Robots

The ultimate goal of mobile robotics is to design autonomous mobile
robots.

“The ability to simultaneously localize a robot and accurately map its
environment is a key prerequisite of truly autonomous robots.”

SLAM stands for Simultaneous Localization and Mapping.
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Introduction SLAM Problem

SLAM Problem

Basic Assumptions

No a priori knowledge about the environment (i.e., no map)

No independent position information (i.e., no GPS)

Given

Noisy observations of the environment

Noisy control signals (e.g., odometry)

Goal

Estimate the map of the environment (e.g., locations of the features)

Estimate the pose (position and orientation) OR trajectory of the
robot
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Introduction SLAM Problem

Map Representation

Topological maps

Grid maps

Feature-based maps

. . .

Figure : Victoria Park (Sydney)

K.N. Toosi Univ. of Tech. (ARAS) SLAM - ICRoM 2013 February 13, 2013 6 / 34



Introduction SLAM Problem

Map Representation

Topological maps

Grid maps

Feature-based maps

. . .

Figure : Victoria Park (Sydney)

K.N. Toosi Univ. of Tech. (ARAS) SLAM - ICRoM 2013 February 13, 2013 6 / 34



Introduction SLAM Problem

Map Representation

Topological maps

Grid maps

Feature-based maps

. . .

Figure : Victoria Park (Sydney)

K.N. Toosi Univ. of Tech. (ARAS) SLAM - ICRoM 2013 February 13, 2013 6 / 34



Introduction Probabilistic Methods

Probabilistic Robotics

“Uncertainty” is a part of Robotics

Uncertain Models

Uncertain Observations

Uncertain Controls

Uncertain Actions

Uncertain World

Uncertainty arises from

Partial Knowledge

Noisy Measurements

Incomplete Models, Modeling Limitations
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Introduction Bayesian Filtering

Probabilistic Methods

Probabilistic approach tends to outperform deterministic approach

Describe uncertainty in data, models
and estimates

Bayesian estimation

- Robot pose st

- Robot pose is assumed to be a Markov
process with initial distribution p(s0)

- Feature’s location θi

- Map θ = {θ1, . . . , θN}
- Observation zt, and control input ut

- xt = [st θ]T

- x1:t , {x1, . . . ,xt}

Filtering distribution
(Online SLAM):
p(st,θ|z1:t,u1:t)

Smoothing distribution
(Full SLAM):
p(s0:t,θ|z1:t,u1:t)

MMSE estimate:
x̂t = E[xt|z1:t,u1:t]
x̂0:t = E[x0:t|z1:t,u1:t]

Maximum a posteriori
(MAP) Estimate
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Introduction Bayesian Filtering

State-Space Equations

Robot motion equation:

st = f(st−1,ut,vt)

Observation equation:

zt = g(st, θnt ,wt)

f(·, ·, ·) and g(·, ·, ·) are non-linear functions

vt and wt are zero-mean white Gaussian noises with covariances
matrices Qt and Rt
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Introduction Bayesian Filtering

Bayes Filter

How to obtain the posterior distribution recursively in time? Bayes filter!

1 Prediction

2 Update

p(xt|z1:t−1,u1:t) =

∫
p(xt|xt−1,ut) p(xt−1|z1:t−1,u1:t−1) dxt−1 (1)

p(xt|z1:t,u1:t) =
p(zt|xt) p(xt|z1:t−1,u1:t)∫
p(zt|xt)p(xt|z1:t−1,u1:t)dxt

(2)

Motion model Observation model

There is a similar recursive formula for the smoothing density
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Introduction Bayesian Filtering

Bayes Filter Cont’d.

Example

For the case of linear-Gaussian models, Bayes filter equations would be
simplified into the Kalman filter equations.

But . . .

In general, it is impossible to implement the exact Bayes filter because it
requires the ability to evaluate complex high-dimensional integrals.

So we have to approximate . . .

Extended Kalman Filter (EKF)

Unscented Kalman Filter (UKF)

Gaussian-Sum Filter

Extended Information Filter (EIF)

Particle Filter (A.K.A. Sequential Monte Carlo Methods)
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SLAM: Past and Present
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SLAM: Past and Present History

How it begins?

According to Bailey & Durrant-Whyte:

ICRA’86

Applying Estimation-theoretic and probabilistic methods to Mapping
and Localization problems

Smith, Self and Cheeseman: Landmark estimates become correlated

They did not expect convergence at the time

Minimize or ignore these correlations

Csorba and Dissanayake: SLAM is convergent!
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SLAM: Past and Present EKF-SLAM

EKF-SLAM

State-Space Equations:

st = f(st−1,ut,vt)

zt = g(st, θnt ,wt)

f(·, ·, ·) and g(·, ·, ·) are non-linear functions

vt and wt are zero-mean white Gaussian noises with covariances
matrices Qt and Rt

We can approximate the filtering distribution using EKF

State Vector xt = [st θ]T = [st θ1 . . . θM ]T

Covariance Matrix

P =

[
Pss Psθ

P T
sθ Pθθ

]
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SLAM: Past and Present EKF-SLAM

EKF-SLAM Cont’d.

Motion and observation models are linearized around the best
available estimate:

xt ≈ f(x̂+
t−1,ut, 0) +∇fx(xt−1 − x̂+

t−1) +∇fvvt

zt ≈ g(x̂−
t , 0) +∇gx(xt − x̂−

t ) +∇gwwt

Filtering density is approximated by a Gaussian distribution:
p(st,θ|z1:t,u1:t) ≈ N (xt; x̂

+
t ,P

+
t ) where:

x̂−
t = f(x̂+

t−1,ut, 0)

P−
t = ∇fxP+

t−1∇f
T
x +∇fvQt∇fTv

x̂+
t = x̂−

t + Ktνt

P+
t = P−

t −KtStK
T
t

νt = zt − g(x̂−
t , 0)

St = ∇gxP−
t ∇gT

x +∇gwRt∇gT
w

Kt = P−
t ∇gT

xS
−1
t
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SLAM: Past and Present EKF-SLAM

EKF-SLAM Cont’d.

EKF-SLAM drawbacks

1 Quadratic Computational Complexity in the Number of Features

2 Overconfident and Inconsistent Estimates: Linearization Errors!

Submapping approaches partially address these issues: build small
local maps with EKF and join them together

Alternative KF-based solutions: UKF-SLAM, IEKF-SLAM

In practice the application of EKF-SLAM is limited to small
environments

K.N. Toosi Univ. of Tech. (ARAS) SLAM - ICRoM 2013 February 13, 2013 17 / 34



SLAM: Past and Present EKF-SLAM

EKF-SLAM Cont’d.

EKF-SLAM drawbacks

1 Quadratic Computational Complexity in the Number of Features

2 Overconfident and Inconsistent Estimates: Linearization Errors!

Submapping approaches partially address these issues: build small
local maps with EKF and join them together

Alternative KF-based solutions: UKF-SLAM, IEKF-SLAM

In practice the application of EKF-SLAM is limited to small
environments

K.N. Toosi Univ. of Tech. (ARAS) SLAM - ICRoM 2013 February 13, 2013 17 / 34



SLAM: Past and Present EKF-SLAM

EKF-SLAM Cont’d.

EKF-SLAM drawbacks

1 Quadratic Computational Complexity in the Number of Features

2 Overconfident and Inconsistent Estimates: Linearization Errors!

Submapping approaches partially address these issues: build small
local maps with EKF and join them together

Alternative KF-based solutions: UKF-SLAM, IEKF-SLAM

In practice the application of EKF-SLAM is limited to small
environments

K.N. Toosi Univ. of Tech. (ARAS) SLAM - ICRoM 2013 February 13, 2013 17 / 34



SLAM: Past and Present EKF-SLAM

EKF-SLAM Cont’d.

EKF-SLAM drawbacks

1 Quadratic Computational Complexity in the Number of Features

2 Overconfident and Inconsistent Estimates: Linearization Errors!

Submapping approaches partially address these issues: build small
local maps with EKF and join them together

Alternative KF-based solutions: UKF-SLAM, IEKF-SLAM

In practice the application of EKF-SLAM is limited to small
environments

K.N. Toosi Univ. of Tech. (ARAS) SLAM - ICRoM 2013 February 13, 2013 17 / 34



SLAM: Past and Present EKF-SLAM

EKF-SLAM Cont’d.

EKF-SLAM drawbacks

1 Quadratic Computational Complexity in the Number of Features

2 Overconfident and Inconsistent Estimates: Linearization Errors!

Submapping approaches partially address these issues: build small
local maps with EKF and join them together

Alternative KF-based solutions: UKF-SLAM, IEKF-SLAM

In practice the application of EKF-SLAM is limited to small
environments

K.N. Toosi Univ. of Tech. (ARAS) SLAM - ICRoM 2013 February 13, 2013 17 / 34



SLAM: Past and Present RBPF-SLAM (FastSLAM, . . . )
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SLAM: Past and Present RBPF-SLAM (FastSLAM, . . . )

Particle Filter in Robotics

Unlike EKF-SLAM, FastSLAM (Rao-Blackwellized Particle Filter SLAM in
general) is basically a Full SLAM solution (Smoothing instead of Filtering).

Particle Filter had been successfully applied to Localization: MCL
(Monte Carlo Localization)

SLAM is a very high-dimensional problem (map is growing) while the
dimension of state vector in Localization is fixed and small

Estimating p(s0:t,θ|z1:t,u1:t) using a Particle Filter can be very inefficient

Rao-Blackwellization in Particle Filtering

Factor the posterior distribution and estimate the map analytically using
EKF
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SLAM: Past and Present RBPF-SLAM (FastSLAM, . . . )

FastSLAM Factorization

We can factor the smoothing distribution into two parts as

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t) p(θ| s0:t , z1:t,u1:t)

But . . .

In SLAM, landmark estimates are conditionally independent given the robot

trajectory

Therefore we have:

p(s0:t,θ|z1:t,u1:t) = p(s0:t|z1:t,u1:t)

M∏
k=1

p(θk| s0:t , z1:t,u1:t)

1 Estimate robot’s trajectory using a Particle Filter (e.g., SIR)

2 For each path particle, estimate each landmark’s locations using a low
dimensional (e.g., 2 × 2) EKF
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SLAM: Past and Present RBPF-SLAM (FastSLAM, . . . )

Pros and Cons

Pros

FastSLAM: Linear/Logarithmic complexity in the number of landmarks

Multiple-hypothesis data association: Perform data association per-particle

Cons

Like any other sequential Monte Carlo method, FastSLAM suffers from:

Degeneracy

Sample Impoverishment (A.K.A. particle depletion, common history, etc)

Partial Solutions

Sample from the “optimal proposal distribution” instead of motion model:
slower rate of degeneracy (FastSLAM 2.0)

Resample according to the Effective Sample Size (ESS) to avoid unnecessary
Resampling steps: slower rate of depletion (GridSLAM)
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SLAM: Past and Present SEIF

Outline
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SLAM: Past and Present SEIF

Extended Information Filter

Information Filter (IF) is based on the canonical representation of a
Gaussian distribution N (µ,Ω)

Information (Precision) Matrix instead of Covariance Matrix:
Ω = Σ−1

Information Vector instead of Mean Vector: ξ = Ωµ

(E)IF is mathematically identical to (E)KF: updates information
matrix and information vector instead of covariance matrix and mean
vector

But . . .

Complexity of a naive implementation of EIF-SLAM is cubic in the number
of features!
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SLAM: Past and Present SEIF

Sparse EIF

Reminder

Fully Correlated Landmarks in EKF-SLAM: covariance matrix in
EKF-SLAM becomes dense very soon

It was first observed by Thrun et al. (2004) that the normalized
information matrix in SLAM is almost sparse
This observation was later theoretically proven by Frese (2005)

SEIF

SEIF utilizes this observation and by introducing a “sparsification” step
approximates the information matrix of EIF-SLAM by a sparse matrix

Sparse Information Matrix ⇒ constant-time algorithm (instead of
cubic!)

Trade-off

We are simply loosing accuracy!
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SLAM: Past and Present SEIF

Important Remarks

It was first realized by Thrun et al. in SEIF . . .

The canonical formulation of SLAM is equivalent to a Gaussian Markov
Random Field (GMRF) (each robot pose/landmark position corresponds to
a node, and two nodes are connected iff the corresponding term in the
information matrix is non-zero)

It is the marginalization of previous robot pose in motion update step that
makes the information matrix dense ⇒ If we keep the robot trajectory in the
state vector we will end up with an exactly sparse information matrix

It can be shown that under the Gaussian assumption, information matrix
describes the conditional independence (CI) between the random variables:
an off-diagonal term in the information matrix is zero iff the corresponding
random variables are conditionally independent given other random variables

This reminds us of the CI property of Full SLAM (remember FastSLAM?)
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SLAM: Past and Present Optimization Approach (GraphSLAM, SAM, . . . )

Outline

1 Introduction
SLAM Problem
Probabilistic Methods
Bayesian Filtering

2 SLAM: Past and Present
History
EKF-SLAM
RBPF-SLAM (FastSLAM, . . . )
SEIF
Optimization Approach (GraphSLAM, SAM, . . . )
Softwares and Datasets
Final Remarks
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SLAM: Past and Present Optimization Approach (GraphSLAM, SAM, . . . )

Optimization approach to Full SLAM

Consequently Full SLAM came under the spotlight once again

Counterintuitive conclusion: Solving Full SLAM could be easier that
Online SLAM!

As it was predicted in SEIF, the relation between GMRF and
information matrix attracted the attention of SLAM community
toward probabilistic graphical models

Graphical models provide a natural representation of SLAM due to
their natural ability in describing conditional independence
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SLAM: Past and Present Optimization Approach (GraphSLAM, SAM, . . . )

Non-linear Least Squares

The smoothing distribution can be factored into:

p(s0:t,θ|z1:t,u1:t) ∝ p(s0)
∏
i

p(si|si−1,ui)p(zi|si, θni)

Maximizing the posterior is equivalent to minimizing its negative Log

For Gaussian motion and observation models (which implies
linear/linearized motion and observation equations with respect to the
noise variable), maximum a posteriori (MAP) estimate is obtained by
minimizing:

sT0 P
−1
0 s0+

∑
i

(si − f(si−1,ui))
TQ−1

i (si − f(si−1,ui))

+
∑
i

(zi − g(si, θni))
TR−1

i (zi − g(si, θni))

This is equivalent to the maximum likelihood estimate if we are
treating the state variables as nonrandom/fixed unknown parameters.
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SLAM: Past and Present Optimization Approach (GraphSLAM, SAM, . . . )

State Of The Art

Various techniques have been applied to this non-linear least squares
form of SLAM: Gauss-Newton, Levenberg-Marquardt, Gradient
Descent, Stochastic Gradient Descent, Multi-Level Relaxation,
Convex Relaxation, Powell’s dogleg (Trust Region), . . .

Very efficient and accurate Full SLAM solutions

Full SLAM is no longer an offline/batch approach (e.g., see iSAM by
Kaess et al.)

Pose-graphs

Landmarks are omitted from the state vector and instead, additional
constraints (“observations”) are added between different robot poses
(e.g., using scan matching)

See Tree-based network optimizer (TORO) by Grisetti et al.

More popular than feature-based SLAM!
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SLAM: Past and Present Softwares and Datasets
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SLAM: Past and Present Softwares and Datasets

Softwares and Datasets

Open Source Software Packages

g2o: A General Framework for Graph Optimization
(github.com/RainerKuemmerle/g2o)

iSAM (people.csail.mit.edu/kaess/isam)

GTSAM (borg.cc.gatech.edu/download)

MRPT (mrpt.org)

Check out OpenSlam.org and ROS.org for more free/open source
software packages

Dataset Repositories

MRPT (mrpt.org/robotic datasets)

Radish (radish.sf.net)

Check out available SLAM software packages for preprocessed
datasets
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SLAM: Past and Present Final Remarks
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SLAM: Past and Present Final Remarks

Final Remarks

After about 25 years, SLAM is still an active research area in
Autonomous Mobile Robotics (ICRA 2012 had two SLAM sessions)

We have now accurate and efficient SLAM solutions for large-scale
environments

Data Association was not addressed in this presentation: still a big
challenge!

Ongoing Research Topics

3D SLAM

Cooperative SLAM

Life-long SLAM

Robustness against wrong data association

Local/Global convergence properties

...
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Thank You!

Thank you for your attention
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