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Abstract

Networked control systems, where feedback loops are closed over com-

munication networks, arise in several domains including smart energy

grids, autonomous driving, unmanned aerial vehicles, and many indus-

trial and robotic systems active in service, production, agriculture, and

smart homes and cities. In these settings, the two main layers of the

system, control and communication, strongly affect each other’s per-

formance, and they also reveal the interaction between a cyber-system

component, represented by information-based computing and commu-

nication technologies, and a physical-system component, represented by

the environment that needs to be controlled. The information access

and distribution constraints required to achieve reliable state estimation

and stabilization in networked control systems have been intensively

studied over the course of roughly two decades. This article reviews

some of the cornerstone results in this area, draws a map for what we

have learned over these years, and describes the new challenges that we

will face in the future. Rather than simply listing different results, we

present them in a coherent fashion using a uniform notation, and we

also put them in context, highlighting both their theoretical insights

and their practical significance. Particular attention given to recent

developments related to decentralized estimation in distributed sens-

ing and communication systems and the information-theoretic value of

event timing in the context of networked control.
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1. Introduction

In this paper we are concerned with Networked Control Systems (NCS) composed by a net-

work of interacting elements, including sensors, actuators, computing and communication

devices connected in closed loop, with the objective of performing tasks that require inter-

action with the physical world. A schematic representation of such systems is depicted in

Figure 1. Examples include autonomous and remotely controlled robots, unmanned aerial

vehicles (UAVs), autonomous vehicles (AV), and several industrial and consumer control

systems. One of their key features is the interaction between a Cyber component, namely a

networked computing and communication infrastructure composed by controllers, encoders

and decoders, and a Physical component, namely a physical plant —which occurs through

distributed sensors and actuators. For this reason, they are also referred to as Cyber-

Physical Systems (CPS) (1). In this framework, two fundamental questions that we wish to

address are: 1. What is the minimum amount of information transfer among the different

components of the system that is needed to keep the overall system stable? 2. How can we

design encoding, decoding, and control policies that best exploit the available information

flow to reach stability? As we shall see, these questions are closely related to the ability of

performing decentralized estimation through distributed sensing and communication, since

achieving a reliable estimate of the state is key to determine the correct control action,

and many of the results on control and stabilization also have counterparts in this setting.

Deriving them requires the development of a new information-theoretic paradigm in which

the dynamical system aspects of the problem pose strong constraints on the communica-

tion aspects. These constraints are typically ignored in classical information theory, but

must be taken into account in the context of control. Namely, in our setting the “utility”

of the received information at any given time, rather than merely the rate at which the

information flows, determines the ability to perform control. This utility is associated to

system-dependent parameters, as information quickly becomes outdated and thus unusable

for control. This new paradigm also leads to the realization that in NCS information can

have many facets. For example, the event corresponding to the availability of new data,

along with the data itself, can encode information that can be useful for control. In some

cases, this allows to perform control with a remarkably low data-rate, which can be counter-
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Figure 1

Distributed communication and control system.

intuitive from a more classical information-theoretic perspective. The main theme of this

paper is to show how these considerations can be cast into a rigorous theory that lays the

foundations for the developments of next-generation NCS. Related works investigating in-

formation decay over time include the “age of information” paradigm (2, 3, 4, 5). However,

as pointed out in (6, 7, 8), while these works are relevant for some specific applications, e.g.

news feeds, they do not consider that when information is used in the context of control, a

relevant age metric should be related to system parameters. We do not wish to review here

all the alternative measures of information utility that have been proposed in the literature,

but we focus on the different aspects in which information can be encoded to be useful for

control and identify the communication constraint needed for stability in NCS.

In the last two decades, the research community has studied information constraints in

NCS by developing several mathematical abstractions of system components and intercon-

nections. The results that have been obtained shed light on the behavior of real systems

and provide guidelines to develop effective control policies. Surveys of this literature appear

in (9, 10, 11, 12, 13) and in the books (14, 15, 16, 17). We extend these reviews, focus-

ing on data-rate requirements for stabilization, and in particular on recent advancements

and insights obtained through the study of event-triggered control policies and distributed

inference systems. One key point that we wish to put forward is that is that the infor-

mation flow in feedback systems is not only associated to data flowing through the links

connecting the different devices, but it is more generally encoded in “events” that occur

over time. This new point of view leads to several extensions of classic results and to a

broader perspective on the information constraints associated to control systems. Another

point is that decentralized inference is an important building block for performing control

in NCS and information constraints can be derived in this case for both single plant and

multi-node networks. While in this paper we focus primarily on system stabilization, we

point out that related studies of optimal control under communication constraints have also

been performed (18, 19, 20, 6, 7). Recently, the tradeoffs between rate and linear–quadratic

regulator (LQR) cost for periodic control schemes have been evaluated in (21).

Notation: Random variables are displayed in sans serif, upright fonts; their realizations

in serif, italic fonts. Vectors and matrices are denoted by bold lowercase and uppercase

letters, respectively. For example, a random variable and its realization are denoted by x
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Figure 2

High level abstraction of a CPS from a communication perspective.

and x; a random vector and its realization are denoted by x and x; a random matrix and its

realization are denoted by X and X, respectively. The expectation of x is denoted by E{x}.
Given a discrete-time stochastic process {xt}t>0, the notation xs : t represents the vertical

concatenation of xτ for integers s 6 τ 6 t. Logarithms of a positive number x with base 2

is denoted by log x. The Euclidean norm of vector x is denoted by ‖x‖. N (a, b) denotes a

Gaussian distribution with mean a and variance b.

2. Data-rate theorem

We start considering a simple high-level abstraction of a single-plant network as the block

diagram as depicted in Figure 2, and later extend the treatment to the multi-node case.

A dynamical system evolves over time according to deterministic state equations, affected

by stochastic disturbances. Sensors monitor the system’s output and their readings are

encoded and sent through a digital communication channel to a controller, whose action is

fed back to the actuators through another digital communication channel. We can further

simplify this model by assuming that the controller is co-located with the actuators and

the only communication channel is between the sensors and the controller. This comes at

no loss of generality so long as the information available to perform encoding and decoding

is the same at the sensor, controller, and actuators. In this case, performing decoding and

re-encoding at the controller is redundant, and the bottleneck link determines the effective

data-rate. The information flow through the feedback loop can then be viewed as occurring

over a single channel, which can also represent a multi-hop network connection, and in this

case the effective data-rate refers to the rate available at the endpoints of the connection.

On the other hand, we point out that in practice the information available for encoding and

decoding may be different at different points in the network and solutions in this case are

highly dependent on the assumed information pattern. Nevertheless, a global view of the

network can be achieved by running a distributed consensus protocol (22) before attempting

to perform control.

The first basic result on the information flow requirements for stabilization that we wish

to describe is the so-called data-rate theorem (23, 24), which has also been the starting point

for much of the research in the area of information constraints in NCS. This quantifies the
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Figure 3

Bit-pipe channel

effect that communication has on closed-loop stabilization of unstable systems by stating

that the communication rate available in the feedback loop should be at least as large as

the intrinsic entropy rate of the system. For continuous linear systems the intrinsic entropy

rate corresponds to the sum of the unstable modes of the system and for discrete systems

it corresponds to the sum of the logarithms of the unstable modes. When this condition is

satisfied, the controller can compensate for the growth of the state space occurring during

the communication process and is able to keep the system stable. To illustrate this result

for linear systems, consider the set of equations{
xk+1 = Axk +Buk + vk

yk = Cxk + wk,

1a.

1b.

where k = 0, 1, . . . is time, xk ∈ Rd represents the state variable of the system, uk ∈ Rm

is the control input, vk ∈ Rd is an additive disturbance, yk ∈ Rp is the sensor measure-

ment, wk ∈ Rp is the measurement disturbance, and A, B, C are constant real matrixes

of matching dimensions. Standard conditions on (A,B) to be reachable, (C,A) observ-

able, are added to make the problems considered well posed. The equivalent continuous

formulation is {
ẋ(t) = Ax(t) +Bu(t) + v(t)

y(t) = Cx(t) + w(t).

2a.

2b.

In a first approximation, noise and bandwidth limitations in the communication channel

can be captured by modeling the channel as a rate-limited “bit pipe” capable of transmitting

only a fixed number r of bits in each time slot of the system’s evolution, see Figure 3. In

this way, the channel can represent a network connection with a limited available bit-rate,

when transmitting below this rate communication errors are assumed to be negligible, and

only quantization of the transmitted messages is accounted for.

When the control objective is to keep its state bounded, or asymptotically drive it to

zero, the control law can be a linear function of the state estimate. Hence, for unstable

linear systems under this rate-limited bit-pipe communication model, the central issue is to

characterize the ability to perform a reliable estimate of the state at the receiving end of the

communication channel. In order to keep the system stable, the data-rate theorem states

that the information rate r supported by the channel must be large enough compared to

the unstable modes of the system, so that it can compensate for the expansion of the state

during the communication process. Namely,

r >
∑
|λi|>1

log2 |λi| [bits/sec], 3.

The Many Facets of Information in Networked Estimation and Control 5



for discrete systems, where {λi} are the open-loop eigenvalues raised to their corresponding

algebraic multiplicities, and

r >
∑

Re{λi}>0

λi log2 e [bits/sec], 4.

for continuous systems. If the real parts of all the eigenvalues of A are positive (unstable),

this can be written as

r > tr(A) log2 e [bits/sec]. 5.

The intuition behind the data-rate theorem is evident by considering a scalar system

and noticing that while the volume of the state of the open loop system increases by |λ| in

a unit time step in the discrete setting —or by |eλ| in the continuous setting— in closed

loop this expansion is compensated by a factor 2−r due to the partitioning induced by the

coder providing r bits of information through the communication channel. By imposing the

product to be less than one and taking the logarithm base two, the results follow. Another

interpretation arises if one identifies the right-hand side of (3) and (5) as a measure of the

rate at which information is generated by the unstable plant, then the theorem essentially

states that to achieve stability the channel must be able to transport information as fast as

it is produced.

Early incarnations of this fundamental result appeared in (25, 26, 27, 28, 29) for undis-

turbed, scalar, unstable plants, when the objective is to keep the state bounded at all

times. Improvement of the result from maintaining a bounded state to obtaining a state

that asymptotically approaches zero are shown in (30, 31, 32) and require an adaptive

“zoom-in, zoom-out” strategy that adjusts the range of the quantizer so that it increases as

the plant’s state approaches the target and decreases if the state diverges from the target.

This follows the intuition that in order to drive the state to zero, the quantizer’s resolution

should become higher close to the target.

In the presence of stochastic disturbances, asymptotic stability can only be guaranteed

within the range of the disturbances. The work (24) showed that for almost surely (a.s.)

bounded disturbances and initial condition, the data-rate theorem holds and we can have

sup
k∈N
‖xk‖2 <∞, a.s. 6.

On the other hand, unbounded disturbances can drive the state arbitrarily far from zero,

and one can only guarantee stability in a weaker, probabilistic sense. The typical approach

is to consider mean-square (m.s.) stability, namely

sup
k∈N

E
{
‖xk‖2

}
<∞. 7.

The work (23) proved the data rate theorem using mean-square stability for systems with

unbounded stochastic disturbances provided that higher moments are bounded, namely

∃ε > 0 : E
{
‖x0‖2+ε

}
<∞, sup

k∈N
E
{
‖vk‖2+ε

}
<∞, sup

k∈N
E
{
‖wk‖2+ε

}
<∞. 8.

A similar data-rate theorem formulation also holds for nonlinear systems. In this case

one may consider a partially observed, time-invariant, dynamical system

{
ẋ(t) = f(x(t), u(t), v(t)),

y(t) = h(x(t),w(t)),

9a.

9b.
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where f denotes the state transition function, h denotes the observation measurement func-

tion, y, x, u, v,w the observation, state, control input, state disturbance, and observation

disturbance, respectively, as before. In order to express the data-rate theorem, one needs

to quantify the rate at which the dynamical system generates information, which for the

linear case corresponds to the right-hand side of 3. and 5. Obviously, this rate should be

intrinsic to the nonlinear dynamical system and thus independent of encoding and decoding

processes, controllers, and feedback communication constraints. One way to obtain such

quantification is to refer to the topological entropy of the system (33), a construction spin-

off from Kolmogorov’s entropy definition for completely deterministic nonlinear maps (34).

The idea behind this definition is to first fix an open cover for the space, through which each

iteration of the map is observed. As the number of iterations increases, the family of all

possible intersections of initial state open sets forms an increasingly fine open cover for the

space. The topological entropy of the map is then obtained by taking the supremum of the

asymptotic rate of increase of the cardinality of this open cover over all observation open

covers. This measures the fastest rate at which uncertainty about the initial state can be

reduced, or equivalently the fastest rate at which initial state information can be generated.

There is an analogy here with source coding in classical information theory (35), which Kol-

mogorov credits as the inspiration for his own work (36). Source coding is concerned with

determining the smallest data rate at which a stochastic source can be encoded, transmit-

ted and reliably decoded over a noiseless digital channel. Shannon’s source coding theorem

states that the smallest possible data rate is equal to the Shannon entropy of the source, in-

dependent of external constructs. Parallels between Kolmogorov’s deterministic theory and

Shannon’s stochastic theory are further explored in (37, 38). The work (33) considers fully

observable, undisturbed systems closed over a a bit-pipe communication channel and uses

the notion of topological entropy to determine necessary and sufficient bit rates for local

uniform asymptotic stability. The work (39) provides the extension for partially observable

systems. The works (40, 41) follow a different approach, expressing sufficient conditions

for stabilization in terms of the Lipshitz constant. The work (42) considers noiseless and

fully observed nonlinear systems with a special upper triangular structure, i.e. feedforward

systems, providing a tight condition for global stability that matches the topological en-

tropy formulation of (33). An extensive compendium of related results connecting different

variants of topological entropy definitions to data rate requirements for different stability

notions can be found in the monograph (17) and in the recent work (43) and references

therein.

3. Extensions to noisy channels

Several generalizations of the simple bit-pipe communication model have been considered in

the literature. An important body of work regards extensions to stochastic channels, namely

channels whose behavior varies randomly due to noise. In this case, the rate available for

transmission through the noisy channel must be defined in terms of information capacity.

In this setting, a key result is that for undisturbed systems one can derive a data-rate

theorem expressing the rate available for transmission in terms of the Shannon capacity of

the channel (44, 45), which must be larger than the entropy rate of the system in order

to guarantee stability. In contrast, when systems are subject to disturbances the standard

notion of Shannon capacity turns out to be insufficient to express the ability to stabilize

the system in both the a.s. and m.s. sense. In this case, alternative notions of capacity

The Many Facets of Information in Networked Estimation and Control 7



that have stronger reliability constraints must be used to formulate data-rate theorems,

namely the anytime capacity must be used to express m.s. stability (46), or more generally

α-moment stability, and the zero-error capacity must be used to express a.s. stability (47).

The main difference between these notions of capacity is that while the Shannon capacity

is defined as the supremum of the rates that can achieve an arbitrarily small probability

of error, the anytime capacity has more stringent conditions on the probability of error,

requiring “anytime” decoding of all codewords every time a new symbol is received, and

imposing that the probability of having an error in any of the decoded codewords tends to

zero exponentially as more and more symbols are received. On the other hand, the zero-

error capacity requires that the probability of error is exactly zero for every transmitted

codeword. In short, the Shannon capacity offers only “weak” reliability constraints and it

is generally insufficient to characterize the ability to stabilize the system in the presence of

external disturbances; while the zero-error and anytime capacity offer stronger reliability

constraints and can be used to characterize the ability to stabilize the system in the presence

of external disturbances in an a.s. and moment setting, respectively. For a more extensive

discussion of the relationship between the different capacity definitions, we refer the reader

to (9, 48).

To illustrate the main results for noisy channels, first consider stabilization of a scalar

system over a simple stochastic erasure channel where the rate varies randomly between the

two values {r, 0} in an i.i.d. fashion. Namely, for all k we have the stochastic rate process

rk =

{
0 w.p. p

r w.p. 1− p,
10.

and we assume that both encoder and decoder have causal knowledge of the channel re-

alization. In information-theoretic terms, this is as an r-bit packet erasure channel with

acknowledgement of packet reception and erasure probability p. This channel is visually

illustrated in Figure 4(a).

(a)

(b)
Figure 4

Example of stochastic channels. (a) r-bit packet erasure channel. (b) stochastic-rate channel,

including erasures.
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The condition to achieve m.s. stabilization 7. over this channel is expressed as

E
{ |λ|2

22rk

}
= p
|λ|2

20
+ (1− p) |λ|

2

22r
< 1. 11.

Using the same interpretation of production and consumption of information mentioned

above, this condition states that the average of the product of the open loop state expan-

sion and compensation through r-bit quantization should be kept less than one to ensure

stability. By rearranging terms, we obtain an expression where the anytime capacity of the

channel appears on the left-hand side of the inequality (46)

C̆(2) ≡ 22r

22rp+ 1− p =
22r

p(22r − 1) + 1
> |λ|2, 12.

here the anytime capacity C̆(α) is parametrized by the mean-square stability exponent

α = 2. The expression in 12. shows a clear a trade-off between the reliability of the channel

and the quantization rate. Namely, when the quantization rate r →∞, we obtain

1

p
> |λ|2, 13.

indicating that the erasure probability p must be small enough to guarantee stability. In

contrast, the Shannon capacity of the r-bit erasure channel is (49)

C = (1− p)r, 14.

which diverges as r → ∞, independent of the value of p. It follows that the Shannon

capacity does not give in this case any indication on the ability to achieve stabilization. In

general, for any finite value of r both the quantization rate and the reliability of the channel

play a role in determining the ability to stabilize the system. We also note that when r → 0

we obtain |λ| < 1, namely the system cannot be stabilized regardless how small the erasure

probability p is.

The anytime capacity is the correct figure of merit to express data-rate theorems de-

scribing the ability to achieve α-moment stabilization (46) for more general noisy channels,

beside the simple erasure one. The price to pay to have a complete characterization, how-

ever, is the computation of the anytime capacity that becomes increasingly difficult. Only

for a few channels anytime capacity stabilization conditions similar to 12. have been ob-

tained. These include time-varying rate channels (50, 51) where the rate process rk varies

randomly over time in an i.i.d. fashion, taking values in a subset of the non-negative in-

tegers, see Figure 4(b). The erasure channel considered above is a special case, when the

rate process takes values in {0, r}. Results have also been obtained for stochastic channels

where the rate varies according to a Markov process (52, 53, 48). This allows arbitrary

temporal correlations of the channel variations over time, and results rely on the theory of

Markov Jump Linear Systems (9).

In the special case of additive Gaussian channels, it turns out that the Shannon capacity

is indeed sufficient to characterize m.s. stability and we refer to (9, Sec 1.4.4) and references

therein for a description of these results. Another way to use the weaker notion of Shannon

capacity to characterize the ability to stabilize the system is to relax the notion of stability.

The work in (15, Chapter 8) considers the weaker notion of stability in probability, requiring

The Many Facets of Information in Networked Estimation and Control 9



the state to be bounded with probability at least (1− ε) by a constant Kε that diverges as

ε→ 0, namely

P
{

sup
t
|x(t)| < Kε

}
> 1− ε, 15.

and shows that in this case it is possible to stabilize linear systems with bounded distur-

bances over noisy channels provided that the Shannon capacity of the channel is larger than

the entropy rate of the system. At the opposite extreme, for general stochastic channels, and

systems with bounded disturbances, if instead of m.s. stability 7. one wants to achieve the

more stringent a.s. stabilization condition 6., a basic result in (47) shows that the capacity

notion to use is the zero-error one, and the work (54) shows that the zero-error capacity can

be written in terms of an information functional describing the flow of information through

the feedback loop.

Some additional extensions regard stabilization over channels with multiplicative noise

that can be used to model fast-fading wireless communication channels or synchronization

errors in system sampling. One example of this case is the work (55), which considers the

following scalar system {
xk+1 = A xk − uk

x′k = zk xk,

16a.

16b.

where A is constant, x0 ∼ N (0, 1) , uk can be any function of the current and previous

observations and zk are random variables representing the multiplicative noise. In this

setting, the work (55) shows a result that is reminiscent of a data-rate theorem. Namely,

if zk are i.i.d. with a known bounded density with unit mean and variance equal to σ2,

letting A∗ =
√

1 + (1/σ2), we have that a memoryless linear controller can stabilize the

system in a second-moment sense if A 6 A∗. Moreover, if A > A∗ the system cannot be

second-moment stabilized using a linear control strategy.

4. Event-triggered control

Event-triggering (56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71) is a recent

control paradigm that seeks to prescribe information exchange between the controller and

the plant in an opportunistic manner. Rather than communicating periodically the control

action, communication in event-triggering control occurs only when triggered by some events

indicating the need to send fresh information to guarantee the correct execution of the task

at hand (e.g., stabilization, tracking). The primary focus then is on minimizing the number

of transmissions while guaranteeing the control objectives.

At a high level, one can view event triggering as sampling in time with the objective

to identify the minimum sampling rate at which information may be transmitted through

the feedback loop. Similarly, a bit-pipe communication model can be viewed as sampling in

space, namely as quantization of the signal, and the data-rate theorem corresponds to the

identification of the minimum quantization rate that can still guarantee stabilization. In

the case of stochastic channels, we have both sampling in space, since we are transmitting

through a digital channel messages of finite precision, and sampling in time, through errors

and erasures. This view suggests that there should be a close connection between data-rate

theorems and event-triggered control (69).

A first connection is revealed in (72), which presents a data-rate theorem for event-

triggering strategies for systems subject to bounded disturbances and controlled over a

10 Franceschetti, Khojasteh, Win



bit-pipe communication channel. Consider the system’s equations

{
ẋ(t) = Ax(t) +Bu(t) + v(t)

y(t) = x(t),

17a.

17b.

where the initial condition x(0) and the system disturbance v(t) are a.s. bounded. At each

triggering event, the sensor transmits to the controller a packet of a fixed number of bits.

Letting bs(t) be the total number of bits transmitted by the sensor to the controller up to

time t, the data-rate theorem is expressed in terms of the asymptotic average transmission

bit-rate of the sensor

r ≡ lim sup
t→∞

bs(t)

t
[bits/sec]. 18.

Letting ‖x∞‖2 be a deterministic bound on the the steady state and κ be a sufficiently

large constant (both depending on the range of the disturbance and the initial condition),

it turns out that to obtain exponential stability at rate σ > 0, namely requiring that for all

t > 0

‖x(t)‖2 6 (κ− ‖x∞‖2)e−2σt + ‖x∞‖2 a.s., 19.

we need

r > (tr(A) + σd) log2 e [bits/sec], 20.

where d indicates the dimension of the system. The expressions 19. and 20. are consistent

with 5. and 6., where σd represent the extra bits required for exponential convergence to

the steady state. It follows that the result in (72) can be viewed as being analogous to the

one in (24), but obtained here in the context of event triggering for continuous systems and

with exponential convergence guarantees. However, while the result in (24) is a data-rate

theorem that is both necessary and sufficient for stabilization, the event-triggering controller

design proposed in (72) uses an asymptotic data rate that is within a constant factor from

the necessary condition 20. This sufficient rate clearly depends on the triggering strategy.

In particular, the event-triggering strategy utilized in (72) is based on a Lyapunov function

that ensures the desired convergence rate of the state. Nevertheless, the proposed design

adjusts the communication rate in accordance with state information in an opportunistic

fashion and it guarantees a uniform positive lower bound on the times between successive

triggering events, so that degenerate cases where triggering occurs infinitely often in a finite

interval are avoided.

5. Timing information in event-triggering

The results in (72) seem to indicate that the data-rate theorem is in complete harmony

with event-triggering, in the sense that whether the transmission rate is limited by channel

conditions, or it is limited opportunistically through event-triggering, the same fundamental

limitation applies, which is dictated by the unstable modes of the system and by the desired

convergence rate and expressed by 20.

It turns out, however, that event-triggering can also exploit an additional resource that

is not accounted for in the current formulation and which allows to achieve stabilization

with a dramatically lower data-rate. The work in (73) reveals that if the channel does not

introduce any delay and the controller is aware of the triggering strategy used by the sensor,
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then one can achieve stabilization by transmitting at a rate that is arbitrarily close to zero.

To illustrate this point, consider the following undisturbed system

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),

21a.

21b.

where x ∈ Rd and y ∈ R (that is C ∈ R1×d) and the only uncertainty is due to the random

initial condition. The channel connecting the sensor to the controller is assumed to be

capable of transmitting one bit in an arbitrarily small time unit, so that communication of

this binary symbol can be considered instantaneous when compared to the system dynamics.

Let {tks }k∈N be the sequence of times at which the sensor transmits a bit to the controller.

These times are set by event triggering accordingly to a level crossing strategy. Letting h be

a given threshold, a transmission occurs every time absolute value of the difference between

two successive output samples crosses the threshold, namely the triggering condition is

given by

|y(tks )− y(tk+1
s )| = h. 22.

The system initially evolves in open-loop by letting u = 0. Then, at each triggering time

the sensor transmits a single bit to the controller that encodes the sign of the h step change

in the y value. By receiving at least d+1 bits, and solving the following system of equations
C(eAt

1
s − eAt

0
s )

C(eAt
2
s − eAt

1
s )

...

C(eAt
d
s − eAt

d−1
s )

 x0 =


y(t1s )− y(t0s )

y(t2s )− y(t1s )
...

y(tds )− y(td−1
s )

 ,

where the right-hand side is a column vector of ±h values, the controller can infer the initial

condition provided that the matrix on the left-hand side is nonsingular. Once the initial

condition is known, it can then stabilize the system in a closed-loop fashion. Since we have

lim sup
t→∞

bs(t)

t
= lim
t→∞

(d+ 1)

t
= 0, 23.

it follows that we can stabilize the system with an arbitrarily small transmission rate.

The intuition behind the result follows by noting that, like pauses are used in spoken

language to convey information, in the context of event-triggering control it is possible

transmit information in the feedback loop not only by message content, but also with its

timing. Specifically, in the absence of delay in the communication channel, the mere act of

sending one bit at a given time can reveal the state of the system with arbitrary precision,

and transmitting a single data payload bit at every triggering event is enough to compute

the appropriate control action. In fact, we may take this intuition one step further and also

notice that under the same assumptions of (73) we do not even need to transmit a bit at each

triggering time. To reveal any component x of x(0), we could transmit a single arbitrary

symbol ♠ at a time equal to any bijective mapping of x into a point of the non-negative

reals. For example, we could transmit a symbol ♠ at time t = tan−1(x), where t ∈ [0, π].

Since there is no choice associated to the symbol selection, in principle the reception of the

symbol should not carry any information. However, its arrival time carries information and

can reveal x with arbitrary precision. To communicate the whole vector x(0), we could then
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send d + 1 identical ♠ symbols at different times and encode all the components of x(0)

in their inter-transmission times. In principle, one could even send a single ♠ symbol to

encode the whole x(0) vector by using a d-dimensional space-filling curve and selecting a

time of transmission for which a point on the curve is mapped onto x(0).

The important message to be taken from (73) is that using event triggering information

can be transmitted in the feedback loop not only by sending data but also by carefully

selecting the times of transmission. A similar observation is also made in (74). This

work considers the system to be fully observable, namely C to be the identity, and the

sensor to transmit, at a fixed sequence of transmission times, {tk} symbols from a finite

alphabet over a delay-free and error-free communication channel. It is further assumed that

a special symbol in the alphabet can be transmitted without consuming any communication

resources, effectively representing the absence of an explicit transmission, while the other

symbols require one unit of communication resource per transmission. From an information-

theoretic perspective, this set up is related to the silence-based communication paradigm

of (75). Letting s(tk) be the total number of non-free symbols transmitted by the sensor to

the controller up to time tk, the asymptotic average cost per unit time is given by

c ≡ lim sup
k→∞

s(tk)

tk
[symbols/sec], 24.

where tk →∞ as k tends to infinity. This can also be interpreted as an effective data rate,

since it represents the rate accounting for only the non-free transmissions, and should be

compared with 18. In both cases, the rate depends on the transmission strategy. It is shown

in (74) that stabilization can be achieved with arbitrarily small values of 24. by letting the

transmission times tk = kT , decreasing the sampling period T , and transmitting non-

free symbols rarely. In this regime, the transmission policy resembles an event-triggering

strategy where the transmission of a non-free symbol may occur at any given time, which

depends on the encoding strategy, and can be chosen with arbitrary precision as T → 0.

At all other times only free symbols are sent —which is analogous to sending nothing. As

in the case of (73), in this setup the act of transmitting a non-free symbol now carries

an amount of information that can be made arbitrarily large by decreasing the sampling

time T . This allows to decrease the number of transmitted non-free symbols and drives the

effective rate 24. arbitrarily close to zero.

6. Timing information in the presence of delay

The works we have described suggest that a more general formulation of data-rate theorems

should account for two distinct information flows: one is through data payload (possibly

corrupted by noise) and another is through timing (possibly corrupted by delay). Tradi-

tionally, only the data payload case has been considered, but the timing information can be

very relevant especially in the context of event triggering. The work in (72) only considers

communication through data payload and does not attempt to exploit timing information.

As a result, it recovers the traditional data-rate theorem formulation. In contrast, the works

in (73) and (74) show that stabilization can be achieved with arbitrarily small data payload

rate, by exploiting the timing information implicit in event-triggering schemes, when sender

and receiver are perfectly synchronized.

At this point, one may suspect that the ability to stabilize the system with zero payload

rate is an artifact of the assumed perfect synchronization between the sensor and the con-

troller achieved through a zero-delay channel. As we shall see next, this is not the case. In
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the presence of unknown delay, the value of the timing information in the triggering events

decreases, because in this case the sensor may only reveal the state of the system with a

finite precision —which depends on the range of the unknown delay. However, as long as

the amount of information supplied by timing is above what prescribed by the data-rate

theorem for stabilization, it is still possible to stabilize the system with an arbitrarily small

data payload rate. Next, we illustrate this point in more detail.

6.1. Information Access Rate vs Information Transmission Rate

The works (76, 77) make a key distinction between the information access rate, that is the

rate at which the controller needs to receive information, conveyed by both data payload

and timing information, and that is subject to the requirement expressed by the classic data-

rate theorem; and the information transmission rate, that is the rate at which the sensor

needs to send data in the form of payload bits, that depends on the triggering scheme and

that can become arbitrarily small without affecting the ability to stabilize the system.

First, let us take the viewpoint of the sensor and examine the amount of information in

the data payload transmissions to the controller. Let bs(t) be the number of bits in the data

payload transmitted by the sensor up to time t, and define the information transmission

rate as

rs ≡ lim sup
t→∞

bs(t)

t
.

Let us now consider the viewpoint of the controller and examine the amount of infor-

mation that it needs to receive in order to be able to select its stabilizing policy. This

includes both payload and timing information. It is also the same as the number of bits

needed to construct a reliable state estimate (78, Theorem 1). We let bc(t) be the number of

bits required at the controller to perform its selection at time t and define the information

access rate as

rc ≡ lim sup
t→∞

bc(t)

t
.

In classic data-rate theorems rc coincides with rs because the controller uses only data

payload bits to select its control law. On the other hand, as discussed above, by exploit-

ing timing information rs and rc can be substantially different and the classic data-rate

limitation applies to rc only, while we can achieve stabilization with rs arbitrarily close to

zero.

To view the limitation on rc, we consider the same system’s equations as in 17. In this

case, a necessary and sufficient condition to achieve exponential stabilization at rate σ is

given by the usual data-rate theorem formula expressed in terms of rc

rc > (tr(A) + σd) log2 e [bits/sec]. 25.

This result should be compared with 20. It is important to stress that the limitation in 25.

describes what is required by the controller, and it does not depend on the feedback structure

— including aspects such as communication delays, information pattern at the sensor and

the controller, and whether the times at which transmissions occur are state-dependent, as

in event-triggered control, or periodic, as in time-triggered control. In order to obtain 25.,

one considers for any control input trajectory u(t) the subset of initial conditions for which
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the plant is stabilized by such input. Then, one constructs a cover of the set of all initial

conditions by stabilizing control policies. This leads to a discrete set of choices for selecting

the stabilization policy for any given realization of the initial condition. It follows that the

logarithm of the covering number is the number of bits needed by the controller by time t

to select a stabilizing control policy. A usual balance of information argument between the

rate of expansion of the uncertainty in the state due to the random initial condition, and

the quantization due to the covering finally leads to the lower bound in 25.

Having established the classic data-rate theorem result for the information access rate,

we can now ask what is the data-rate requirement on the information transmission rate rs,

assuming that the sensor has access to causal feedback regarding what has been received

by the controller and for different ranges of the possible delay. While we have already

established that rs can be arbitrarily close to zero in the absence of delay, the presence of

unknown delay decreases the amount of information that can be communicated by timing,

and this may require rs to become positive.

To illustrate the results, we denote by {tks }k∈N the sequence of times when the sensor

transmits a packet of a certain number g(tks ) of bits to the controller. We assume the packet

is delivered to the controller without error and entirely but with an unknown delay. Letting

{tkc}k∈N be the sequence of times when the controller receives the packets transmitted at

times {tks }k∈N, we assume that for all k ∈ N the communication delay ∆k = tkc − tks satisfies

∆k 6 γ, 26.

where γ ∈ R>0, and that both tks and tkc tend to infinity as k → ∞. We can then study

how the rate rs required for stabilization using an event-triggering varies as a function of

γ. The work (76) considers the case of systems without disturbances, where the objective

is to drive the state to zero at an exponential rate σ. The work (77) considers the case of

systems with disturbances using a notion of input to state stability, which guarantees that

the state is bounded at all times and this bound, as usual, depends on the range of the

disturbance. While results hold for both scalar and vector systems, for illustrative purposes

in the following we review the results in (77) for scalar system.

A plot of the rate required to keep the state bounded when using any threshold-based

event-triggering policy based on the value of the state estimation error is depicted in Fig-

ure 5. This shows that the required rate for stabilization undergoes a phase transition: for

small values of the delay upper bound γ the system can be stabilized with an arbitrarily

small information transmission rate. However, when γ reaches the critical threshold

γc =
ln 2

A
, 27.

the required rate begins to increase, eventually surpassing the data-rate theorem require-

ment A/ ln 2, where A here is a positive scalar. This indicates that for γ < γc the amount

of information contained in the timing of the triggering events is large enough that the rate

that must be supplied by data-payload to guarantee stability is zero. On the other hand,

when γ > γc the information contained in the timing of the triggering events is not enough

to guarantee stability and the rate must begin to increase. One way to interpret this result

is that in the presence of delay the value of the timing information supplied by event trig-

gering “deteriorates” and eventually becomes insufficient to be used alone for stabilization.

On the other hand, increasing the the delay also affects the rate at which the transmitted

payload bits are received, which results in a higher transmission rate requirement that can

surpass the data-rate theorem requirement.
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Figure 5

Phase transition of the necessary information transmission rate for stabilization. The graph is
valid for any generic system. In this example we have a scalar system with no disturbance, A = 1,

γc = ln 2/A = 0.6931 and the rate dictated by the data-rate theorem is rc > A/ ln 2 = 1.4427.

0 0.2 0.4 0.6 0.8 1

Channel Delay Upperbound, γ (sec)

0

10

20

30

40

50

60

70

R
a
te

(b
it
s/
se
c)

data-rate theorem
necessary
sufficient

Figure 6

Sufficient and necessary transmission rates for stabilization. Here we have a scalar system with

disturbances bounded by 0.4, with A = 5.5651. The rate dictated by the data-rate theorem is
rc > A/ ln 2 = 8.02874.

We also note that the critical value γc at which the information transmission rate be-

comes positive equals the inverse of the entropy rate of the system, namely 27. is the inverse

of the critical rate in the data-rate theorem formula 5.. Recalling the production and con-

sumption of information analogy that we discussed in Section 2, we have that for γ = γc
the entropy of the system can expand by one new bit at every delay occurrence and this

amount of information cannot be counter-balanced by the information carried by the event

triggering times. In other words, the information supplied by the triggering events can

always be “one bit short” due to the uncertainty introduced by the delay, and this bit must

be supplied by the data payload to ensure stabilization. For this reason, the rate rs begins

to increase once γ reaches the critical value γc. Figure 6 also shows a sufficient condition

for stabilization obtained using a given triggering strategy described in (77) that employs a

fixed threshold policy and compares it with the necessary condition and with the data-rate

theorem requirement. Results have been validated in a real system configuration in (79).
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<latexit sha1_base64="/ueygphi47vW9WUU1KXnD9x7/rM="></latexit>

w̃1
<latexit sha1_base64="d5L5H20D3Za9VA00Q5p48Prc7+8="></latexit>

w̃2
<latexit sha1_base64="RDo2X3OLbdyNER2PHFGlh0AU5e8="></latexit>

w̃3
<latexit sha1_base64="GFo+TVERxo7m7KT73h6J6iH6uHQ="></latexit>

s1
<latexit sha1_base64="qkd5Pz5drgK94u/tLDxw96C11aI="></latexit>

s2

<latexit sha1_base64="myIZzoSgLP9ayg5Zw9ac4FVPZzs=">AAAUJHicnVhLc9s2EGaaPlL2ldTHXjiVNU1nbI2lOI8eMpPGdtx07IkT2Y47pscFQUhCTRIMANlyOPwZvba3/preOj300t/SBUhJpKS1J6XHErS734fdxQJaKEgjrvTa2j833rv5/gcffnTrY/eTTz/7/Ivbd748VGIoKTugIhLyKCCKRTxhB5rriB2lkpE4iNjr4GzD6F+fM6m4SPb1ZcpOYtJPeI9TokF07MvzLMxPO67rnt5urLXW7OPND9rloOGUz97pnaWbfijoMGaJphFR6ri9luqTjEjNacRy1x8qlhJ6RvrsGIYJiZk6yazPudcESej1hIT/RHtWWkVkJFbqMg7AMiZ6oGZ1RrhIdzzUvUcnGU/SoWYJLSbqDSNPC88kwAu5ZFRHlzAgVHLw1aMDIgnVkCa36W1Lxs68SFwwSSGxXsS00ax4iiTKU0zyXuHyqhdcettDHgrX35PinIdM7ZUOXvBEJULbJNcSkQVx/XNfknTA6Sh33WbTewyPtyFi47z0dkXIZOJ1zcRdO7HRu/4mg3xLtguxfx+lAxIwnfk2E71A5tmL/XaeUUhfnsV5luRNk2WjroZw1xh86/pdpjGeQERhjS0YXUtXuvZKBEOlIZCYJCFwql5+3D7Jmq7n+bwHxecngo1SUDbavmQRGRmbvkl91mjnPosUm3hiJT1+1bz5OHkLH9cFrjNGdLGWrp+wC1rxzc5rHfSpMmXqKb/wjvTA3n/SFwFsKF9pyZM+eMySsDDMx8xCD4AYyqc79c3STlLyDGpmK6EiBIpsZ/tVnsGf1/QgqEiQ0KsWhWYjXTg1gXdhL4jIkGRjhwuWykLb1VxkWKxkxbxYyVolFbjMV8SUQl4UgpCAm9D8TBAIFA6CCBBEn0D6F0P6CCRkETZLiEBYqngEO3AhiCGgt2gwb7FpMMAAAUCxYJBfEAgXGIIjiDOSpgjkDIFE8MURIpgIwcTDxfYxYp8g9lg5jvhi+xFiL2JOJbbmAgGlyCQpYi8HYjFAIgDF+1i9K6xICJIpjQCGV1X7EIt8gITeQwAUA7zBZlAI4BJdQdZHcnUBEDjEfXUOoCLcyS6fauz2KnfZVJpys87Tz7CGdiEXOwEGV6wZrfgBGbRpXMyzXTnoypN1SrONZGCzctTNgTYR0H7lUJkD/YiAdqo7fg61g6COOIY4QhB7KGIPQXQr2Z8DdRHQQW0LzMEOMO8GqHvPMIhCIT8hkBeVup4DvYYGEOueKImub5+ANBEyJtG0gaLlhx53c4z86e611EGc+aaDOEjToid+rknE6fa4WytnA7PpZHi/hTHV+i/YVv+vA2uuYg/0Zru2ebTLcZVhzV15XjgGbaKNta59dVhoTYrGFrMmu9ebdGfmqKunc8w7UJI/3V2gg2bQaosKKieGNETszYp5ga/7RK94TNPiMOuzN0LyvnmfCMy/tSskUWkSjU1g4Ec1EzWktLQqhlWxfaNDGV2O5XBbHZsXw6rYvk3M0+KSNYnv+dbW1sutzXwyEilLTIT1NGyVyYXFD4JsK/cHCvpslq2utTr32SiH+Xraz0y58/5A+7NphLtdUKPYe2eKQyJrDIfvzLAhoA47U4aN3I5knIECJVtpdKZ84w1Q/hxg7977HO7ktdPqsNBm2mjsJXv2VlFeiPOKSfZidwcuFHoUc3sV4TMtyhypvZBcT1zeQCvkQUEOsQReQKQHyYERlJ8auM36OQNqKA1JuGKBGGWrrfY9yA1k0HxatukzF/9v2u1lOMLiM7hqrz6Kh16QzxTQPNPa/YVMnQfXMFk/7cv00J3Qwv60EpAp2K9W1no4lhlL84OCER+b7cKTx/Qkaz/Ks+XV5bwwsm/wMlM8QTFlMZ912pr75/AdlGgRZ0GB94WA47ifZL4NodVmMfT3AK16nrW+g+Ch5mArXvBQD3wql4NleC1JDNZkKF7sCzReLMyP100tG9PGeiUFnWuy2rhnj7FFaS1J3zHGxr0FEYIbM/E12jMBNtZNdCA4vd1oz/5INj847LTaD1rrL9cbTzrlD2i3nK+cr527Ttt56DxxfnD2nAOHOsL51fnN+X3pj6U/l/5a+rswfe9GiVlyas/Sv/8BOHOIPA==</latexit>

d2
<latexit sha1_base64="XoDymwUh9a7bWeoUFjWYmVP8n58="></latexit>

d1

<latexit sha1_base64="muW+Xj1777PwlDBgNq1j3aM70lw="></latexit>

d3

<latexit sha1_base64="G9UtOiK2a2+stTgbma6oKT98GAg=">AAAUNHicnVjdb9s2EFfXfXTeV7o8DXsR5hjrgMSI0vRjDwW6JmnWIUHTOkkzREFGUbTNRRJVkk6cCsL+mr1ub/tfBuxt2Ov+hh0p2ZZsX4JOQWz67n4/3h2P9NFBGnGlV1f/vPHOzXffe/+DWx82Pvr4k08/W7j9+aESA0nZARWRkEcBUSziCTvQXEfsKJWMxEHEXgVnG0b/6pxJxUWyry9TdhKTXsK7nBINotOFL3yVkpCpAdenmR8T3ZdxJvO80ThdaK62V+3jzg68ctB0ymfv9PbiTT8UdBCzRNOIKHXsrab6JCNScxqxvOEPFEsJPSM9dgzDhMRMnWQ2htxtgSR0u0LCf6JdK60iMhIrdRkHYGm8VNM6I5ynOx7o7sOTjCfpQLOEFhN1B5GrhWsS4oZcMqqjSxgQKjn46tI+kYRqSFuj5W5Lxs7cSFwwSSHRbsS00Sy7iiTKVUzybuHyihtcutsDHoqGvyfFOYe07pUOXvBEJULbpNcSkQVx/XNPkrTP6RBWoNVyH8HjbojYOC/dXREymbgdM3HHTmz0DX+TQb4l24XYv4vSPgmYLtZSdQOZZ8/3vTyjkL48i/MsyVsmy0ZdDeGOMfim4XeYxngCEYU1tmB4LV3p2ksRDJSGQGKShMCpuvmxd5K1Gq7r8y4Uo58INkxB2fR8ySIyNDY9k/qs6eU+ixQbe2IlXX7VvPkoeXOfRgO4zhjRxVo2/IRd0Ipvdl7roE+VKVNX+YV3pAv2/uOeCGCD+UpLnvTAY5aEhWE+Yha6D8RQPp2Jb5Z2nJKnUDNbCRUhUGQ72y/zDP7clgtBRYKEbrUoNBvqwqkxvAN7QUSGJBs5XLBUFtqu5jzDYiUr5sVK1iqpwGW+IqYU8qIQhATcmOYngkCgcBBEgCB6BNI/H9JDICGLsFlCBMJSxSPYgXNBDAG9QYN5g02DAfoIAIoFg/yMQLjAEBxBnJE0RSBnCCSCL5IQwUQIJh7Mt48R+wSxx8pxyOfbDxF7EXMqsTUXCChFJkkRe9kX8wESASjew+pdYUVCkExpBDC4qtoHWOR9JPQuAqAY4DU2g0IAl+gKsh6SqwuAwCHuq3MAFeGOd/lEY7dXucsm0pSbdZ58hjW0CznfCTC4Ys1oxQ/IoE3jfJ7tykFXnqwTmm0kA5uVo24GtImA9iuHygzoBwS0U93xM6gdBHXEMcQRgthDEXsIolPJ/gyog4AOaltgBnaAeddH3XuKQRQK+RGBPK/U9QzoFTSAWPdESXR9+wSkiZAxiSYNFC0/dHkjx8if7F5LHcSZbzqIgzQteuJnmkScbo+6tXI2MJtMhvdbGFOt/4Jt9f86sNYK9kBvtmubR7scVxnW3JXnhWPQJtpY69qXh4XWpGhkMW2ye71JZ2qOunoyx6wDJfmT3Tk6aAattqigcmJIQ8ReL5sX+LpP9LLLNC0Osx57LSTvmfexwPxbu0ISlSbRyAQGflQzUQNKS6tiWBXbNzqQ0eVIDrfXkXkxrIrt29g8LS5Z4/iebW1tvdjazMcjkbLERFhPw1aZXFj8IMi2cr8PV2DKspXV9to9Nsxhvq72M1PuvNfX/nQa4W4X1Cj23prikMgaw+FbM2wIqMO1CcNGPrq8gwIlW26uTfhGG6D8ecDevfc53Mlrp9Vhoc200dhL9vStorwQ5xWT7PnuDlwo9DDm9irCp1qUGVJ7IbmeuLyBVsiDghxiCdyASBeSAyMoP9VvtOrnDKihNCThigVimK20vbuQG8ig+bRk02cu/l973hIcYfEZXLVXHsYDN8inCmiWafXeXKa1+9cwWT/ty+TQHdPC/rQSkCnYr1bWfjCSGUvzg4IRH5vtwpNH9CTzHubZ0spSXhjZN3iZKp6gmLKYzzptzf1z+A5KtIizoMD7QsBx3Esy34bQ9lgM/T1Aq55n7W8heKg52IoXPNR9n8qlYAleSxKDNRmK5/sCjRcL8+N1U8vGtLleScHaNVlt3rXH2Ly0lqRvGWPz7pwIwY2p+JreVIDNdRMdCE4Xmt70j2Szg8O1tne/vf5ivfl4rfwB7ZbzpfOVc8fxnAfOY+d7Z885cKjzi/Or85vz++Ifi38t/r34T2H6zo0Ss+jUnsV//wNlgI+S</latexit>�r
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Figure 7

The timing channel. Subscripts s and r are used to denote sent and received symbols, respectively.

6.2. The information value of event timing

We have shown that information useful for control can be carried through the feedback loop

by both data packets and event timing. Event timing may allow to achieve stabilization by

sending packets at a bit-rate that is lower than what the classic data-rate theorem prescribes.

We now ask whether it is possible to provide an information-theoretic characterization of

event timing, and whether it is possible to recover the classic data-rate theorem formulation

relating the amount of information carried by event timing alone, to the intrinsic entropy

rate of the system.

To quantify the amount of timing information the work in (80) considers a channel

carrying symbols ♠ from a unitary alphabet, where each transmission is received after a

random delay. Since the alphabet is composed by a single symbol, there is no information

conveyed in data packets and communication can only occur by selecting the times of

transmission of the unitary symbols. Every time a symbol is received, the sender is notified

of the reception by an instantaneous acknowledgment. The channel is initialized with a

♠ received at time t = 0. After receiving the acknowledgment for the ith ♠, the sender

waits for w̃i+1 seconds and then transmits the next ♠. Transmitted symbols are subject to

i.i.d. random delays {si}. Letting di be the inter-reception time between two consecutive

symbols, we have

di = w̃i + si. 28.

The operation of this channel is analogous to that of a telephone system where a transmitter

signals a phone call to the receiver through a “ring” and, after a random time required to

establish the connection, is aware of the “ring” being received. Communication between

transmitter and receiver can then occur without any vocal exchange, but by encoding

messages in the “waiting times” between consecutive calls. Fig. 7 provides an example of

the timing channel in action. The work (81) defines the timing capacity for this telephoning

signaling system in terms of mutual information between transmitter and receiver. This

notion is the analogous of the Shannon capacity for the timing channel. The work in (80)

considers stabilization of the following scalar continuous-time system with no disturbance

over the timing channel described above

ẋ = A x(t) +Bu(t). 29.

The constants A,B ∈ R are such that A > 0 and B 6= 0. Since the system in 29. is

not subject to disturbances, we expect that a notion of capacity analogous to the Shannon

one is sufficient to characterize the ability to stabilize the system, as discussed in Section 2.

Indeed, by using the notion of timing capacity of (81), the work (80) shows that for the
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state to converge to zero in probability, the timing capacity of the channel should be at

least as large as the entropy rate of the system. Conversely, in the case the random delays

are exponentially distributed, when the timing capacity is strictly greater than the entropy

rate of the system, we can drive the state to zero in probability by using a decoder that

refines its estimate of the transmitted message every time a new symbol is received. Finally,

since the timing capacity depends on the distribution of the delay, it is also shown that in

the case of exponentially distributed delay it is possible to achieve stabilization at zero

data-rate only for sufficiently small average delay, namely when

E{s} < (eA)−1, 30.

which confirms the intuition from the event-triggering results that to achieve stabilization

at zero data-rate the delay should be sufficiently small.

7. Estimation under communication constraints

In closed-loop systems, the ability to select the correct control action to keep the system

stable boils down to that of constructing a reliable state estimate that can be used for

stabilization. As we discussed in Section 2, in order to keep the system stable the amount

of information that must flow through the feedback loop must compensate for the expansion

in the uncertainty of the state, and this dictates the communication constraints expressed

by the various data-rate theorem formulations.

In the absence of the controller, the problem of estimating the state of an open-loop

dynamical system observed over a communication channel is also of interest, and is further

motivated by additional applications such as situation awareness (82, 83, 84), asset tracking

(85, 86, 87), smart cities (88, 89, 90), Internet of Things (91, 92, 93) and network localization

and navigation (NLN) (94, 95, 96, 97), where nodes in a network aim to infer their positions

and possibly other position-related quantities using observations obtained via different types

of sensors. In this case, results analogous to the data-rate theorem for stabilization have

been obtained, and in what follows we wish to compare and put them in the context of

those that we have already described.

The works (98, 99, 100) exploit dynamical system entropy notions for estimation that

are inspired by the topological entropy approach of (17, 33, 43) that was used to determine

stabilization conditions for nonlinear systems over bit-pipe communication channels. In

particular, the work (100) introduces the notion of estimation entropy in terms of the

number of system trajectories that approximate all other trajectories up to an exponentially

decaying error. In the case of linear systems of the form ẋ = Ax(t), and exponential error

decay rate σ > 0, the estimation entropy reduces to (tr(A) + σd) log2 e [bits/sec], which is

analogous to the stabilization result 25. Furthermore, for more general nonlinear systems

of the form ẋ = f(x), where x(t) ∈ Rd, the work (100) shows supper and lower bounds on

the estimation entropy.

In the context of exploiting timing information for estimation in event-based transmis-

sion, the work (101) considers estimation over a finite-size packet communication channel

with delay analogous to the one in (76, 77). Here the aim is to remotely estimate a discrete-

event process

x(t) =
∞∑
k=0

ηk 1(τk 6 t < τk+1), 31.
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where the system states ηk are discrete i.i.d. random variables that belongs to a finite set,

τk ∈ N denotes the random time when a state transition to ηk occurs, 0 < τ0 < τ1 < . . .,

and 1(·) is the indicator function. It follows that x(t) describes the state evolution in

continuous time and the random duration time of each state is tk = τk+1 − τk. Since the

process x(t) remains constant during inter-event times, it is sufficient to describe x(t) with

{x(k) | k ∈ N}.
To perform remote estimation, when a state transition to ηk occurs, a packet with a finite

number of bits is transmitted over a channel. Like in the communication setting of (76, 77),

the packet is delivered to the receiver without error but with an unknown delay, denoted

by ∆̃k. The transmission delays {∆̃k} are assumed to be random, i.i.d, and independent of

the states {ηk}. The amount of information that the system produces can be expressed in

terms of the of the Shannon entropy of two stochastic sources, namely the unknown state

value η and the unknown inter-event time t. Letting H{·} be the joint Shannon entropy

of an ensemble of random variables (49), we have that the entropy rate of the information

produced is

r0 = lim
k→∞

H{x(0), x(1), . . . , x(k)}
k

=
H{η}+H{t}

E{t} [bits/sec]. 32.

This represents the average rate at which the system generates information and the receiver

needs to have access to at least this amount of information to construct a correct estimate

of the state. It can also be interpreted as the stochastic analogue of the information access

rate defined in Section 6.1 for closed-loop stabilization. The information access rate was

defined in a deterministic setting under worst-case delay conditions, while here we have a

stochastic setting and an average transmission rate expressed in terms of entropy.

On the other hand, by exploiting knowledge of the reception times tk + ∆̃k, the receiver

may be able to perform estimation with a rate lower than 32. It turns out that the infor-

mation rate required by the receiver for real time estimation of the process 31. is given

by

r′0 =
H{η}+H{t|t + ∆̃}

E{t} [bits/sec]. 33.

Since conditioning reduces the entropy, we immediately deduce that r′0 6 r0. There is

an analogy in this case with the information transmission rate defined in Section 6.1, which

is the deterministic counterpart of this reduced entropy rate for the case of stabilization.

In the case of small delay, we have H{t|t + ∆̃} ≈ H{t|t} = 0, and the rate required for

estimation reduces to

r′0 =
H{η}
E{t} [bits/sec], 34.

namely we need to transmit only the number of bits required on average to describe the

value of the process {ηk} and we do not need to encode any information regarding the inter-

transmission times {tk}. We also point out that in the event-triggering results discussed in

Section 6.1 the transmission time was a function of the system state. Here the transmission

time and the symbol are assumed to be independent. Consequently, the timing information

cannot further reduce the uncertainty in the state and 34. remains a nonzero lower bound on

the required rate. In contrast, in the event-triggering results described in Section 6.1, since

timing information can also encode information about the state, the minimum required

transmission rate can become arbitrarily small for small delay values.
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Fig. 1. Block diagram for decentralized inference in a two-node system. The state x
(j)
t is measured by a sensor to generate observation yt at time step t.

Observations y0:t are used by the encoder to generate a message mt, which is then transmitted via the channel. Using the received messages m0:t, a
decentralized estimator x̂

(j)
t of x

(j)
t is evaluated by node j.

(a) v
(j)
t are independent over time steps t for all j ∈ V .

That is to say, random vectors v
(j)
t0 , v

(j)
t1 , . . . , v

(j)
tn

are
independent for any positive integer n and 0 ! t0 < t1 <
· · · < tn. Similarly, nt are independent over t. In addition,
the process

{
v
(j)
t

}
t!0

and
{
nt

}
t!0

are independent.
(b) There exists a scalar a > 2 such that sequences{

E
{∥∥v

(j)
t

∥∥a}}
t!0

and
{
E
{∥∥nt

∥∥a}}
t!0

are bounded
over time, namely

sup
t!0

E
{∥∥v

(j)
t

∥∥a
}

< ∞ , sup
t!0

E
{∥∥nt

∥∥a
}

< ∞ .

(c) There exists a constant h > −∞ such that the differential
entropy h

(
v
(j)
t

)
of v

(j)
t satisfies h

(
v
(j)
t

)
> h for all t " 0.

The above assumptions are mild and the adopted models for
the states, observations, as well as message transmission are
general. In particular, Assumption (a) is widely adopted in
literature on inference and filtering. Assumption (b) holds if
the tail of the distribution for each entry of v

(j)
t and nt is not

heavy. As an example, if both v
(j)
t and nt have an identical

distribution for different time steps t, and entries of v
(j)
t and

nt are sub-exponential random variables,2 then Assumption (b)
holds for all a. Assumption (b) indicates that the uncertainty
in the state disturbance does not vanish as time approaches
infinity. For the simplicity of presentation, we only consider
scenarios where the magnitudes of the eigenvalues of A(j)

are all larger than or equal to 1, and the pair (Γ , A(j)) is
observable. Results we established can be extended to more
general scenarios without the conditions on eigenvalues of
A(j) or the observability of (Γ , A(j)).

Node j evaluates a decentralized estimator x̂
(j)
t of x

(j)
t at

time step t using its received messages r0:t, namely x̂
(j)
t is a

function of r0:t. The optimal design of the estimator depends
on the metric for inference error. One metric for the inference
error at time step t is the bth moment of

∥∥x̂
(j)
t −x

(j)
t

∥∥, namely

E
{∥∥x̂

(j)
t − x

(j)
t

∥∥b
}

=: e
(j)
t (2)

for some number b " 2. In the special case where b = 2, this
metric becomes the mean-square error (MSE). We establish
conditions under which there exist an encoder at node i and
a decentralized estimator at node j such that e

(j)
t is bounded

over time, i.e.,

sup
t!0

e
(j)
t < ∞ . (3)

Intuitively, whether (3) holds or not depends on the quality
of the channel from node i to node j: a better channel allows

2A random variable x is sub-exponential if there exists a constant c > 0
such that P{|x| > x} ! 2 exp{−cx} for any x " 0 [53, Chapter 2]. For
example, a random variable is sub-exponential if it has a Gaussian distribution
or if it has a bounded support.

a higher rate of messages to be transmitted reliably, thus
increasing the amount of information of the unknown state
obtained by node j. The following theorem states a necessary
condition and a sufficient condition for (3) to hold:

Theorem 1 ( [49]):
(i) If there exist an encoder at node i and a decentralized

estimator at node j such that (3) holds, then the Shannon
capacity C of the channel satisfies

C > log
(∣∣det

(
A(j)

)∣∣) . (4)

(ii) If there exists a parameter α > ab
a−b log

∣∣ρ(A(j))
∣∣ such

that the α-anytime capacity C̆(α) of the channel satisfies

C̆(α) > log
(∣∣det

(
A(j)

)∣∣) (5)

then there exist an encoder at node i and a decentralized
estimator at node j such that (3) holds. Here, ρ(A(j))
represents the spectral radius, i.e., the largest of the
magnitudes of all the eigenvalues of A(j).

Theorem 1 specifies a necessary condition and a sufficient
condition in (4) and (5), respectively, for the inference error
to be bounded over time. This theorem is parallel to the
data rate theorem for control-under-communication-constraints
problems as both (4) and (5) compare the capacity of the
channel with a threshold determined by eigenvalues of A(j).
Intuitively, the unknown state varies more significantly at
each time step as the magnitudes of the eigenvalues of A(j)

become larger. Consequently, node j requires more informa-
tion from node i for accurately inferring the unknown state,
which requires higher channel quality for reliable message
transmission.

Note that the thresholds on the right-hand sides of (4) and
(5) are equal. Therefore, Theorem 1 specifies a necessary and
sufficient condition for channels whose Shannon capacity and
anytime capacity coincide. Such channels include the noiseless
digital channel and the Gaussian channel with feedback [40].
As a final remark for Theorem 1, Assumption (b) is required
only for establishing the sufficient condition (ii) and not re-
quired for the necessary condition (i), whereas Assumption (c)
is required only for (i) and not required for (ii).

III. EXTENSIONS

A. Decentralized Inference in a Multi-Node Network

Conditions for the boundedness of inference error for de-
centralized inference can also be established in a general
network with multiple nodes. Specifically, consider a network
comprising a set V of nodes where each node is associated
with a time-varying unknown state (see Fig. 2). In particular,
the state of node j at time step t is represented by x

(j)
t

Figure 8

Block diagram for decentralized inference in a two-node system. The state x
(j)
t is measured by a

sensor to generate observation yt at time step t. Observations y0:t are used by the encoder to

generate a message mt, which is then transmitted via the channel. Using the received messages

m0:t, a decentralized estimator x̂
(j)
t of x

(j)
t is evaluated by node j.

8. Estimation over noisy channels

In a decentralized estimation problem a node can exchange messages that contain infor-

mation of the states of interest with other nodes via noisy communication channels. In

Section 3 we have seen that to guarantee moment stability over noisy channels a suitable

metric for characterizing the quality of a communication channel is anytime capacity, a

notion introduced by Sahai and Mitter in (46) that is is parameterized by a positive scalar

α, which specifies the requirements on the communication reliability. In particular, this

notion is used to establish tight necessary and sufficient conditions for stabilizing a system

over a noisy channel in the presence of bounded disturbances (46).

In the following, we present the results in (102, 103, 104, 105), showing that the anytime

capacity is also a relevant measure of information transmission for estimation of open-loop

systems over noisy channels in both a single-node and multiple-node scenarios. Specifically,

while a necessary condition for bounded moment error is expressed in terms of the Shannon

capacity, a sufficient condition is obtained in terms of the anytime capacity. Since the

anytime capacity expresses communication with stronger reliability constraints, for any

α > 0 the α-anytime capacity of a channel is greater than or equal to its Shannon capacity.

It follows that these conditions are not tight in general. Nevertheless, their form resemble

analogous results for closed loop stabilization and can also be extended to multiple-node

networks settings.

8.1. Two-node system

Consider a system consisting of node i and node j in discrete-time scenarios. In particular,

node j is associated with a time-varying state that this node aims to infer. The state of

node j at time step t is denoted by a d-dimensional random vector x(j)
t (see Fig. 8), which

satisfies

x(j)
t = A(j)x(j)

t−1 + v(j)
t , t = 1, 2, . . . (35)

where A(j) ∈ Rd×d is a deterministic matrix know to both nodes, and v(j)
t ∈ Rd is a

zero-mean random vector representing the disturbance to the state.

The other node in the system, node i, obtains an observation yt of x(j)
t at each time

step t given by

yt = Cx(j)
t + wt, t = 0, 1, . . .

where C is the sensor gain matrix known to both nodes, and wt is a zero-mean random

vector representing the observation noise at time step t. Moreover, node i generates an

encoded message represented by a random vector mt at time step t based on its observations
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y0:t, i.e., mt is a function of y0:t. The concatenation of such functions from time step 0 to

the last time step of interest is referred to as an encoding strategy, which is designed by

node i. Message mt is transmitted via a memoryless channel to node j and the received

message is represented by a random vector rt that may be different from mt due to noise,

fading, and interference in the channel.

The following assumptions are made on the state disturbance and the observations.

1. v(j)
t are independent over time steps t for all j ∈ V. That is to say, random vectors

v(j)
t0
, v(j)
t1
, . . . , v(j)

tn
are independent for any positive integer n and 0 6 t0 < t1 < · · · <

tn. Similarly, wt are independent over t. In addition, the process
{

v(j)
t

}
t>0

and{
wt

}
t>0

are independent.

2. There exists a scalar a > 2 such that sequences
{
E
{∥∥v(j)

t

∥∥a}}
t>0

and
{
E
{∥∥wt

∥∥a}}
t>0

are bounded over time, namely

sup
t>0

E
{∥∥v(j)

t

∥∥a} <∞ , sup
t>0

E
{∥∥wt

∥∥a} <∞ .

3. There exists a constant h > −∞ such that the differential entropy h
(
v(j)
t

)
of v(j)

t

satisfies h
(
v(j)
t

)
> h for all t > 0.

The above assumptions are mild and the adopted models for the states, observations, as

well as message transmission are general. In particular, Assumption 1 is widely adopted in

literature on inference and filtering. Assumption 2 holds if the tail of the distribution for

each entry of v(j)
t and wt is not heavy. As an example, if both v(j)

t and wt have an identical

distribution for different time steps t, and entries of v(j)
t and wt are sub-exponential random

variables,1 then Assumption 2 holds for all a. Assumption 2 indicates that the uncertainty

in the state disturbance does not vanish as time approaches infinity.

Node j evaluates a decentralized estimator x̂(j)
t of x(j)

t at time step t using its received

messages r0:t, namely x̂(j)
t is a function of r0:t. The optimal design of the estimator depends

on the metric for inference error. The metric we consider for the inference error at time

step t is the bth moment of
∥∥x̂(j)
t − x(j)

t

∥∥, namely

E
{∥∥x̂(j)

t − x(j)
t

∥∥b} =: e
(j)
t (36)

where b > 2. In the special case where b = 2, this metric becomes the mean-square

error (MSE). We establish conditions under which there exist an encoder at node i and a

decentralized estimator at node j such that e
(j)
t is bounded over time, i.e.,

sup
t>0

e
(j)
t <∞ . (37)

Intuitively, whether 37. holds or not depends on the quality of the channel from node

i to node j: a better channel allows a higher rate of messages to be transmitted reliably,

thus increasing the amount of information of the unknown state obtained by node j.

The work in (102) shows that

1A random variable x is sub-exponential if there exists a constant c > 0 such that P{|x| > x} 6
2 exp{−cx} for any x > 0 (106, Chapter 2). For example, a random variable is sub-exponential if it
has a Gaussian distribution or if it has a bounded support.
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Fig. 2. Decentralized inference via sensing and communication in a multi-
node network. A pair of nodes in the network is connected by an edge if they
are neighbors to each other (figure from [52]).

and it satisfies (1). Each node in the network can perform
observations and exchange messages with other nodes within
its sensing and communication range, which are referred to as
neighbors of the node. Specifically, node i obtains an intra-
node observation z

(ii)
t as well as an inter-node observation

z
(ij)
t for each neighbor j ∈ N (i) at time step t, where N (i)

represents the set of neighbors of node i. Observations z
(ii)
t

and z
(ij)
t are given by

z
(ii)
t = Γ (ii)x

(i)
t + n

(ii)
t ,

z
(ij)
t = Γ

(ij)
1 x

(i)
t + Γ

(ij)
2 x

(j)
t + n

(ij)
t , t = 0, 1, . . .

where Γ (ii), Γ
(ij)
1 , and Γ

(ij)
2 are sensor gain matrices,

whereas random vectors n
(ij)
t and n

(ij)
t represent observation

noise. Moreover, node i transmits an encoded message m
(ij)
t

to each neighbor j ∈ N (i) at time step t. In particular, m
(ij)
t

is generated based on the observations obtained by node i
up to time step t and messages received by node i up to
time step t − 1. In other words, m

(ij)
t is a function of z

(ii)
0:t ,{

z
(ij)
0:t : j ∈ N (i)

}
, and

{
r
(ki)
0:t−1 : k ∈ N (i)

}
. Here r

(ki)
τ is

the message received by node i from node k at any time step
τ ! 0.

A subset Va ⊆ V of nodes in the network referred to as
agents aim to infer their states in real time.3 In particular, each
agent j evaluates an estimator x̂

(j)
t of x

(j)
t at time step t using

the observations and received messages obtained up to time t.
In other words, x̂

(j)
t is a function of z

(jj)
0:t ,

{
z
(ji)
0:t : i ∈ N (j)

}
,

and
{
r
(ij)
0:t : i ∈ N (j)

}
. The metric e

(j)
t defined in (2) is

adopted for the inference error of agent j at time step t.
A necessary condition and a sufficient condition for the

inference error of all the agents to be bounded over time,
i.e., (3) holds for all j ∈ Va, are presented in [52]. Both
the necessary condition and the sufficient condition consist of
a sensing sub-condition and a communication sub-condition.
The sensing sub-condition in the necessary condition is the
same as that in the sufficient condition. In particular, this sub-
condition is stated in terms of the sensor gain matrices of
nodes in the network. On the other hand, the communication
sub-condition is stated in terms of the Shannon capacities and
anytime capacities of channels in the network, respectively,

3The subset Va can be chosen arbitrarily, from a singleton {j} to the entire
set V .

in the necessary condition and in the sufficient condition. The
gap between the established necessary condition and sufficient
condition is discussed in [52] and it is shown that such a gap
is small in certain scenarios.

B. Decentralized Inference in Continuous-Time Scenarios

Results for decentralized inference are also established
for continuous-time scenarios. Specifically, consider a system
consisting of nodes i and j. The unknown state of node j at
time t is represented by a random variable x

(j)
t , which satisfies

the following stochastic differential equation (SDE):

dx
(j)
t = A(j)x

(j)
t dt + B(j) dv

(j)
t , t ∈ [0, ∞)

where A(j) ∈ R satisfies
∣∣A(j)

∣∣ ! 1 and is known to both
nodes. Quantity B(j) is a row vector and is also known
to the two nodes. Process

{
v
(j)
t

}
t!0

is a Brownian motion
corresponding to the disturbance to the state of node j.

Node i obtains an observation of the node j’s state at
each time. The observation obtained by node i at time t is
represented by a random vector zt, which satisfies

dzt = γx
(j)
t dt + Ξ dnt, t ∈ [0, ∞)

where the sensor gain vector γ and matrix Ξ are deterministic
and are known to both nodes. Process

{
nt

}
t!0

is a Brownian
motion corresponding to the observation noise. Moreover,
node i generates an encoded message mt at each time t
and transmits the message via a scalar Gaussian channel
with noiseless feedback. The message mt is a function of
{zτ}τ∈[0,t] and {rτ}τ∈[0,t], where rτ represents the message
received by node j at time τ . Specifically, rt satisfies

drt = mt dt + κ dwt , t ∈ [0, ∞)

where κ is a known scalar, and {wt}t!0 is a one-dimensional
Brownian motion corresponding to the additive Gaussian noise
in the channel.

Node j evaluates a decentralized estimator x̂
(j)
t of its state

x
(j)
t at each time t. Consider the MSE e

(j)
t := E

{∥∥x̂
(j)
t −

x
(j)
t

∥∥2
}

as the metric for the inference error at time t.
The following theorem establishes a necessary and sufficient
condition under which e

(j)
t is bounded over time:

Theorem 2 ( [51]): There exist an encoder at node i and a
decentralized estimator at node j that achieve (3) if and only if
the Shannon capacity C of the channel satisfies C > log(|A|).

Decentralized inference has also been studied from an
information-theoretical perspective in [51], [52]. Specifically,
building on the pioneering work of Mitter and Newton [54],
[55], a relationship between mutual information and Fisher
information is established for decentralized inference.
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Figure 9

Decentralized inference via sensing and communication in a multi-node network. A pair of nodes

in the network is connected by an edge if they are neighbors to each other (figure from (105)).

1. If there exist an encoder at node i and a decentralized estimator at node j such that

37. holds, then the Shannon capacity C of the channel satisfies

C >
∑
|λi|>1

log2 |λ
(j)
i | . (38)

2. Conversely, if there exists a parameter α > ab
a−b log

∣∣ρ(A(j))
∣∣ such that the α-anytime

capacity C̆(α) of the channel satisfies

C̆(α) >
∑
|λi|>1

log2 |λ
(j)
i | (39)

then there exist an encoder at node i and a decentralized estimator at node j such

that 37. holds. Here, ρ(A(j)) represents the spectral radius, i.e., the largest of the

magnitudes of all the eigenvalues of A(j).

This result specifies a necessary condition and a sufficient condition in 38. and 39.,

respectively, for the inference error to be bounded over time and is is parallel to the data

rate theorem for stabilization over noisy channels as both 38. and 39. compare the capacity

of the channel with a threshold determined by eigenvalues of A(j).

Since the right-hand sides of 38. and 39. are equal the necessary and sufficient conditions

become tight for channels whose Shannon capacity and anytime capacity coincide. Such

channels include the noiseless bit-pipe channels and the Gaussian channel with feedback

(46). As a final remark, we also point out that Assumption 2 is required only for establish-

ing the sufficient condition 39. and not required for the necessary condition 38., whereas

Assumption 3 is required only for 38. and not required for 39..

8.2. Multi-node network

Conditions for the boundedness of inference error for decentralized inference can also be

established in a general network with multiple nodes. Specifically, consider a network

comprising a set V of nodes where each node is associated with a time-varying unknown

state (see Fig. 9). In particular, the state of node j at time step t is represented by x(j)
t and

it satisfies 35.. Each node in the network can perform observations and exchange messages

with other nodes within its sensing and communication range, which are referred to as

neighbors of the node. Specifically, node i obtains an intra-node observation y(ii)
t as well
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as an inter-node observation y(ij)
t for each neighbor j ∈ N (i) at time step t, where N (i)

represents the set of neighbors of node i. Observations y(ii)
t and y(ij)

t are given by

y(ii)
t = C(ii)x(i)

t + w(ii)
t ,

y(ij)
t = C

(ij)
1 x(i)

t +C
(ij)
2 x(j)

t + w(ij)
t , t = 0, 1, . . .

where C(ii), C
(ij)
1 , and C

(ij)
2 are sensor gain matrices, whereas random vectors w(ij)

t and

w(ij)
t represent observation noise. Moreover, node i transmits an encoded message m(ij)

t

to each neighbor j ∈ N (i) at time step t. In particular, m(ij)
t is generated based on the

observations obtained by node i up to time step t and messages received by node i up

to time step t − 1. In other words, m(ij)
t is a function of y(ii)

0:t ,
{

y(ij)
0:t : j ∈ N (i)

}
, and{

r(ki)0:t−1 : k ∈ N (i)
}

. Here r(ki)τ is the message received by node i from node k at any time

step τ > 0.

A subset Va ⊆ V of nodes in the network referred to as agents aim to infer their states

in real time.2 In particular, each agent j evaluates an estimator x̂(j)
t of x(j)

t at time step t

using the observations and received messages obtained up to time t. In other words, x̂(j)
t is

a function of y(jj)
0:t ,

{
y(ji)
0:t : i ∈ N (j)

}
, and

{
r(ij)0:t : i ∈ N (j)

}
. The metric e

(j)
t defined in 36.

is adopted for the inference error of agent j at time step t.

A necessary condition and a sufficient condition for the inference error of all the agents

to be bounded over time, i.e., 37. holds for all j ∈ Va, are presented in (105). Both the

necessary condition and the sufficient condition consist of a sensing sub-condition and a

communication sub-condition. The sensing sub-condition in the necessary condition is the

same as that in the sufficient condition. In particular, this sub-condition is stated in terms

of the sensor gain matrices of nodes in the network. On the other hand, the communication

sub-condition is stated in terms of the Shannon capacities and anytime capacities of channels

in the network, respectively, in the necessary condition and in the sufficient condition. The

gap between the established necessary condition and sufficient condition is discussed in

(105) and it is shown that such a gap is small in certain scenarios.

8.2.1. Decentralized estimation in continuous-time. Results for decentralized inference are

also established for continuous-time scenarios. Specifically, consider a system consisting of

nodes i and j. The unknown state of node j at time t is represented by a random variable

x
(j)
t , which satisfies the following stochastic differential equation (SDE):

dx
(j)
t = A(j)x

(j)
t dt+B(j) dv(j)

t , t ∈ [0,∞)

where A(j) ∈ R satisfies
∣∣A(j)

∣∣ > 1 and is known to both nodes. Quantity B(j) is a

row vector and is also known to the two nodes. Process
{

v(j)
t

}
t>0

is a Brownian motion

corresponding to the disturbance to the state of node j.

Node i obtains an observation of the node j’s state at each time. The observation

obtained by node i at time t is represented by a random vector yt, which satisfies

dyt = Cx
(j)
t dt+Ξ dwt, t ∈ [0,∞)

where the sensor gain vectorC and matrixΞ are deterministic and are known to both nodes.

Process
{

wt

}
t>0

is a Brownian motion corresponding to the observation noise. Moreover,

2The subset Va can be chosen arbitrarily, from a singleton {j} to the entire set V.
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node i generates an encoded message mt at each time t and transmits the message via a

scalar Gaussian channel with noiseless feedback. The message mt is a function of {yτ}τ∈[0,t]
and {rτ}τ∈[0,t], where rτ represents the message received by node j at time τ . Specifically,

rt satisfies

drt = mt dt+ κdwt , t ∈ [0,∞)

where κ is a known scalar, and {wt}t>0 is a one-dimensional Brownian motion corresponding

to the additive Gaussian noise in the channel.

Node j evaluates a decentralized estimator x̂
(j)
t of its state x

(j)
t at each time t. Consider

the MSE e
(j)
t := E

{∥∥x̂
(j)
t − x

(j)
t

∥∥2} as the metric for the inference error at time t. The work

in (104) establishes a necessary and sufficient condition under which e
(j)
t is bounded over

time, namely there exist an encoder at node i and a decentralized estimator at node j that

achieve 37. if and only if the Shannon capacity C of the channel satisfies C > log(|A|).
Decentralized inference has also been studied from an information-theoretical perspec-

tive in (104, 105). Specifically, building on the pioneering work of Mitter and Newton

(107, 108), a relationship between mutual information and Fisher information is established

for decentralized inference.

9. Discussion and outlook on the field

Research at the intersection of information theory and control theory has now entered its

third decade and we can reflect on the body of knowledge that has been developed so far,

as well as on the new challenges that we see appearing at the horizon. Examining the large

body of research conducted, we draw the following basic conclusions. First, there is the

realization that in order to describe the ability to stabilize a NCS, a notion of information

capacity must be related to system parameters expressing the “value” or “utility” of the

information available for control. Second, we have that the information produced by the

dynamical system can be quantified in terms of intrinsic entropy of the system. Since

the intrinsic entropy can grow exponentially over time whenever there is no information

available at the decoder, or in the presence of decoding errors, we compare the intrinsic

entropy of the system to a notion of information capacity available through the system loop

that takes into account these dynamics. It follows that, depending on the notion of stability

employed, we can use different capacity notions that range from the Shannon one, to the

anytime and to the zero-error ones. Third, there is the realization that in NCS information

useful for control can be transmitted not only through data packets but also through events

that occur over time, like in the case of event-triggering strategies, and in this case capacity

notions should include timing information. Finally, there is a certain duality between results

obtained in the context of stabilization and the ones obtained in the context of estimation.

In this latter case, recent advancements have also shown results for multiple-node networks.

Moving forward, we expect that a complete theory of communication over feedback

loops can be constructed by considering encoding and decoding strategies accounting for

both communication by timing and data payload, as well as accounting for the distributed

nature of many system implementations. This theory will make impact on practical devel-

opments that will take into account the information constraints that need to be satisfied to

achieve different objectives. Some experimental platforms have already demonstrated the

applicability of the theoretical results obtained so far and we expect more and more impact

to emerge in the future as the theory will be used to develop industrial systems.
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A grand challenge will be to extend the treatment to distributed networks where partial

state information is available at the different nodes. In this case, since network information

theory as well as a distributed control theory are not yet fully developed, studying the inter-

section between the two will present additional challenges. Nevertheless, while recognizing

that much needs to be done, given the amount of progress we have witnessed in the last

two decades, we can look at the future with a positive outlook and dare to say: much will

be done.
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