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Abstract

For some linear, strictly proper system given by
its transfer function, two dynamic output feedback prob-
lems can be posed. The first one is that of using
dynamic-output feedback to assign the closed-loop char-
acteristic polynomial and the second that of assigning
the closed-loop invariant factors. We are concerned
with these problems and their inter-relationships.
formulation is done in the frequency domain and the
investigation carried out from an algebraic point of
view, in terms of linear equations over rings of poly-
nomials, Using the notion of genericity, we express
several necessary and sufficient conditions.

The

1. Introduction

Two of the central results of linear system theory
are the following:
(A) Let A and B be matrices of dimension nxn and nx £
respectively, The pair (A,B) is controllable if and
only if for every symmetric set A of n complex numbers,
there is a matrix C such that A + BC has A for its set
of eigenvalues;
(B) Let A and B be matrices of dimension nxn and nx %
respectively with (A,B) being a controllable pair. The
input-state transfer function P is given by P=(sI-A)'1&
If state feedback u=Cx+v is used, the closed-loop
transfer function G is given by G = P(I+CP)~}, Let
A > Az > .2 XE > 0 be the controllability indices

1 —

o{ P. Let ¢i be given polynomials such that¢i[¢i_lwiﬂ1
1 8(4) = n.

i=1

Then, there exists a constant C such that the in-
variant polynomials of G are the ¢i if and only if

k
%, with equality

k
8(¢) > I N k=1,2,...
i=1 at k = L.

i=1

Subsequently there has been considerable work to gen-
eralize (A) to the case where static output feedback

is allowed. For the most recent results on this topic,
see Willems and Hesselink [14] and Brockett and Byrnes
[4]. Some recent work involving dynamic output feedback
can be found in [2,3,7,14,15].

Generalization of problem (B) to the output feed-
back case has been investigated by Rosenbrock and Hay-
ton [13]. They consider a transfer function given in
Rosenbrock's system matrix form and present several
interesting results. We consider the same problem in
the following form.
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The mx £ (m> %) matrix P is the input-output matrix

of a strictly proper plant and C { £xm) that of some
proper dynamic compensator. Both P and C have elements
in R(s), the field of rational functions in the indeter-
minate s over the reals R. The closed-loop transfer
function is:

G=P(I+cCcp) !,

The condition m> £ is not restrictive because the situ-
ation m < £ can be treated in a similar manner and

dual results obtained. The transfer function P is
assumed to be given. We are interested in the follow-
ing two problems.

(The Characteristic Polynomial Problem)

Let ¢ be some polynomial in R[s]. What are neces-
sary and sufficient conditions for the existence of a
proper compensator C, so that if x is the character-
istic polynomial of the closed-loop system, them x
is a factor of ¢? A variant of this is the investi-
gation of the situation in which x is equal to ¢ .

(The Invariant Factor Problem)

Let & be an £ x & matrix with elements in R[s].
What are the necessary and sufficient conditions for
the existence of a proper compensator C, so that if ¥
is the closed-loop invariant factor matrix, ¥ is
equivalent to &7 A variant of this is to let ¢ =(¢i)
be in Smith form and to require that [¥ = (¥.)]¥;
divides ¢, for 1 < i < & , or more specifically,
that wi = ¢i'

It is clear that, from a mathematical standpoint,
the invariant factors of a transfer function deter-
mine the deeper structure of a system. If P=C(sI A) 'B
with (A,B,C) minimal, then A can be written in compan-
ion form as:

¢

_— -1
2 , A=T AT

>
"

L

where § .= det(sI-Ci) are the invariant factors of P.
It is true that there does exist a relationship
between the degrees of the invariant factors and the
controllability or observability indices of a certain
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class of systems [9].

The invariant factors are closely related with the

transmission zeros of a plant as defined by Desoer and P = BRPAi; some right representation of P
Schulman., Let P be an mx % plant with Smith-McMillan
form given by MP = ALPBLP some left representation of P
— ¢ — NRPDR; some right coprime representation of P
1
$1 DLPNLP some left coprime representation of P.
€ The closed-loop transfer function G can then be ex-
M= 2 o pressed in the following ways:
P - 2
G= P(I+CP)" Y .
0 = m1
€, Bep(Archre * BrcBre) * Aic
e - -1
B % = Npp(ArcPpp * BrcNpp)  Aic
0 — - -1 1
- NBIP(DLC et Nicre) it Mee? Pice
The ¢. are the invariant factors of P and the transmis- = NRP Q 1DLC (least order),
sion ~ zeros of P are associated with the zeros of the
polynomlals g€:;, Suppose that €, # 0. Then, [8], zeC A . . .
is a zero of ﬁ of order m iff “eg(+). has a zero of where NRP’S.2 are Tight coprime and ﬁLC’m left coprime.

order m at z. The significance of this order, roughly
speaking, is that the system completely blocks_ the
transmission of some input of the form z gkt exp(zt)

foro= 0,1, ... m-1. For o = m, there is an input of
this form for which the output is non-zero and proport-
ional to exp(zt). Therefore, if two systems P and P
have the same characteristic polynomial x = ¥ (x= ¢1 ..
¢2, X =¢1 ¢£ )} but different invariant factors (and

zeros), the transmission-blocking properties of the two
systems would be different.

This paper is divided into five sections. In sec-
tion 2, we formulate the problem in an algebraic manner
using the notion of matrix fraction representation.
This, in a very natural way, will suggest a method of
solution and in doing so, demonstrate the importance
of the equation XD + YN = ¢ , where X,Y,D,N and ¢ are
all matrices with elements in R{s]. In section 3, we
will study this equation as it pertains to our problem
and will construct what we shall call 'acceptable' sol-
utions. In sections 4 and 5, we discuss the character-
istic polynomial problem and the invariant factor prob-
lem. From this it will be seen that the results are
unsatisfactory in two ways. On the one hand, they are
only sufficient conditions, and on the other, they apply
in 'almost all' cases. In section 6 we show that by
introducing the notion of genericity, more complete re-
sults can be formulated. Remaining questions are under
continued investigation. Even though we do not spec-
ifically address ourselves to specific algorithms for
solution, the procedures used are constructive and can
be programmed on a digital computer.

2. Formulation and Method of Solution

Assume that we have the feedback system shown in
Fig. 1 with P being a strictly proper m* £ (m > %)
input-output transfer function and C some £ xm proper
dynamic compensator. Both P and C have elements in
R[s]. The closed-loop transfer function G is given by

G= P(I+CP)"! ,

where we assume that (I +CP)
rational matrix, it can be
Vidyasagar] as follows:

-1 exists. Since P is a
factored [Desoer-

= BA™' = DN

P
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where B,A,D, N are polynomial matrices.

following notation:

We use the

From [5,7] we have that Y, the characteristic poly-

nomial of the closed-loop system,
X = o det @, a non-zero constant.

can be written as
If coprime repre-

sentations for both

the plant and compensator are not

used, then
- a det(ALCARP + B BRP)
= E
det K+ det L
wherea# 0 is a constant, K a greatest common left
divisor of ALC’BLC and L a greatest common right
divisor of Bpp,Agp-
If MG is the Smith-McMillan form of G,
3 B
1
MG = Ez
wz Wl monic,
\ wi[wi—l’
A
L 1<ix<t
¥y
L 0
Yy 0
we call ¥ = ~ the invariant factor matrix
0 "

of G, ¥; being the
(93, we have that @

invariant factors. As shown in
and ¥ are equivalent.

One way to proceed is to utilize the form in
which the closed-loop transfer function has been

expressed:
G = Npp(ArcDpp + BicNpp) ™" Ag
Nep(Prclrp * Npclpp) " 'Dic
= Nep 870

Suppose we are investigating the characteristic

polynomial problem.
detd = ¢, where ¢ is

Let ¢ be some & x{matrix with
some given polynomial, If a



polynomial solution X,Y to XDRP + Y NRP = ¢ exists with

X'y existing and proper, then C = X“'Y is a proper com
pensator making the closed-loop characteristic polynom-
ial X equal to X = ¢/q where q = det K, K a greatest
common left divisor of X and Y. If, in addition, X,Y
are left coprime, then X = a¢. In a similar manner,
suppose we are looking at the invariant factor problem.
Let ¢ = (¢.) be an £ x £ matrix in Smith form. If a
polynomial solution X,Y to XDRP + YNRP = ¢ exists with

X"Y existing and proper, X,o being left coprime and
RP’¢ being right coprime, then C = is a proper

compensator which makes the closed-loop invariant fac-
tors wi equal to ¢i.

It is clear from the above that equation XD+ YN= ¢
plays a very important role in our investigation. We
devote the next section to the study of this equation.
Before doing this we also formulate a third problem,
the Denominator Matrix problem.

(The Denominator Matrix Problem)

Let P =
fer function described by the right coprime representa-
Let ¢ be an £ x 2 matrix. What are nec-

essary and sufficient conditions for the existence of a
polynomial solution X,Y of X Dpp + Y Npp = ¢ for which

XY exists and is proper? A variant of this would be
to require also that NRP,¢ are right coprime and X,¢
left coprime.

-1 s
NRPDRP be an m x £ strictly proper trans-

tion NRP’DRP'

Remark. The issue of coprimeness has not been explicit-
Iy dealt with by Rosenbrock and Hayton [13].

3. The Equation X DRP + YN, =¢

RP

The importance of this equation in the problems at
hand has been shown in the last section. It is nothing
else but a set of linear equations over the field of
rational functions R(s),

]

(i.e., Z F = &), As such all (rational) solutions can
be written as Z = Z, + Z, where Z, is a particular solu-
tion and Z, is such that Z,F = 0. We, though, are
interested only in polynom1al solutions, and as can be
shown [9, 11]:

Proposition 3.1,

(3.1)

Let U,V be a polynomial solution to

UDRP + VNRP = I, Then all polynomial solutions (X,Y)
of X DRP + Y NRP= $ can be expressed as:
XHQU-NNLP
= ¢V + NDyp

where N is a polynomial matrix.

Now from [12], we know that since N are Tight

rpPrp
coprime, a polynomial solution X,Y always exists for any
¢. This is an algebraic condition. Emre, in a recent
paper [10}, gives a nice system theoretic interpretation
of this, using module theory and the realization tech-
niques suggested by Fuhrmann. He also suggests an alter-
nate description of all polynomial solutions,which has

a system theoretic flavor,

As we have noted, we are interested in solutions of
X Dpp + Y Npp = @, which are polynomial but which in

add1t1on have the property that (a) det X # 0 and (b)
X"y is proper. We call such solutions acceptable.

Satisfying the first requirement is easy, as we see
from [9].

Proposition 3.2. Let ¢ be an & x { matrix with detd # 0.
Then there exists a polynomial solution X,Y to equation
(3.1) for which det X # 0.

This next result describes how both requirements are

satisfied simultaneously, which consequently plays a
crucial role in our investigation {9,13].

Theorem 3,3.

let P = NRPDi; be a strictly proper m X £
rational transfer function with[ RP] being column-proper
Nrp

with column degrees (controllability 1nd1ces)l
vee 2 0. Llet $ be an £ x £ non-s1ngular matrix
with q = 8(det @) - 8(det DRP) > 0. Let X,Y be a

polynomial solution of X Dpp + Y Npp =& . Then X' Y
exists and is proper iff there exists a unimodular matrix

> >
P

g
M and indices d; > 0, satisfying ] d;=q such that
i=1

diag(s % M[Y, o disg(s"™)] is proper. (3.2)
Remark. The above theorem is clarified if we look at
what happens in the single-input, single-output (siso)
situation. Let x,y be a solution to xdp+ yua = ¢,
n_,d_ coprime, G(np) < 6(dp) =q . P

PP -

Necessity: If x 'y is proper, we must have
8(x) +a= 0(¢) = 8(x) > 6(y)

Therefore, we must have s 9{y,9s %] proper.

Sufficiency: If s [y,s s"%] is proper, we have that
6(y) < q and since 8(¢) = q + a , we must have 8(x) =
otherwxse 8(xd  + yn } # 6(¢). This means that

x 1y exists anfl is proper.

a+qand q=

After looking at Theorem 3.1, it is quite natural
to attempt the construction of acceptable solutions by
making sure that requirement (3.2) is satisfied. We
know that all solutions to (3.1) are given by

X =
Y =

U - NNLP
oV + NDLP

where UDpp + WNpp = 1. The question is how to choose

N. Let us look at the siso situation for a moment.
Theny = ¢v + n , Or written differently, ¢v = -ndp
+y. We know that whatever ¢v is there exists an n

This is nothing else but divi-

such that 6(y) < 6(d
p%hls as shown in [15] and holds

sion of ¢v by d .

in the matrix case where the column degrees of Y are
strictly less than the column degrees of DLP' If we

then let [D;pN,] be row-proper, the Tow degrees are

the observability indices of P and we can comstruct a
unique Y with the 8(Y)< u, -1, u, the largest observa-

bility index. Therefore, diag (s - (0 }N15proper To
fulfill requirement 3.2, care must be taken in choosing

a ¢ that makes diag(s(H1"1))ddiag (s ®i) proper as well.

Theorem 3.1 provides a test for determining whether
a specific polynomial solution is actually an acceptable
one. It would be greatly desirable, though, if a partic-
ular solution could serve as a representative for all
solutions., In the following situation, this can be
done.

Let P be a strictly proper transfer function with
all observability 1nd1ces equal to u. Let [Dyp,N LP]
be row proper, D;p = IsH+ + Dy
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Let U,V be such that UDp, + Wp, = I with [gm,]
RP.

column proper with controllability indices
Ay 2 X 2 ... 22 > 0. Using right division, there

exist unique -N and Y such that

w=-ﬁDLp+? M) <u .

Let X = ¢U + NN, o

-1 -1
Proposition 3.3. let P = NRPDRP = DLP NLP be as
above. Let & be a diagonal matrix with B(¢i) =

A vYy,y20. Then X Dpp + Y Npp = ¢ has an accept-

able solution iff X,Y is an acceptable solutionm.
Remark: The atove does include the siso case.

4. The Characteristic Polynomial Problem

We are now in a position to give a partial answer
to the Characteristic Polynomial Problem as stated in
section 1. I say 'partial' because it is only a suf-
ficient condition.

Theorem 4.1. Let P belan m X £ strictly proper trans-
fer function and N, ,Dr, a right coprime representation

RPRP
where[gkﬁl
RP
A>
1= 7 =

is column-proper with column degrees
e 2R > 0 (controllability indices).
Let DLPNLP be a left coprime representation, with

[DLPNLP] row-proper. Let ¢ be a polynomial of degree

t

= oy * 2(u,-1) (u1 the largest observability

i=1

index). Then there exists a proper compensator C such
that the characteristic polynomial X of the closed-loop

system is given by

=2
Ixy
where q,, is a polynomial with 0 < 68(qyy)< 2&(u - 1).
XY - XY’ — 1

The proof is constructive [9], with the compensa-
tor being given by C = X~'Y where X,Y is an acceptable
solution to some equation of the form X Dpp + YNy, = ¢,

is nothing else but det ny, where

The polynomial Qyy
and Y.

KXY is a greatest common left divisor of X

Remark. It is clear that this Theorem can be used for
purposes of stabilization. If ¢ is chosen to be a
stable polynomial, then so will be X, the closed-loop
characteristic polynomial, We also note that the com-
pensator may or may not be stable. We will investigate
this issue later in this section.

Remark. From a closer examination of the procedure we
can see that, in general, one does not have prior know-
ledge of what qyy is. The larger the degree of Ay

implies a smaller increase in the overall dynamics of

the system. One can therefore use this in the design
of compensators.
Remark. Using a different output feedback configura-

tion, Brasch and Pearson [3] show that the character-
istic polynomial of the closed-loop system can be
assigned by only increasing the system dynamics by u,-L
These results can be obtained using the approach out-
lined in this paper [9]. Even though more dynamics

are added in our approach, it may be that the computa-
tions are less cumbersome. This issue warrants further
investigation.

Remark. The approach taken in [15] suggests that com-
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pensation involves input as well as output dynamics,
and it also differs from the present approach in that
it requires stable, pole-zero cancellation and the
presence of 'hidden' modes.

On the one hand, it is quite worthwhile to investi-
gate compensation schemes that require as little added
dynamics as possible. An equally worthwhile task is to
investigate whether, by adding more dynamics than the
least required, one can achieve other design objectives
as well [2]., The following Lemma and Example deal with
this issue.

Lemma 4.1 Let ¢ be a polynomial with 6(¢)= 2n - 1 + k,
k>1. Let X,, ¥, be an acceptable solution of

- N 3 -
xdp + yhy = ¢, [ p/dP strictly proper, B(dp) = nj. All
acceptable solutions are of the form

= xl-mnp

Yy, + mn

X
2

Y2
where S(m)i k-1,
Example.
struct a proper and stable compensator which makes the

characteristic polynomial of the closed-loog system
equal to the stable polynomial ¢ = s*+s3+3s%+ s+ 1,

y
The compensator C, = 59+ 2s = y- does satisfy the
1- +s-1 Xy

requirements except that it is unstable. Now, all
acceptable solutions are given by

and suppose that we want to con-

X, = X, - my
Y, = ¥y +mdy
where m is a constant. Let m = -2, Then,
x,= s*+s5+1
v, * 352 + 25 + 2 .
Clearly, C, = 352+ 25 + 2/ + s + 1 meets all the
requirements.
Remark., This idea can certainly be extended to the

multiple-input, multiple-output situation.

5. The Invariant Factor Problem

Let P be an m x £ strictly proper transfer func-
tion and ¥ = (#;) an & x ¢ diagonal matrix in Smith
form. If P = NRPDQE is some right coprime representa-

tion for which there exists an acceptable solution to
the equation X Dpp + Y Npp = @, where & and § are equiv-

alent, with (a) X and ¢ left coprime and (b) Npp,®
right coprime, then C = X~!Y is a proper compensator
making the invariant factor matrix ¥ = (¢;) of G equal
to ¢ . If conditions (a) and (b) are not met, then [6]
we have wi|¢i. We also know [13] that if P with control-

Ibility indices A, > A, >,.. A, > 0 and observability
indices wu)>w >... w20 an& ¥= (¢;), also satis-
fies 2

E E
8(¢.) > . +u ~ 1)
i=} - i=1 !

k =1,2,... with
equality at k = £,
theri there exists a matrix ¢ equivalent to ¥ such that
lim [diag(s"‘!"% diag (s"®i) 1 = 1.

]

Theorem 5.1. Let P,3 , ¢ be as above, with the ¢; sat-
isfying
k k
16(¢) 2 I &y *+w; -1) k=1,2,...2 with
i=1 i=1 equality at k = &,

Then there exists a proper compensator C = X~ !Y with



X Dpp *+ Y Npp = ¢ and such that if ¥ is the closed-loop

invariant factor matrix, then wi]¢i.

We will only have wi = ¢i if X and ¢ are left co-
prime and Npp and ¢ are Tight™ coprime.

Remark. In earlier work Rosembrock [12] gave a neces-
sary and sufficient condition in the case of state feed-
back. That result can be obtained using the theory
developed in this approach [9]. In that situation, the
invariant factors are assigned exactly for all cases.
Here, as we see, the conditions are merely sufficient
and apply to 'some' cases; this warrants further clari-
fication.

Remark. The fact that in the state feedback the system
trasfer function can take the form P = (sI-A)"!B simp-
lifies the problem, and using the procedure suggested
here, Rosenbrock's earlier result can be proved.

The results we have discussed so far are unsatis-
factory in two respects. We have seen that degree con-
straints on ¢ or ¢ are not enough to ensure that the
closed-loop transfer function G will have the desired
characteristics. If X, & , and left coprime and Npp,®
are right coprime, this will be true. However, they
are only sufficient conditions. It is therefore quite
natural to ask whether degree constraints are solely
sufficient in ‘'almost all' cases and whether these are
necessary in 'almost all' situations as well. We will
show in the next section that in some cases this is
indeed true. :

6. Generic Results

Let q be some positive integer. We define the
Zariski topology on R this way. Let u be an ideal in
R{x,, ... x_]. All points x =(x,, ...xq) X, in € such
that f(x)=0qfor all £ in u form %he varlety of u. If
closed sets in €4 are defined to be the varieties of €4
[16], then €9 becomes a topological space with the
Zariski topology. Let R4 have the subspace topology.

Definition. A set S<R% is called 'generic' if it com-
tains a non-empty Zariski open set of R4, Roughly
speaking, a set is generic if it contains almost all of
R4, (its complement is contained in a set of Lebesque
measure zero). The way in which we use the notion of
genericity is to first take a set of R and then define
a property which is valid for all points in S cR4., We
then attempt to show that S is generic. . This means, in
effect, that the property is valid on almost all of R9.
We now give explicit definitions.

Definition. An m x % strictly proper transfer function P
of order n, given by P = NRPDﬁé has the generic charac-
teristic polynomial assignability property if the monic
polynomials ¢eR" ' for which there exists a proper

compensator C making the closed-loop characteristic
polynomial equal to ¢ is a generic subset of A

Definition, An m* % strictly proper transfer function
P of order n given by P = NRPDﬁ has the generic denom-
inator matrix assignability property if the 2x2&matrices
¢ eR- for which there exists an acceptable solution
X,Y to X DRP +.Y ng =9 wi?h Ngp, & righ§+%oprime and
X, left coprime is a generic subset of R .

In what follows, we find that looking at the equa-
tion X Dpp+ Y Ngp = ¢ as an operator is greatly advan-
tageous. If

sk-2 .

_ k-1
X = Xk_lsk . + X o cee X
Y= Y ;s R Y,
t
DRP = Dts + v + Do
_ t
NRP = Nts + ... + No

then

1 Yier oor Xo¥ol SOpoNppd™ [Bece 10k v+ %ol
where — —
D, Dy, DO 0.... 0
Nt e No 0 0 ... 0
_ 0 D .. D
Sk(DRP NRP) = t o
2k 0 Nt v No
block rows
D, ... D,
Nt e No

This [1] we immediately recognize as the generalized
Sylvester Resultant of Dpp and N of order k [it is a
k(m +23x  2(t+k) matrix with real entries.}

The following two Lemata taken from [1] give the
rank of Sk(D,N) for some transfer function ND~}! in terms
of the dual dynamical indices (observability indices if
ND™! proper) of ND”! and relate coprimeness of N,D with
the rank of some Sk,(D,N). These are generalizations of
siso results.

Lemma 6.1. Let ND'' mx £ be proper with A, observabil-
ity indices of ND"'. Then :
rank S (D,N) = (& + mk - ) (k -u; ) .

i:ui< k
Lemma 6.2. Let ND'! mx £ be proper and q the least
integer for which rank § (D,N) - rank S, (D,N) < Z.
Then, for n > g, N,D arequght coprime iff S_(D,N) =
fn + 68(det D). n

A consequence of viewing the equation X Dpp +Y Npp=
® as an operator is:

Proposition 6,3. Let P= N Dﬁl be an m X £ strictly
proper transfer function wigﬁ controllability indices

A1= A= ... =X =X and observability indices W= M=
vee =y =yu and DRP’NRP ofAEQe form Dgp = Is’+ DA s -1
tooo +mDn and Npp = Ny _; s 4.+ N, Let 1
R" be the set of £4x% ma%rices of the form
_ A+q A+q-1
¢ = Is + ¢A+q-1 s LEPRE ¢0'
_ -1
Let Q= {(X,n)] x=15%+ xq_lsq + Xo, YoYpsTe Ly}

A necessary and sufficient condition for the existence
of a solution to X Dpp + Y Npp = ¢ in the class Q for
generic ¢ is q> u- ik B

Proof:
(necessity).

Equation X Dpp + Y N, = & with the conditions im-
posed can be written as

(1Y, X1 Yq_l e XOYO]Sq+1= [1 Cen-10% 1.
Sq+1 can be thought of as a function

.p (&+m) (q+1) (A+q+1}2
Sq+l'R —> R

From Lemma 6.1 we have that Sk
has rank

[a k(2+m)X (A+k)2 matrix]

rank 5, = (&4m)k - ) (k-u;)
i< k
which,under the special circumstances, becomes:
rank Sk = (2+m)k if 1<k<y
= (2+m)k-m(k-u) if uy <k .

By observing dimensions, we see that:
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a) 51’ Sz, ‘e Su_1 are not onto
b) Su is both one-one and onto
c) Su+1, Su+2 ... are onto.

Assume now that q < u-1 and that X DRp +Y NRP = ¢ has

Show a contradiction,
L(2+m)q+im and

a solution in Q for generic ¢ .
If we think of (X,Y) as an element in R

® as an element in Rl(k+q)£, we see that the ¢ that can
be reached from elements in Q are a set of dimenions

less than 2(q+A)}%, which implies that the set of ¢ which
can be reached does not contain a non-empty Zariski open

set. This is a contradiction; therefore, q > u-1.
(Sufficiency).

Suppose that q > u~1 (or equivalently, q=u-1+k,
k > 0). We want to show that the set $e Rt ,

[t = 2(A+u+k}% -22] for which a solution in Q exists,
is a generic subset of Rt. We already know that S

is an (2+m) (u+k) *X(A+u+k) £ matrix with ek

rank Su+k = (f+m)u + 2k

This means that the operator

o (2Hm) (k) o (Rem)p+ 2K
Su+k'R + R

We want to show that S
of the

S“"-k-1 +

Q = Rt. For #eR®

form

is onto. (
there exists some (X,Y) Ktk

X = Xu+k_1

S]"H'k-1 +

X

Y=Y

K+k-1 Y

o]

ce

such that

xoYo]Sp+k= (r ®X+u+k-1 o ¢o]'

[xu+k-1’Yu+k-l
For this we must have X +k-1
(X,Y) € Q. This comple%es

We are now in a position to give two results con-
cerning the generic characteristic polynomial assign-
ability property.

Theorem 6.4. Let P=nd be a siso, strictly prop-
er transfer function offolder n [e(dp)=n], dp monic.

= I, which implies that
the proof.

-1

A necessary and sufficient condition for generic char-
acteristic polynomial assignability is q > n-1.

Proof.

Since ¢ € R™% is to be the characteristic poly-

nomial of the closed system, the compensator accomp-
lishing this must be of order q. From Proposition 6.3
we then have that a necessary condition is q >p - 1.

For sufficiency, assume that q > u-1. Let t=n+q
and define
For which there exists
S = (¢o, e ¢t_1)s R*| an acceptable solu-

tion x,y xdp + ynp= [
and X,y coprime.

We need to show that S contains a non-empty Zariski
open set (i.e., it is generic). Since q>u -1,
Theorem 3.3 can be used to show that the solution
which is formed by letting -n (in y = ¢v + nd_,
¢u - in_) be the unique quotient of the divisgon
d_/¢v, 1s an acceptable solution. Let g=Res(X,y)(i.e.,
the resuitant of x and y). Since 8(x) = q, we musthave
that x,y are coprime iff g # 0.

Let

%y
X =

v

g = (g woe dp yde R 8(og» +vr 9pp) =013

It is clear that § 3_7?. We need to show that Vé # 0.
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Let £ be in R[s], with 8(f)
Define ¢ = fdp + np.

oV = (fv-u)dp + 1.

Since for this particular ¢, the corresponding y is
equal to 1, we must have X,y being coprime. Therefore,
S( 2 V) contains a non-empty Zariski open set making
it gengric. This completes the proof.

= q and fdp monic.

>

In a similar manner, we can also show [9]:

Theorem 6.5. Let P = Noodo! = (n../d..) be an mx1
strictly proper transfe¥Pf§%ctionll i with dil’ d'i’
i#3j coprime. A sufficient condition for J
generic characteristic polynomial assignability is

q > ¢,- 1 (u; the largest observability index of P).
In the event that all observability indices are equal
to Y, then this condition is necessary as well.

Remark. In proving these results, we make use of the
generalized Sylvester resultants. The results are con-
fined to the case when the denominator matrix (X Dpp +
Y Npp = ® ) is just a polynomial. For the general
mx% case, a closer examination of the structure of
the resultant matrices is needed.

Remark. Results similar to these proved in a different
way can also be found in a recent paper of Willems and
Hesselink [14].

The generalized Sylvester resultants can be used
more effectively to treat the generic denominator matrix
assignability problem. As expected for the single-input,
single-output case, we have

Theorem 6.6. let P =n _d "' be a siso strictly proper
transfer Function of orfef n. Let ¢ be a monic poly-
nomial with 6(¢) = n + q (¢ € R™™4 ). A necessary and
sufficient condition for generic denominator assigna-
bility is q 2 n-1.

The proof proceeds in a similar manner as that of
Theorem 6.4, The multiple-input, multiple-output situ-
ation is much more challenging. For this, we interpret
Lemma 6.2 in the following way: The matrices N,D are
right coprime iff at least one n+ 6(det D)X &n+ 6(detD)
minor of S;(D,N) is not zero, Denote these minors by
mi(D,N). By symmetry, the argument can also be made for
left coprimeness, We can now state [9].

Proposition 6.7. Let P = NRpDﬁé be an mx £ strictly

D
proper transfer function with [Ngg column proper, and

-1
> )\£ > 0. Let DLPNLP be
such that 8(Djp) = H,, the largest observability index.
Let R® denote the set of %X % diagonzl matrices ¢ = (¢i) ,

column degrees A, E'Az > ...

¢; monic with 8(¢,) = Ai t, b= .Z (Ai+ t,). Let
mi (¢, NRP) s nj(Q, i) be the

minors for ¢, Npp, and ¢ , X, respectively, (X,Y ob-
tained by right division ¢V = - N Dip + Y).

1f ty2 u- 1 and at least one mi(¢,NRp) #0

and at least one n.($,X) # 0 , then P has the denomina-
tor matrix assigna%ility property.

appropriate

Remark. For this result as well we see that degree
constraints are not enough and that 'undesirable’
additional conditions are present.

On the other hand, this is merely a sufficient
condition. For the special case of diagonal systems,
we have [9].

Proposition 6.8. Let P be an mx &
transfer function of the form

strictly proper



— — — — 1
n, n d,
a 0 ! 0 0
P= * . =
0 0
0
ng Ng d
q,
o * 0 Dpp
| ) —
Nep
I — —— s

with ni,di coprime, di monic (this means that the con-

trollability indices A, are equal to 6(¢;)1<i < 2
and the observability indices u; are equal to
8(d;) 1 <1 £ 2 with Mo = «ov = Hp = 0.)

Let Rt denote the set of 4x & diagonal matrices

® = (¢;), ¢; monic with 8(¢5)= }A; + t,,

t

Z (Ai + t;) . A sufficient condition for gen-
i=1
eric denominator matrix assignability is Ty 2 M- 1,

In the event that m = £ and A, = kz vee = A£= A and

M = H, = ... = YUy =A =1u, then t;zu -1 is a neces-
sary condition as well.

Remark. Under the assumptions of Proposition 6.7, we
have that a sufficient condition for generic denominator
matrix assignability is

a) t;2 M- 1
b) at least one mi(é, NRP) # 0 and
at least one n;(¢, X) # O.

It is desirable to eliminate condtion (b). To
accomplish this it has to be shown that for some ¢ ¢ Rt
we have mi(éo, Ngp) # 0 and nj(éo, X@o Y # 0.

Proposition 6.8 suggests a way in which this may be

achieved. Instead of looking at some specific system

and some space of &, look at the space T x ¢, where

T is an appropriate space of systems (which includes

diagonal systems). Then attempt to show that for some

t (a diagonal system)and some & , m.(Npp . & ) # 0
[ [} 1 ,to [

and n.(% , X ) # 0. This way we will, in effect,
3 0 Tted

have proved that 'almost all' systems in T have the
generic denominator matrix assignability property, if
t; >u, - 1,

1="1

Theorem 6.9

Let N,D be £x £ matrices and define W, Z,S as
follows:

2 -
W= {(N,D) e R My e

uzl A
0 EHd

D=1Is" + Dk-ls

A-1 .

N=N, .s ...+N°}

A-1

. A Aqzl
z={% R(““)"l¢ diag,d=Is +q“°x+q-15 Tt s 0}

2
S= {(N,D,@)stxz R DL Eor which there exists an
acceptable solution X,Y
of XD+ YN = &, with
N,$ right coprime,
X,% left coprime.

A necessary condition for S to be a generic subset of

2
Rzkl x R(Mq)jz is q > A - 1.
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Proof:

Suppose that S is generic (i.,e., it contains a

non-empty Zariski open set) and let q < A - 1, Show a
contradiction. .
2
Let M be the subset of szz X R(X+q)2for which

(N,D) are right coprime and ND™! has observability in-
dices equal to u(=A). (If N,D are right coprime, the

controllability indices of ND~! are all equal to 1).

We have that M is generic because of the following:

2
M8 x R(A+q)£ for which
1<82<A

The set F ¢ R
rank Si(D,N) = 2if

and rank SA+1 = 2AL + &

is generic. This means that for every (N,D,%) € F we

have that:

1) N,D are right coprime (Lemma 6.2)
2) Since ND"! is proper, the observability indices of
ND-! are all equal to A (Lemma 6.1).

This implies that (Fc M) M is generic.

Since we have assumed S to be generic, we must have
that S n M is non-empty. Let (N,,D,,3,) € S oM. This
means that for N,, D and almost all ¢ ¢Z we have that
an acceptable solution X,Y of XD + YN = ¢ exists.
Since X,Y is acceptable, we must have (Corollary 2, p.
548, Rosenbrock-Hayton), 6(Y) £ q. This means that
(X,Y) € Q of Proposition 6.3. But then q > A - 1, which
contradicts our assumption that q < A -1. Therefore,

q 2 X - 1, This completes the proof of Theorem 6.9,

Proposition 6.10 With W,Z,S,M as in Theorem 6.9, a
sufficient condition for S to be generic is q = A - 1.

Proof:
Let q =A -1, From above we already have that M is gen-
eric. For any (N,D,®) in M we have that S, (D,N) is one-

one and onto, therefore invertible., This means that for
any e Z there exists a unique (X,Y) such that XD+ YN =
%, and X,Y is an acceptable solution. It is clear that
N,® are right coprime for almost all (N,D,®). The
question then remains as to whether X,% are left co-
prime. (i.e., ¢ , X' right coprime).

From Proposition 6.8 we already know that there
exists some diagonal system N D™} and some diagonal
¢e Z for which X and ¢ are coprime [call the point
(N,D,F)e WxZ,a]. This means (Lemma 6.1) that

rank Si(Qa, X'u) = i-2% 1<i<2x-1
rank SZA(QQ, X'u) = 2X*28- 2 .

This implies that the above also hold for generic o .
Using Lemma 6.2 we then have that X,$ are left coprime
for generic o. This means that S is a generic subset
of RZM'2 x R(A+A'1)2.

and

Remark. In Theorem 6.9 we see that q > A-1 is a neces-
sary condition so that for almost all systems of order,
A% and equal observability indices A, there exists an
acceptable solution X,Y of XD + YN = ¢ with N,& right
coprime, X & left coprime for almost all ¢ in Z. In
Proposition 6.10 we have that q = A -1 is a sufficient
condition. We conjecture that g > A- 1 is actually a
sufficient condition, thus completing Theorem 6.9.

We wish to thank Professors Chris Byrnes and
Bernard Lévy for many helpful discussions.
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