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1. Introduction 
In  their  seminal  paper,  Fujisaki,  Kallianpur  and 

Kunita [l] showed  how  the  best  .ie&t  squares ekimate 
of a signal contained  in  additive.vhite  noise.can  be 
represented  as  a  stokhastic  integral  with  respect  to 
innovation  process,  the  integral  being  adapted  to  the 
observation  process.  The  difficulty  with  this  repre- 
sentation  is  that  in  general  this  estimate  is  not 
useful  for  computing  the  estimate  since  the  innovations 
process  depends on the  estimate of the  signal  itself. 
In  this  paper  we  discuss  representation  of  the  estimate 
directly  in  terms  of  the obsemation process.  In 
doing so, we  derive new results on multiple  integral 
expansions  for  square-integrable  functionals of the 
observation  process  and  show  the  connection of this 
work to  the  theory of contraction  operators on Fock 
space. This letter  development is due  to  Nelson  and 
Segal . 
results  to  determining  sub-optimal  filters. 

We  also  present  several  applications of these 

2.  Multiple Inteaals and  Filtering 
In  this  section, we shall  discuss  applications 

of multiple  integral-expansions  to  the  general  fil- 
tering  problem.  We  will  consider  the  ‘canonical’ 
scalar  filtering  model: 

under  the  assumptions 
t a)  x  and  wt  are  independent  processes 

b) fo r  some  T>O E6’h2(x  )as<- ( 2 )  

c) w is  a  standard  Brownian  motion t 
If ft(x(.))=ft(xs,s(t) is  a  causal  functional  of  the 

signal xt  and  eZu(y,I  Ozszt}l  sub-o-algebra  generated 
by y,,O<s(t, then  we  are  interested in calculating  the 

optimal  least  squares  estimate of  ft(x(, ) 

Eift(x(. ))I<) for  ts. 
Definition 1 yt  defined  in (1) and (21  is  called  an 
observat2on d - m a r t f n  ale. 
Throughout, d o t e  the  underlying  proba- 
bility  space. 

Nov  E{ft(x)  I<}€L(R,<,P) (={e measurable rv‘s)] 
by  the  definitfon of conditional  expectation, and, 
therefore,  any  method  that  represents  elements  of 
L~R,$ ,P )  in  a  simple  and  consistent  way,  say by 

y(,)  can  be  applied  to  the  optimal  estimate. I n  
expansion  in  terms  of  a  simple  class of functionals  of 

this  work,  we  have  adopted  multtple  integrals  Of 
the  form  Lt..dsr-’k(t,Sl,+  .Sr)dY(Sr)- adds1) 

as  the  basic  objects of expansion.  First,  yt  is  a 
stochastic  translation of B r d a n  motion  and 

be  carried  oyer.  Secondly,  iterated  integrals  proyfde 
through  a  change of measure,  much Brownian tPleory  can 

the  natural  concept of a  polynomial  in  the  y  process 
and  thus  they  give  a  framework  for  considering  best 
quadratic,  cubic,  etc.  suboptimal estbation pro- 
cedures.  Finally,  when  the  kernel  k of 
zt=6:&sr-1kdys ..dy,, is  separable,  a  construction  of 
Brockett  [2] rekzes Zt recursfvely  as  the  SOlUtfOn 

to  a  stochastic  differential  equation. 

ple  integral  expansions ye show how E{ft(x(. [q} c~ 

be  represented  as  a  ratio  of  multiple  integral 
expansions.  The  chief  theoretical  result  about  multi- 
ple  integrals,  the  multiplication  formula of theorem 2, 
is  then  used i n  conjunction  with  this  representation 
to  derive  equations for the  best  suboptimal  estimate 
of any  order.  The  Kalman  filter  is  derived  and  the 
quadratic  filter  discussed in detail  as  examples. 

Accordingly,  afterdevelopingsome  theory of multi- 

Multiple Inteaals. Inwhat fo l lows ,  let  (b(t),Ft) 
denote  a  standard  3rovnian  motion  w.r.t.  increasing 
family of sub-&algebras  Ft.  We  assume  familiarity 
vith  the  stochastic  integral  t  $sdb(s),  whereqS(u)  is 
a  measurable  process  adapted  to  (FtItL0. 

Definition  2  Let f e L 2 ( [ 0 , T ] n ) ~ ( f E L 2 ( [ 0 , T j ” ) l f  symmetric}. 
I?’ (f), the  nth  order  multiple  (or  iterated)  integral 
up to t<T of f ,  is defined  recursively by 

I ~ ) ( f ) = $ I ~ - l ) f ( s , . . ) d b ( s )  
2 *  

( 3 )  
In ( 3 ) ,  f ( s , . . )  is  the  function  of L (L0,TJn-l)  formed 
by  holding  the  first  element of f fixed  at 8 .  Strictly 
speaking, f o r  (3) to make  sense  it  must  be  shown  that 
IP-’)(f(s,..))  has a measurable  version,  but  this  can 
easily  be  done  by  approximating f with  separable 
functions.  Let  (f,g)=&.d t t  f ( s  s )g(s,,..,s  Ids  ..as 
denote  the  inner  product  of  L ( [0,Tln). By applying 

1;’’’ n n n l  

standard  facts  about  stochastic  integrals,  the  following 
basic  properties  of  the  multiple  integral  are  derived: 
for  any n and m, t s ,  and  fEL2([0.Tln),  goL2([@,TIm) 

a)  E{I!nl(f~~=O ( 4 )  

Note a l s o  that  Itn)(f)  depends  only on the  values of 
f(sl , . . ,sn) for s l ~ s & . ~ s n .  (3 )  adopts  the u s e m  
convention  of  allowing f to  be  defined in all of 

[0 ,T ln  by a  symmetric  extension. 

Wiener’s  homogeneous  chaos  expansion,  which  as an 
example of  the  general  theory  presented  later,  decomposes 
L (Ft) into  a  direct sum of  Hilbert  space  tensor 
products.  Indeed  if  HoZR, H n ~ ~ I ~ ~ ) ( f ) l f € L 2 ( [ 0 , T ] n ) ~  n>l 
a  simple  application of  (4) a) and  b)  demonstrates  that 
Hn  is  a  Hilbert  space  for  every n and  that  HJHm  for 
n#m [where 1 is  defined  in  the  sense  of  the  inner 
product  (x,y)=Exy]. In fact  we  have  more: 
Theorem 1 (fto-Wiener) 

L  (Ft  )=H 8 H1@  H2@ . . . . . . 

Multiple  integrals  are  useful  in  constructing 

2 b  

2 b  

That  is, f o r  @EL  (Ft)  kernels  IknJ  exist  such  that 2 b  m 

m 
$=ko+Zn,lI~) ( kn 

n-0 
( 5 )  

Proof. See  Ito [ A  and  Kallianpur [d.  
Theorem 1 suggests  the  following  natural  question. 

Suppose fEL ( [ 0 , T l n )  and  gEL2([0,Tlm).  Is  it  then  true 
that  I~n)(f)I~)(g)ET, 2 b  (Ftl fo r  t s ,  and  if so, what 
are  the  kernels  Iki},  as in (5), such  that I t ( f )c(g)  

2 
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a) The  case  (m,n)=(k,l)  implies  the  case (m,n)=@z+1J) 
b)  The  cases  (m,n)=(k-l,j),  (k,j-l)  and  (k-1,j-1) 

imply  the  case  (k, j). 

Equation (81, the  multiplication  formula,  is  actu- 
ally  a  generalization  of  similar  looking  Hermite 
polynomial identity 

where  hn(x) =r (-1)n e -~2/2(~n/~n)~x2/2. 

the  connection,  observe  that  the  polynomials  hm(x) 
provide  an  alternate  means  of  constructing  the 
decomposition  of  theorem 1. In  fact,  if {$l~T=l 
is  a  complete  orthonormal  basis  of  L  ([O,T])  and 
GnZSpan$ 1 h 81 (It.$i(j)(s)db(s))Ipl+..+pr'n,il,..ir 0 

then  Ito [ 3 ] has  shown  that Hn=E (- denotes  closure). 

To  understand 

2 

pairwise  &equal) 

Xg(rl..rm)drm..drl.  It  is  useful  to  think of the fbc- (See a l s o  Kallianpur [ 4 3 ) . Thus a  typical  element 
tions  f  and g as  tensors, fo r ,  in  fact  L ( [0,Tln) 
EL  [O,T]P..BL  ([O,T]) ( n  times).  Therefore,  as  inspec-  The  slight  discrepency  between  the  factors  in (11) and 
tion of (6) and ( 7 )  suggests, 0 (t) may be  interpreted (8 )  arises  from  the  normalizations  involved  in  the 
as a k-fold symetrized tensor  gontraction. 
Theorem  2.  Let  fEL2([0,Tln),  gEL2C[0,T]m),  Then ( 8 )  has  consequences  that  relate  directly  to  the 
Iin)(f)Ip\g)sL?Ft)  for  tLT and, theory of contractions on sums of  Hilbert  space  tensor 

products  presented  in a later  section.  The  point  is 

the  integrability  of  kth  order  moments of the  integral 

2 
2 2 

Iin)(f)EHn  is a generalization  of a Hermite  polynomial. 

definitions  of  hn, I(n)  and $. 

It t  k=O  It m-k k (n)(f)I(m)(g)=Cmin(m,n! (m+n-2h)[(m+nJ2kfQ (t)g] (8) that  the  multiplication  formula  can  be  used  to  study 

Proof of theorem  2*:  Only a sketch will be  given, as 
details  are  involved  and  unrevealing.  First,  it 
suffices to treat  the  case  when f and g are  separable, 
since we can  use lema 1 to  approximate  general 
f a d g  by  separable  functions.  This  makes  questions 
concerning  the  interchange  of  dt  and  db(t)  integrations 
easy  to  resolve.  The  case n=l,  m = l  follows  directly 
by applying  Ito's  differentiation  rule.  Indeed,  Ito's 
rule  yields  in  general 

Using (10) we  can  implement  the following two stage 
induction  scheme  to  prove  the  theorem fo r  all m and n ,  
*Apparently,  Japanese  workers  have  also  recently 
proved  theorem 2-by means of functional  analytic- 
techniques  due  to  Hid8  personal  communication from T.Hida) 

Ip)(f),  and,indeed,  a  direct  application of (8) using 
lemma 1 and  a  recursion  argument  yields: 
Theorem 3 Let n>l and  feL  ([0,Tln).  For any k>l, 
there  exists  M 70, independent  of f, such  that 

2 b  

( n )  2k m y k  2k 
EDT (f)l 2 f m , , J M l m  (12) 

Now, Segal [ 5 1 has  previously  derived (12) by  tensor 
product  operator  arguments,  and,  in  addition,  proves 
there  exists  a  constant  c  such  that  M(m,k)  may  be 
replaced  by  k2ckn.  His  argument  thus  connects (12) 
to  a  deeper  general  theory. 

Theorem 4 Let {fm}:=l and  f  be  functions  in  L  ([0,Tln). 

Then Ik,-flg=o iff ni+- lim  EII,n)(fm)-IT ( (n) (f)] 2 = O  

iff l& EIIk)(fm)-Ik)(f)] 2k = O  for any or  all k. 

Proof By (4b) E[I~)(fm)-Ik)(f)l2=~~ lkm-flf. 
Using (12) completes  the  proof. 

Theorem 3 has  an  interesting  corollary. 
2 A  

In the  applications,  we  shall  want  to  discuss 
multiple  integrals  not  with  respect to Brownim moti.on, 
but  to an obsermatlon  semi-martingale  yt.  We agafn 
denote  these  integrals  by Ip'(i) without  explicitly 
indicating  the  dependence on yt, which  should  be 
clear from the  context of their  use.  The  simplest 
definition of such an integral  uses B result  stated  in 
theorem 23 namely,  under  condition  (21  there  exists 
a  measure  P on (n,F]  such  that  i)  yt  is  Brownian 
on (n,F,P 1, and  ii)  P  and P are  mutually  absolutely 

Definition 4 For  ftL2([0,Tjn) 
continuous. 

It")(f) =,/ t ..; s(n-1) f(sl..Sn)dy(sn)..dy(S1) 
defined on (n, F, Po). 
is a r . v a . s .  equal  to  the  Brownian  multiple  integral 
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By absolute  continuity,  ILn)(f)  is  a  well-defined 1.v. 

on (n, F, P). Also, as further  argument  will  show, 
Itn)(f) equals  the  iterated  integral  defined  directly 
on (n, F, P) in  the  manner  of  definition 2, and  thus  the 
‘natural’  interpretation of Itn)(f) as  an  iteration 

that  the  multiplication  formula  holds for the  obser- 
is  preserved.  It  immediately  follows  from  definition 4 

vation  semi-martingale  case.  LikeKise,  if E (- ) <m 
e 2  

0 de0 

shows  that  theorem  3-extends as well.- 

variance  of  integrals  with  respect  to  yt. 
Lemma 2 Let E(dTh2(xS)ds)n<=’,  Then for  k<m and 

fcL2(10,T1 I-, 

Finally,  it  is  important  to  compute  the  mean  and 

k 

i) E ~ I ~ ( f ) I 2 ~ ~ I ~ I ~  blr-does  not  depend onf) 

where  k  and 1 are as above  and  the  infinite  series 
both  converge  in  the  L1(P) norm. 

Remarks 1. The  kernels  k  and 1 depend o n l y  on the 
apriori  distribution of x(-&). 
2. The  condition  E{exp[j  h (s)dslb in ( 6 )  places t 2  

strong  restrictions on the  growth  of  the mments of 
LTh2 ( s ) ds . Moreover 

.I 3 

j J 

Proof  The  proof  proceeds  by  induction on the order 
k, and  the  induction  stops  at k=m because  of  the 
condition E(& h  (xs)ds)n<m.  Details w i l l  not  be t 2  

presented  for  lack  of  space. 

Filter expan sions  and  applications.  We  will now 
show  that  the  Kallianpur-Striebel  formula, (131, 
for  the  optimal  estimate  can be developed  into  a 
representation  of  the  estimate  as a ratio  of  two  mult- 
iple  integral  expansions. I This  technique  bears  compar- 
ison  to  the  work of Eterno 16 1, who  derived  simular 
expressions  in an effort  to  approximate  the  conditional 
distribution of the  signal  given  the  observation 
process.  Here  we  focus  on  the  use of the  expansion 
to  derive  equations for suboptimal  filters. 

h(x(.s))  by h(s), 
Recall  the  filtering  problem 11-21. Denote 

ft(x(-))hy  f(t),  and  E{f(t)l<}by  f(t),  and  define 
A 

L(t)=exp[~h(~)dy(s)-l/26~h~(s)ds]. 

%= dP exp [-~~h(~)dw(s)-~/26~h~(s~ds]. 
A l s o ,  define a new measwe P on (n,F) by 

Theorem 5 Under  the  hypothese  of (2) 
i) Po is a probability  measure and P and Po, 

are  mutually  absolutely  continuous  vith  =LCT). dpo = 
ii)  Under Po y(t)  is a Brownian  motion  independent 

of x(t). 
iii)  x(t)  has  the  same  distribution  under  Poas 

under P 
iv)  (.Kallianpur,  Striebel). 

Theorem 6 a)  Partial  expansion 

since 6 h(s)dy(s)  conditioned on < is  normalwith 
variance  LTh2(s)ds. 
3. Theorem 6 can  be  Generalized vithout. difficulty to 
vector  valued  processes. 
Proof of theorem 6: For lack  of  space we give only an 
heuristic  sketch.  The  principal  idea  ccmes from 
observing  that,  by  using Ito’s differentiation  rule 

T 

dL(t)=h(t)L(t)dy(t).  In  other symbols, 

L(t)=1+6th(s)L(s)dy(s) (16) 

L(t)=l+6th(s)dy(s)+~t6sh(s)h(r)L(r)dy(r)dy(s). 

Continuing  such  iteration ad infinitum  we  derive  the 
formal  expression 

BY iterating (16): 

The  second  equality  uses a stochastic  ‘Fubini‘  theorem 

the  process $(s) adapted to  the  Brownian  motion 
found,  for  example,  in  Liptser  and Shiryayw [e  1; for 

(bt,  Ft) and  satisfying  E[L $ (s)ds]<m T 2  

The  third  equality  follows  from  Theorem 5 ii)  and  iii) , 
and the  fourth  equality  by  definition. By a Similar 
calculation, 

Bow (18) and (19) can  be  substituted  in 
f(t)  =Eo{f(t!L(t)  J<}/Eo{L(t) 

to  formally  derive  theorem 6 ,  b). The  partial  expansion 
if  proved  by  carrying  out  the  iteration  procedure  of 
(16) OQ a finite  number  of  times.  The  various 
hypotheses  in  theorem 6 merely  guarantee  that  the 
steps  in  each  calculation  are  valid. 
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3.  Applications 
The explicit  formulas (14) and (15) can  be  applied 

to  the  design  of  suboptimal  filters  in  various  ways. 

the  numerator  and  denominator  of  the  ratio  at  finite 
For  example, one naive  approach  would  be  to  truncate 

As noted  in  the  'remarks  after  theorem 6, the  kernels 
orders  and use the  result as an  approximate  filter. 

of  the  expansions do not  involve  the  observations y( - 
and so can  be  computed  off  line.  Theoretically  then, 
it  is  possible  to  construct  the  truncated  filter. 
This  design,  however,is  difficult  to  analyze  and assess; 
a more  interesting use of  theorem 6 involves  finding 
estimates  that  are  multiple  integral  expansions  of 
finite  order. 
Definition 5. a) An expression 

with  cn(t)EL  ([0,Tln)  is  called  an  rth  order  expan- 
sion  of y( 1. 
b) An rth  order  expression  a(t),  satisfying 

2 A  

E[f(t)-a(t)l25  E[f(t)-c(t)12 

for  any  other  rth  order  c(t),  is  called  the  best  rth 
order  estimate  of  f(t). 

The best  rth  estimate  will  be  denoted  by  f(t)  (with 
r  understood),  and  its  kernels  by  ao,al,. .a . 
how  can  we deterdne a ,a.,..,a ? As it  turns  out,  we 
can  apply  the  multipli%b:on  fo$mula  to  the  filter 
expansion  to  write  integral  equations  for  the  kernels 
a Begin  by  considering  the  product  f(t)Eo[L(t) I$] 
of  the  estimate  with  the  denominator  of  (13).  If 

Given an order r, how  can  we  find  f  (t 1, that  is 

n' 

then  the  expansion  of Eo[L(t)I$] in (14) applies,  and 

The  gn,  n=l,. .3r are  calculated  from  an(t)  and  ln(t) 
by use of  the  multiplication formula. 
Theorem 7. Suppose  E[L  h  (s)ds] <= , Ef2(t)<c. T 2  2r 

and  Ef2(t)[6Th2(s)ds]2r<m. 

Then P(t)=ao(t)+~~=lI~)(an(t)) ( is  the  best  rth  order 
estimate  iff 

go(t)=Ef(t) (21) 

gn(t,sl.  .sn)=E{f(t)h(sl).  .h(sn)bkn,  15nLr. 
Proof:  We  must  show  that 

E[f(t)-f(t)12<E[f(t)-c(t)l 2 (22) 

for all nth p e r  emnsions c(t)  iff  (21)  holds. 
Recall  that  f(t)  may  be  interpreted as the  projection 
of  f(t)  onto  L2(n, q, P). Thus  the  projection 
theorem  implies 

E[f(f)-~(t)]2=E[f(t)-I(t)]2+E[~(t)-~(t)]2 
+ 2E[f(t)-I(t)][3(t)-?(t)]=E[f(t)-a(t)]'+E[f(t)-~(t)]' 

Applyiug  this  calculation  to  the  r.h.s.  of (22) also, 
(22)  holds  iff 

E[~(t)-P(t)]2<E[3(t)-c(t)12 (23) 

for  all c(t).  But  according  to lama 2, the  set  of  rth 
order  expansions  in y( ) is a Hilbert  space, and thus, 
applying  the  projection  theorem again,  (23)  holds  iff 

E[?(t)-?(t)]c(t)=O (24) 

for  all  rth  order  expansions  c(t).  Now  substitute  the 
expression  (13)  for  f(t)  into  (24): 

The 

which  are  easily  demonstrated.  Now  under Po, y( * )  is 
a Brownian  motion  and integrals-of different  orders 
are  orthogonal.  Thus,  using (20) and 

Eo~P(t)L(t)I~}=Ef(t)+~~=1Itn)(kn)+Eoff(t)Lr(t)~$~ 

E[~~t)-f(t)lc(t)=Eo[Ef(t)-go+~~~l~~n)(kn-gn~~c~t~ 

+Eo[f(t)c(t)EotL2r(t) I F $  (26) 

+Eo[c(t)Eo{f(t)Lr(t) 

in (251, 

An application  of  lemma 2 show  that  the  second  and 
third  terms  of  the  r.h.s  of (26) are  zero  for  all c(t). 
Clearly,  the  first  term  can  be  zero  for all nth  order 
c(t)  iff  kn=gn  for  O<nlr,  and  this  completes  the  proof. 

The  equations (26) are  actually  integral  equations 
for  the  kernels  an(t)  of  the  best  rth  order  estimate, 
since  the  gn(t),  O<nzr,  are  found  from  a,(t),O<n<r, 
by  the  formula(8).To  illustrate,  if r=1, ll(s)=Eh(s)  and 

Ef(t)=go(t)=ao(t)+6  t  a,(t,u)Eh(u)dw 

Ef(t)h(s)=gl(t,s) 

=ao(t)Eh(s)+al(t,s). 

Solving  for  ao(t), 

a 1 (t,s)+6tal(t,u)cov[h(s),h(u)ldu=cov[f(t),h(s)]. 

This  is  the  familiar  Wiener-Hopf  equation  for  the  best 
linear  estimate.  In  the  best  quadratic ( ~ 2 )  case,  the 
equations  become more complicated.  They  are, assuming 
Eh(s)rO, Ef(t)FO  for  simplcity, 

ao(t)=-JtB1  .a2(t,  ul,  u2)Eh(ul)h(u2)ds2dsl (27a) 

al(t,s)=Ef(t)h(s)-l  t  y(t,u)Eh(s)h(u)du 

-LtoY1 a 2 ~ t , u l , ~ 2 ~ c o v ~ h ~ s ~ , ~ ~ ~ l ~ ~ ~ ~ ~ ~ ~ ~ 2 ~ ~ 1  (27b) 

a2(t,sl,s2)=cov[f(t),h(sl),h(s2)l 

-6tal(t,u)cov[h(sl),h(s2),h(u)ldu 

-~t[a2(t,sl,u)Eh(s2h(u)+a2(t,s2,u)Eh(sl)h(u)ldu 

a2(t,u1,u2)cOv[h(s1),h(~2),h(~)h(u2)l~u2d~(27c) 
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[ In  (27), cov [X,, .. Xr]EE(XI-M1) ... (Xr-EXr).] 

(27) shows how the   kerne ls   o f   d i f fe ren t   o rders   a re  
dependent on one another. Though not a standard 
in tegra l   equa t ion ,  (27) may be reduced, by us ing   the  
solut ion  of  a re la ted   l inear   es t imat ion  problem, t o  a 
s ingle   in tegra l   equa t ion   for  a2. For  f ixed t t h i s  
equation i s  of Fredholm type   for  a2(t ,  * , * ) and  can 
be  solved by standard  methods. We sha l l   no t  go i n t o  
th i s   theory   here .  

9 e  mdt ip l ica t ion   formula  can also  be  used  to  
der ive   the  Kalman f i l t e r .  Consider  the  simple  case 

d x ( t ) = d b ( t )  x(O)=O 

dy( t )=x( t )d t+dw( t )  

where b(  * ) and w( ) are  independent Brownian motions. 
Then we can show t h a t   t h e   o p t i m a l   f i l t e r  i s  

? ( t )=Lta ( t , s )dy ( s )  

The Proof i s  simply t o  show t h a t  a ( t , s )  can  be  chosen 
so t h a t  

By expanding the   1 .h . s  of ( 2 9 )  using (81, and 
equating  kernels of d i f fe ren t   o rders  we der ive   the  
i n f i n i t e  set of  equations. 

It can now be shown t h a t   i f  (31) i s  s a t i s f i e d   f o r  
j=1, it i s  s a t i f i e d   f o r  a l l  j l ,  a resul t   fol lowing 
from the   ident i ty   for   Gauss ian  random var iab les :  

because  the  condi t ion  for   the full expansion i n  ( 2 9 )  
( see   Mi l le r  [ 9 1. This   der ivat ion i s  somewhat formal 

t o  hold is that  E[expLtb2(s)ds]<m, which i s  va l id  
only  for  small t .  

4. Rela t ionsh ip   t o  Second Want iza t ion  
?After  Segal and Nelson). 

be  the  unit  Gaussian  determined random f i e l d .   I f  
f l . . , fn   are   or thonormal   in  H and $ i s  a Bounded Baire 

function on R n ,  then 

Let H be a real   Hilbert   space and le t  F:H+RV(n,A.u) 

@(F( f l )  ,. . .F(fn)-  (2r)n/2Ln$(x)e- 1 lbd(2/2 ax 

I f  E donotes  expectation on (n,A,p)  then 

E(F(fl) .   .F(f2n+l))=0 ( 3 2 )  

E(F(f,)..F(f2n))=X[fi I fj ] . . . I f i  , f .  1 (33) 
1 1  n 'n 

where t h e  sum i s  over a l l   p a i r i n g s  of 1, ..., 2,. i . e .  
i <...<in; i < j  ,. . . ,in,Jn, and 

(il, jl , .  . . ,in, jn)  i s  a permutation 1,. . .2 
LP(fi ,A,U) i s  denoted by Lp(H) anarb)   denotes  

1 1 1  

n* 

L2(H) .  r ( H ) n  be  the  c losed  l inear   span  in  r(H) 
of all elements  of  the  form  F(fl) ... F(f  with m<n 
and l e t  r(H), denote  the  orthogonal comp"1ement 07 

r(H)<n-l i n  r(Hlcn. For f1 ,.., f i n  H we def ine   the  

Wick-polynomial: 
- 

:F( f l ) .  . .F( fn)  : 

t o  be  the  orthogonal  projection of F ( f l ) .  . .F ( fn )   i n to  

r(H),. In   t he   spec ia l   ca se ,  where H i s  one  dimensional 

and  hence r ( H ) = L  2 (R,B(R),(m)-1/2e-X2'2~r(H)n i s  t h e  

one dimensional  subspace  spanned  by  the  nth  Hermite 

polynomial  and  :xn: i s  the   n th .  Hermite  polynomial 
normalization so tha t   t he   l ead ing   coe f f i c i en t   i s  1. 

We have t h e  formula 

[:F(fl)..F(fn):,:F(gl)..F(gn):] 

=Crr[fr( , ) ,g , l . . [ f   (n) 'gnl .   (34)  

where t h e  sum i s  over all permutations rrof 1, ... n. 
I f  all t h e   f ' s  and g ' s   a re   equa l ,  we ge t  

[ :F(f)":  ,F(f)n]=$  :xn: )2e-x2'2dx=n!. (35) 

Let H1 be  the  complexification of H (and l e t  H 

denote  the  n-fold  Hilbert  space)  symmetric  tensor 
product  of H w i t h   i t s e l f .  On H2 we def ine  the  inner  

product  such  that 
1 

where 
[Sym(flB.. .%fn) ,SYm(g15l. .gn)l=$[f&43,1 ..d$b) ,gnl (38 

sym (fl.'.'fn)';;!Crfa(l)'.'.~frr(n). 1 (37) 

From (34) and ( 3 6 ) ,   t h a t   t h e  mapping 

extends  uniquely to   t he   un i t a ry   ope ra to r  from T ( H )  onto 

Hn. We u s e   t h i s  mapping t o   i d e n t i f y  r(H), and Hn. 

Analogous t o   t h e   f a c t   t h a t   t h e  one-dimensional  Hermite 

polynomials  span L 2 , (n ) -1 /2e -x2 /2&) ,   Segd  proved 

:F( f l ) .  . .F ( fn ) :  Sym(f151.. .Bfn) 

r ( H  ) = X ~ = ~ H , ,  
m 

(38) 

f o r   a r b i t r a r y   r e a l   H i l b e r t   s p a c e  H. r(H) is Fock Space. 

fEL ( R ) = H  and B i s  the  standard Wiener process ,   the   e l -  
ements  of T ( H )  a r e   mu l t ip l e  Wiener in t eg ra l s  (in the  sense 

The space T ( H )  i s  i n t r i n s i c a l l y   a t t a c h e d   t o   t h e  

I f   t h e  random f i e ld   F ( f )= l fdB ,  where 
2 

of I t o ) .  

s t ruc tu re  of H as a rea l   Hi lber t   space .  Thus i f  U:H+K 
i s  an  orthogonal mapping of one real   Hilbert   space 
into  another ,  it induces a un i te ry  mapping T(U) : r ( H ) + T ( K ) ,  
where on Hn, r(U)=U133n,6fg. S i m i l a r l y   i f  I:H+K i s  an 

isometric embedding then it induces  an  isometric embed- 
ding r (1) :  r(H)+r(K) and s imi l a r ly   fo r  an orthogonal 
pro jec t ion  E:H+K. I f  A:H+K i s  a contraction  then 
r ( A ) : r ( H ) + T ( K )  i s  def ined  to   be  the  direct  sum t o  
r ( A )  :H +K where r(A)n=Ak3.. n-f,.. Now any contraction 

A:H+K can  be decomposed as 
n n n' 

HAmLKEH 

\ K f E  

u 

where I ,  U and E a r e   a s  above. 

Markovian i n   t h e   s e n s e   t h a t  
Hence F(A)=T(E)I'(U)T(I). Now r(A) is doublz 

Er (A) a=Ea. ( 3 9 )  
Any doubly  Markovian operation i s  a contraction from 

LP t o  LP. 
It tu rns  out  thatr(A)  has   s t ronger   contract ive 
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propert ies  and the  precise   s ta tement  of t h i s  is an im- 
portant  theorem of Nelson.  Before we discuss  this 
r e s u l t  it i s  u s e f u l   t o   r e c a l l   t h a t   c o n d i t i o n a l  

expectations on L (Q,A,u) can  be  characterised as l i n e a r  
posi t ivi ty   preserving  operators  which are  idempotant, 
of norm <1 and  preserve  constants. We a l s o  know t h a t  
f o r  p [IT-], p+2, all l inear   opera tors  T on P(Q,A,u), 
which are idempotent,  contracting and  such t h a t  T1=1 
is necessar i ly  a conditional  exoectation. 

2 

~~ 

meorem 3.1 (ielson  Bypercontractivity Theorem). 
Let A:H-?K be a contraction. Then r(A) is a 

contract ion from LyH)+Lp(K)  f o r  1LW-a provided  that  

1 1 6 1 -  <(&)1/2 (40) 

I f  (40) does  not  hold  then I ( A )  is not a bounded 

operator from L ~ ( H ~ L ~ ( K ) .  
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