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Abstract 

Survey  of   current ly   avai lable   theory  for  
systems  the  evolution  of which can  be  described 
by semigroups  of  operators  of  class Co.  Connec- 
t i o n  between the   concepts   o f   s tab i l izab i l i ty  and 
d e t e c t a b i l i t y  and t h e  problem  of  existence  and 
uniqueness  of  solutions  to  the  operator  Riccati  
equation. Examples and open problems. 

1. Introduct ion.  

For  systems  described  by  ordinary  differential 
equations  the  infinite-t ime  quadratic  cost   problem 
i s  well-studied  (cf.  R .  BROCKETT El], R . E .  K A L W  
[l] , [2 ] ,  J.C. WILLEMS [ l ]  , W.M. WONHAM [ l ] ) .   Th i s  
problem  has  been  studied  for  certain  classes  of  in- 
finite-dimensional  systems. J . L .  LIONS [ l ]   h a s  
s tud ied   t h i s  problem for   abstract   evolut ion  equa-  
t ions  of  parabolic  type and  given a complete  solu- 
t i o n   t o   t h e  problem. LUKES-RUSSELL [l] have  studied 
t h i s  problem for   abstract   evolut ion  equat ions  of   the  
type 
(1) dx 

d t  - = AX + Bu, ~ ( 0 )  = x0 E U ( A )  , 

where A i s  an unbounded spec t ra l   opera tor   (c f .  
DUNFORD-SCHWARTZ [ l ] )  and B i s  a l s o  an unbounded 
opera tor   sa t i s fy ing   cer ta in   condi t ions .  LUKES- 
RUSSELL [ l ]   a l so   a l low unbounded opera tors   in   the  
cost   function. Using  an  approach o r i g i n a l l y  due t o  
R . E .  KALMAN [2]  they  obtain  an  operational  differen- 
t i a l  equation  of  Riccati   type  to  charactqrize  the 
t ime-varying  feedback  gain  in  the  f inite time case.  
They a l s o  show t h a t  under an appropr i a t e   s t ab i l i za -  
b i l i t y   h y p o t h e s i s   t h e   s o l u t i o n   t o   t h e   i n f i n i t e - t i m e  
quadratic  cost  problem  can  be  obtained  in  feedback 
form, where t h e  "feedback  gain" is character ized by 
the   so lu t ion   of  an operator  equation  of  quadratic 
type.  The same problem  has  also  been  studied  by R. 
DATKO [SI, Unfortunately R .  DATKO [5] does  not 
character ize   the  solut ion  as  a feedback c o n t r o l l e r  
ac t ing  on the  "s ta te"  of  the  system. 

a b l e   r e s u l t s   f o r  a spec ia l  class of  i n f i n i t e  dimen- 
sional  control  systems  the  evolution  of which i s  
character ized by a semi-group  of  operators  of  class 
Co. The approach we use  here i s  d i f f e r e n t  from t h a t  

The objec t ive   o f   th i s   paper  i s  to   su rvey   ava i l -  
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of LUKES-RUSSELL [l] as  well  as R .  DATKO [3] and 
cons t i tu tes  a synthes is   o f   the  work of J.L. LIONS 
[ 11 and DELFOUR-McCALLA-MITTER [ l ]  , Complete re -  
s u l t s  and d e t a i l l e d  argument a r e   t o  be  found i n  a 
forthcoming monograph ( c f .  BENSOUSSAN-DELFOUR- 
MITTER [ l]) .  Our r e s u l t s   a l s o  make use  of  the work 
of R. DATKO 121 on S t a b i l i t y  Theory in   H i lbe r t  
spaces and J .  ZABCZYK [l] on the  concept  of  de- 
t ec t ab i l i t y   i n   H i lbe r t   spaces .   In   do ing   t h i s ,  we 
i n s i s t  on an  approach which c l a r i f i e s   t h e  system- 
theo re t i c   r e l a t ionsh ip  between c o n t r o l l a b i l i t y ,  
s t a b i l i z a b i l i t y ,   s t a b i l i t y  and exis tence  of  a so- 
lution  of an associated  operator  equation  of 
Riccat i   type.  

uted  controls;  it also  covers  hereditary  systems 
which can  be  looked as dis t r ibuted  parameter   sys-  
tem with  boundary  control. A t  t h i s  time, it does 
not  seem possible   to   systematical ly   deal   wi th 
boundary  control  problems. However, i n  a d i f f e r e n t  
framework, r e s u l t s  are now ava i lab le   (c f .  D. L .  
RUSSELL [6]).  

Notation 

This   theory  covers   cer ta in   c lasses   of   dis t r ib-  

Let X and Y be two real   Hilbert   spaces  with 
norms I I X  and I l y  and inner  product ( , )x and 
( , )y .  The space  of   a l l   cont inuous  l inear  maps 
T : X +- Y endowed with  the  natural  norm 

IT1 = sup{ITxly : / x i x  5 1 3  

will be  denoted C(X,Y) .  When X=Y we sha l l   use   the  
nota t ion  c (X). The transposed  operator  of T i n  
P(X,Y) i s  an  element  of .C (Yl , X t )  which will be 
denoted T*, where X '  and Y '  are  the  topological 
dual  of X and Y .  T i n  C(X) is  se l f -ad jo in t  i f  
T*=T;  a s e l f - ad jo in t   ope ra to r  T is  p o s i t i v e ,  T 2 0,  
i f  f o r  a l l  x i n  X (x,Tx) 2 0. 

2. Prel iminaries  and  problem  formulation. 

Let X,  U and Y be  real   Hilbert   spaces.   Let B 
be an element  of L(U,X) and l e t  A be an unbounded 
closed  operator on X with domain U(A). We assume 
t h a t  A i s  the   in f in i tes imal   genera tor   o f  a strongly 
continuous  semi-group  CS(t) : t 2 0) of c l a s s  C o .  
We denote  by U(A) the  domain of A endowed with  the 
graph norm 

(2.1) llvi12 = IvI2 + IAv12. 
2 2 

We wri te  i :  V +- X the  continuous  dense  injection of 



V i n t o  X. We also   in t roduce   the   topologica l   dua ls  
V I  and X' of V and X, respect ively.  We i d e n t i f y  
elements  of X and X '  and  denote by i *   t h e   a d j o i n t  
map of i: 

(2 * 2) v -> x z X' L> V ' .  i * *  

We now consider  the  system 

( 2 . 3 )  5( = Ax + Bv i n  [0,-[, x(0) = x. E V 

o r  more general ly  
t 

0 
(2 .4 )  x ( t )  = S(0)xo + ,/ S(t-s)Bv(s)ds. 

Equation  (2.4)  can  be  looked a t   a s  a "weak solution" 
of  equation  (2.3) and any solution  of  (2.3) will be 
of   the form (2.4).  

t he   t r a j ec to ry  x the  cost   function 
We associate   with  the  control   funct ion v and 

m 

(2.5)  J(v,xo) = 1 [IHx(t) l y  + ( N v ( t ) , ~ ( t ) ) ~ l d t ,  

where H and N belong t o  L ( X , Y )  and L(U), respec- 
t i v e l y .  Moreover there e x i s t s  a constant c > 0 
such t h a t  

(2.6) V v, (Nv,v)" 5 c ( v l u .  

2 

0 

2 

Given x , the  optimal  control  problem  consists 
i n  minimizing the  cost   function  (2.5)  over a l l  v i n  

0 

L:OC(O,m;U) 

(2.7)  InfiJ(v,x& : v E Lloc(O,m;U)l. 
2 

3. Asymptotic  behaviour and L - s t a b i l i t y ,  2 

In   o rde r   t o  make sense  of  problem  (2.7), it i s  
necessary  to  introduce  concepts of s t a b i l i t y   t o  
characterize  the  asymptotic  behaviour  of  solutions 
of  system  (2.3) as the  time t goes t o   i n f i n i t y .  
Consider  the  uncontrolled  system 

(3.1) k = Ax i n  [O,-[, x(0) = x,, 

with  observation 

(3 .2 )  y ( t )  = Hx(t).  

Defini t ion 3.1. ( i )  A i s  sa id   t o   be   L2- s t ab le  
with  respect   to  H i f  

m 

(3.3) tl x,,, IHx(t)  I2dt < m. 
0 

( i i )  A i s  s a i d   t o  be  L2-stable i f  it i s  L2-stable 
wi th   r e spec t   t o   t he   i den t i ty  I with Y=X. 

( i i i )  The p a i r  (A,B) i s  s a i d   t o   b e   s t a b i l i z a b l e  
with  respect t o  H i f  

( iv) The p a i r  (A,B) i s  s a i d   t o   b e   s t a b i l i z a b l e   i f  
it i s  s t a b i l i z a b l e   w i t h   r e s p e c t   t o   t h e   i d e n t i t y  I 
with Y=X. 0 

Theorem 3.2. The following  statements  are  equiva- 
l e n t  : 

( i )  A i s  L - s tab le   wi th   respec t   to  H;  2 

( i i )  There e x i s t s  an element B o f  L ( X )  such 
t h a t  

(3.5) V x,y E X ,  (Bx,y) = lim ,f(HA(t)x,HA(t)y)ydt; 
t 

t- 0 

( i i i )  There exists a pos i t i ve   s e l f - ad jo in t   e l e -  
ment D of I: (X) such t h a t  

(3.6) A*Di + i*DA + i*H*H = 0 i n  I:(V,V'). 

Proof:  Cf. R.  DATKO 121,  DELFOUR-McCALLA-MITTER 

Corol lar  1. I f  D i n  1: (X) i s  a pos i t ive  self-  
a jo in t   so lu t ion   of  (3.6), then D 2 B. Moreover 
f o r   a l l  x i n  X ,  t h e  map t 3 (A(t)x,DA(t)x) i s  a 
monotonically  decreasing  function  of t and f o r  a l l  
x and y i n  X 

(3.7) lim (A(t)x,DA(t)y) = (x,Dy)-(x,By). 

T~~,BENSOUSSAN-DELFOUR-MITTER [ 11 ) . 0 + 
t- 

Corollary 2 .  Any of the  s ta tements   in  Theorem 3.2 
' implies  that  

V x E V ,  lim HS(t)x = 0,  and, 
t- 

(3 .8 )  
V x E X, lim BS(t)x = 0.  0 

t* 

The above r e su l t s   a r e   spec ia l i zed   i n   t he  
following  theorem on L2-s tab i l i ty .  
Theorem 3.3. The following  statements  are  equiva- 
1 ent . 

( i )  A i s  L2-stable;  
(ii) There e x i s t s  an element B of  t(X) such 

t h a t  

(3.9) V x,y E X ,  (Bx,y) = l i m  , / (S( t )x ,S(t )y)dt ;  
t 

t+= 0 

( i i i )  There  exis ts  a pos i t ive   se l f -ad jo in t  
element D of L(X) such t h a t  

(3.10) A*Di + i *DA + i * i  = 0 i n  L(V,V'); 

( iv )  The type w0 of  t h e  semi-group  A(t) i s  

(v)  There e x i s t  p < 0 and M 2 1 such t h a t  
s t r i c t ly   nega t ive ;  

f o r  a l l  x i n  X and t 2 0 

(3.11) IS(t)xl  s M exp(vt1 1x1. 
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(v i )  lim S( t )  = 0 i n  C(X). 0 
t- 

4. The optimal  control  problem  in [O,-L 

In   o rder   to  make sense  of  problem  (2.7) we 
must  check tha t   for   each  x0 t h e r e   e x i s t s   a t   l e a s t  
one  v i n  L2 (0,-;U) such tha t   the   cos t   J (v ,xo)  be 
f i n i t e .  d?: i s  p rec i se ly   t he   s t ab i l i zab i l i t y   o f  
t h e   p a i r  (A,B) with  respect   to  H. 
Theorem 4.1.  Let (A,B) be s t ab i l i zab le   w i th   r e -  
spec t   to  H, then   there   ex is t s  a unique  control 
function u i n  Lioc(O,-;U)  which minim'zes  J(v,xo) 
f o r  a  given x. over a l l  elements  of L' (0 ,m;U) .  
Moreover th i s   cont ro l   func t ion  u  can igcsynthesized 
via  the  feedback law 

(4.1)   u( t )  = -N-'B*lIx(t), 

where lI is  a posi t ive  self-adjoint   e lement   of  C(X). 
The transformation lI of X i s  a l s o  a solut ion  of   the 
operator  Riccati   equation 

(4.2) A*Ri + i*nA + i*[H*H-IIRn]i= 0 ,   in  l ( V , V t ) ,  

R = B*N-'B. 

In  general II will not  be  the  unique  posit ive 
self-adjoint   solut ion  of   (4 .2)  and the  closed-loop 
system 

(4  * 3) R = [A-RlIIx, ~ ( 0 )  x0 

will not  be LL-stable. 
Nevertheless a su f f i c i en t   cond i t ion  is ava i la -  

b l e   i n   o rde r   t o  answer those two questions. I t  
makes use  of   the  c lass ical   concept   of   detectabi l i ty  
as introduced by W . M .  WONHAM [l]. 

Definition  4.2. The p a i r  (A,H) i s  s a i d   t o  be  de- 
t e c t a b l e   i f   t h e   p a i r  (At,H*) i s  s t ab i l i zab le  (5 is 
the  inf ini tes imal   generator   of   the   adjoint  semi- 
group IS( t )* l   o f   (S( t ) ) ) .  0 
Remark. We have ju s t   s een   t ha t  when t h e   p a i r  (A,B) 
i s  s tab i l izab le   wi th   respec t   to  H, it i s  possible  
to   cons t ruc t  a constant  feedback K = -N-lB*n i n  
e(X,U) i n   o r d e r   t o   s t a b i l i z e   t h e   p a i r  (A,B).  Hence 
our   def in i t ion   3 .1   ( i )  is completely  equivalent  to 
the more c l a s s i ca l  one. 

The general izat ion  of   the  resul ts   of  W.M. 
WONHAM [ l ]   to   the   in f in i te   d imens iona l   case  is  due 
t o  J. ZABCZYK [ l ] .  
Theorem 4.3.  Let t h e   p a i r  (A,B) b e   s t a b i l i z a b l e  
w i t  r e spec t   t o  H and let  t h e   p a i r  (A,H) be  de- 
tec:able. Then the  closed  loop  system  (4.3) is L2- 
s t ab le  and lI i s   t h e  unique  posi t ive  self-adjoint  
solution  of  equation  (4.2).  0 

Definition  4.4. (i) The p a i r  (A,B) is s t a b i l i z -  
able  with  respect t o 1  i f  the re   ex i s t s   a f eedback  
K i n  C(X,U) such that the  closed  loop  system 

(4.4) R (A-BK)x, ~ ( 0 )  x0 

ha L2-stable   with  respect   to  H and with  respect t o  
K, 

( i i )  The p a i r  (A,B) i s  s t a b i l i z a b l e   i f   t h e r e  
e x i s t s  a  feedback K in-C(X,U) such  that  the  closed 
loop  system  (4.4)  be  Lz-stable. 0 

5. Relationships between con t ro l l ab i l i t y  
and s t a b i l i z a b i l i t y  

Apune   for  a moment t h a t  X = R n ,  It = Rm, 
Y = IR arid tha t   the   opera tors  A and B are  m a e i -  
ces  of  dimensions nxn  and nxm, respect ively.  This 
is the  so-cal led  f ini te   dimensional   caser  where 
the  concept   of   control labi l i ty   is   def ined and 
characterized  as  follows: 
Definition  5.1. The p a i r  (A,B) i s  said t o  be E- 
t r o l l a b l e   i f  

(5.1) V x. E X, 3 T > 0,  3 v E L (0,T;U) 2 

such  that  x(T;xO,v) = 0, 

where x( t ;x   ,v)  is the  solut ion  of   the  differen-  
t i a l   equa t i8n  

p ( t )  = Ax(t) + Bv(t) , t 2 0 
(5 * 21 

jx(0) = xo. 0 

Theorem 5.2. The following  conditions  are  equiva- 
l en t :  

( i )  (A,B) cont ro l lab le ;  
( i i )  Given  any  spectrum u of a r e a l  nxn ma- 

t r i x ,   t h e r e   e x i s t s  an mxn matrix K such tha t   the  
spectrum, u(A+BK) , of A+BK i s  exact ly  u; 

( i i i )  Rank  [A,AB,. . . ,An-lB] = n. 0 

This  theorem now says  that  when the   pa i r  
(A,B) is cont ro l lab le  it i s  necessa r i ly   s t ab i l i z -  
able  by feedback. The converse i s  obviously  not 
t rue.  

When X, U and Y a re   in f in i te   d imens iona l  
spaces.  Definition  5.1 can  be retained,   but  con- 
d i t i o n s   ( i i )  and ( i i i )   a r e   d i f f i c u l t   t o   g e n e r a l i z e ,  
However the  fol lowing  s t ra ightforward  resul t   re-  
mains t rue .  
Theorem 5.3. The p a i r  (A,B) is s t a b i l i z a b l e   i f  
t h e   p a i r  (A,B) is cont ro l lab le .  0 

For the  infinite  dimensional  problem, the  
concept   of   control labi l i ty   ( to   the  or igin)   as  i n -  
troduced in  Def in i t i on   5 .1   d i f f e r s  from the con- 
cepts  of  exact  or  approximate  reachabili ty  as 
s tudied by H.O. FATTORIN1 [ l ]   t o   [ 3 ] ,  D.L. RUSSELL 
[ l ]   t o  [SI, R. TRIGGIANI [l] t o  [6] and M. SLEMROD 
[ l ]   t o   [ 4 ] .  The l a s t  two authors  have done  an 
extensive  s tudy  of   the  re la t ionship between the  
two concepts  of  reachability and s t a b i l i z a b i l i t y .  

6. Examples 

We sha l l   . g ive   i n   t h i s   s ec t ion  a few examples 
fer which the  general  theory  developped  here may 
be applied. 



6.1. Second order  parabolic  systems. 

in   the  book of 3 . L .  LIONS 113. The reader will 
f ind   in   th i s   re fe rence  numerous examples. Notice 
tha t   fo r  such  systems  the  operator A (and  hence A*) 
is s tab le .  As a resul t   the   condi t ions  of   s tabi l iz-  
a b i l i t y  and detectabi l i ty   are   automatical ly   ver i -  
f ied.  
6.2. First order hyperbolic  systems. 

[ l ]  and J . L .  LIONS [ l ] .  Under appropriate  hypothe- 
ses we can make sense  of  such  problems f o r   d i s t r i b -  
uted  controls. 
6.3. Boundary control. 

control i s  exerted on the  boundary and the  previous 
framework i s  not  completely  appropriate  for  that  
s i tua t ion .  Boundary control  problems  have been 
studied by D.L. RUSSELL [l] to   [SI ,  GRAHAM-RUSSELL 
113, R. DELVER [I] and H . O .  FATTORIN1 f l] .  

l a t e   t he  problem i n  such a way tha t   the  boundary 
control becomes a distributed  control.   This can be 
achieved by l i f t i n g   t h e   o r i g i n a l  problem t o  a b ig  
enough space  that   the  control become d is t r ibu ted  
(cf.  V.P. KHATSKEVICH [l], B. FRIEDMAN [ l ] ) .  

Another  approach  has been suggested by A.V.  
BALAKRISNAN [2]; it re su l t s   i n  a d is t r ibu ted  con- 
t r o l  problem with  respect  to  the  derivative t and 
the  ini t ia l   value  v(0)   of   the   or iginal  boundary 
control v. Although our theory  does  not  apply d i -  
rectly  to  these  systems,  similar methods can be 
developped  (see A.V. BALAKRISNAN [ 2 1 ) .  

given by hereditary  differential   systems  (cf.  
DELFOUR-MITTER [ l ] ) .  When  we consider  the  system 
i n   s t a t e  form t h i s  system is controlled  through a 
different ia l   equat ion on the  boundary.  This  prob- 
lem cannot  be dealt   with  in  the  present framework 
i f  we choose  as s t a t e  space  the  continuous  function 
o r  a Sobolev  space, However in  the  product  space 

= IRn x L2(-a ,0;Rn)  this  problem  reduces t o  a 
dis t r ibuted  control  problem and the above theory 
can be  readily  applied  (cf.  DELFOUR-McCALLA-MITTER 
[ l ] ) .   Detai led  resul t  on exact and approximate 
reachabili ty and the   re la t ionship   wi th   s tab i l iza-  
b i l i t y   a r e  now available  (cf.  MANITIUS-TRIGGIANI 

This  type  of problem i s   s t u d i e d   i n   f u l l   d e t a i l  

Such problems  have been studied by N.  BARDOS 

In many distributed  parameter  systems,  the con- 

In some instances it i s  poss ib le   to  reformu- 

An in t e re s t ing  example of  boundary  control is 

[11 t o  [SI) .  
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