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Abstract 

L e t  A'P + PA = -Q be a Lyapunov equat ion  with 
A being  a   s tabi l i ty   matr ix   and  both A and Q 
matrices wi th   ra t iona l   en t r ies .   Mul t ip ly ing  A and 
Q by a   su i t ab le   pos i t i ve   i n t ege r  an equiva len t  Lya- 
punov equation AiP+ P A 1  = -Q1 is obtained,  with A1 
and Q1 having   in teger   en t r ies .   Le t   I (x ,y)   be   the  
ring  of  polynomials  in  x  and  y  over  the  integers 
I,  and E be  the set of a l l  s.quare  matrices  with 
i n t e g e r   e n t r i e s .  The s o l u t i o n   P   t o   t h i s   e q u a t i o n  
i s  given  by: 

p = - .  1 
u2 p" 

where: q.. (x,y) E I ( x , y )  and u E I 

presented. 

1. In t roduct ion  

I n   t h e   p a s t   f i f t e e n   y e a r s  o r  so there   has  
been  impressive  progress  in  the  theoretical   under- 
s t and ing   o f   t he   s t ruc tu re ,   r ep resen ta t ion  and 
cont ro l   o f   l inear   mul t ivar iab le   sys tems.   In  con- 
trast, workers i n   t h e   f i e l d  have  paid  very l i t t l e  
a t ten t ion   to   the   computa t iona l   aspec ts   o f   sys tems 
problems.  This  does  not mean tha t   a lgor i thms  for  
the  solution  of  systems  problems  have  not  been 
developed. But most of  the  algorithms  that   have 
been  proposed  have  never  been  seriously  studied 
as f a r  as s t a b i l i t y ,  convergence  and similar 
i s sues  are concerned. Even t h e  LQG problem,  bul- 
wark of   the   so-ca l led  "modern control   theory",  
seems t o  be l i t t l e  understood from t h e  computa- 

72- 

I ( X , Y )  x E + E defined as f (h (x ,y )  , M )  

j , k   l k  1 

t iona l   po in t   o f  view. 

t i o n  methods f o r  Lyapunov's  equation 
A 1  In   t h i s   pape r  w e  undertake a study  of  solu- 

= h .  ( A ' ) ]  "*A1 k 
PA + A ' P  = -Q (1.1) 

which i s  a f i n i t e  sum. 
The c a l c u l a t i o n   o f   u   a n d   s ( x , y )   r e q u i r e s  using  the methods o f  modern algebra.  The emphasis 

f inding  the  character is t ic   polynomial   of  A l l  as i s  on the   use   o f   f in i te   a lgebra ic   p rocedures  which 

well  as  using  the  Euclidean  Algorithm,  computations which lead to an explicit solution to the problem. are e a s i l y  implemented  on a d i g i t a l  computer  and 

which lead  to   polynomial   coeff ic ient   growth.   In  
order  t o  e l imina te   the   space  consuming manipulation 
of l a rge   i n t ege r s   i n   i n t e rmed ia t e   s t eps ,  modular 
arithmetic is used to   ob ta in   t he   ma t r ix  P = 

I t  is  well known t h a t   t h i s  is an  important 
equa t ion   i n   t he   s tudy   o f   s t ab i l i t y   o f   l i nea r  
f i n i t e  dimensional  time-invariant  systems.  If Q 

PA u is  symmetric a n d   p o s i t i v e   d e f i n i t e  and i f  A i s  a 
( e m   m d p . )  and  u = u modp with  pi  a pr ime,   for   s tab i l i ty   mat r ix  -(real par t s   o f   e igenvalues   o f  A 

a s u f f i c i e n t  number of  primes. The Chinese Remain- ( l . l )  is given by the convergent integral s t r i c t ly   nega t ive )   t hen   t he   un ique   so lu t ion   t o  

der  Theorem i s  then   app l i ed   t o   ob ta in   t he   so lu t ion  

- A  

1 * P i  i 

P .  
The algorithm  has  been  programed  on MACSYMA 

which i s  a very  suitable  computer programming 
system  for a l l  the  numerical  computations  involved. 

solving  the  Algebraic  Riccati   Equation are 
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Numerical r e s u l t s  as well as   extensions to 

G = ( eAltQ eAt d t  
00 

"0 

( c f .  BROCKETT) . 
of an   i n t eg ra l   ove r   an   i n f in i t e  time in t e rva l .  

when one  uses  Newton's Method t o   s o l v e   t h e  Alge- 
b r a i c  Riccati equation 

However, the   so lu t ion   requi res   the   eva lua t ion  

The need   for   so lv ing   th i s   equa t ion   a l so  arises 

( A - B R - ~ B ~ P )  'P + P(A-BR-'B'P) = -C*C-PBR-~B*P 

(1.3) 
where R is p o s i t i v e   d e f i n i t e .  

then t h e r e   e x i s t s  a unique  posi t ive  def ini te   solu-  
t i o n  P t o   (1 .3 ) .  

I f  (A,B) is s t a b i l i z a b l e  and (A,C) observable, 

Now l e t  Po be  a symmetric mat r ix   such   tha t  
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(A-BR- B ' P  ) is a Stabi l i ty   matr ix ,   and  consider  
the Lyapunov equation 0 

1 

( A - B R - ~ B ~ P ~ )  'P + P(A-BR B ' P  = -1 
0 

It is well known t h a t  under  our  hypotheses  this 
equation  has a un ique   pos i t i ve   de f in i t e   so lu t ion  
P1. Replace Po by  PI i n  ( 1 . 4 )  and  continue  the 
process. I t  i s  known (cf .  KLEINMAN [ l l ,   [ 2 l )   t h a t  
t h i s  is a convergent  process. The  main  computa- 
t ion   here  is the re fo re   t he   so lu t ion   o f  (1.4). 

This  paper is based on an  important  paper 
by KALMAN. Kalman's  concern was the   charac te r iza-  
t i o n  of  polynomials whose z e r o e s   l i e   i n   c e r t a i n  
a lgebra ic  domains  (and the   un i f i ca t ion   o f   t he  
ideas  of  Hermite and  Lyapunov). I n   t h i s   p a p e r ,  
we show t h a t   t h e  same i d e a s   l e a d   t o   f i n i t e   a l g o r -  
ithms f o r  the so lu t ion  of Lyapunov's  equation. 

sec t ion  two we present   cons t ruc t ive   a lgebra ic  
proofs  of two theorems  re la ted  to  a l i nea r   ma t r ix  
equat ion.   This   sect ion  provides   the  basis   for  
s ec t ion  3 where the  computational  algorithms are 
presented.   In   sect ion 4 we present  a numerical 
example. 

A t  the  conference we  hope to  present   extensive 
numerical   results.  

This  paper is d iv ided   in to   four   sec t ions .   In  

This is a pre l iminary   repor t   on   th i s  work. 

2. Algebraic  Proofs  of Two Theorems Related 
t o  a Linear  Matrix  System 

I n   t h i s   s e c t i o n  w e  present   cons t ruc t ive  
algebraic   proofs   for   the  fol lowing two theorems. 

Theorem 2 .1 .  Le t  A be  an nxn square  matrix  over 
t he  reals. A i s  a s t a b i l i t y   m a t r i x   i f  and  only 
i f   f o r  anysymmetr ic   posi t ive  def ini te   matr ix  Q 
t h e r e   e x i s t s  a unique  symmetric p o s i t i v e   d e f i n i t e  
so lu t ion  P to   t he   ma t r ix   equa t ion  

PA + A ' P  = -Q. (2 .1)  

Theorem 2.2. Le t  A be  an nxn square  matrix  over 
t h e   r e a l s .   I f  A i s  a s t ab i l i t y   ma t r ix   and  (A,C)  
i s  an  observable   pair   then  the  matr ix   equat ion 

PA + A ' P  = -C'C (C i s  pxn) ( 2 . 2 )  

has a unique  symmetr ic   posi t ive  def ini te   solut ion 
P.  

Before  proceeding  with  the  proofs w e  s h a l l  
in t roduce   the   a lgebra ic  framework i n  which we work. 

L e t  R[x]  be  the  r ing  of  polynomials  in x 
ove r   t he   f i e ld  R o f   r ea l  numbers,  and R [x,y]  be 
t h e   r i n g   i n  x and y over  R. I f   p ( x , y )  i s  any 
element  of R [x,y] we can write it as: 

R' (Y)C(P)R(X) = P(X,Y) 

where R(z) is  t h e  column vec tor  1, z ,  . . . z  , n 
i s  one p lus  the l a r g e s t  power o f   p ( x , y )   i n   e i t h e r  
x o r  y and C(p) is an nxn matrix  over R. This 
introduces a b i j e c t i o n  between  R[x,yl  and IM t h e  
set of a l l  square matrices. This   (cf .  m) 
motivates  the 

n-1 

Def in i t ion  2.1.  A polynomial  p(x,y)  in  R[x,y] is  
p o s i t i v e   i f  and  only i f  C(p) is i) symmetric 
and ii) pos i t i ve   de f in i t e .  

L e t  @ denote   the  ideal  (4 (x) , $ (y) ) i n  
R[x,y] . L e t  [g(x,y) 1 denote  the  elements  of  the 
quotient  r ing  R[x,yl/$.  We sha l l   deno te  by  pmod@ 
the  polynomial  of  minimal  degree i n   t h e  equiva- 
lence  class [p]. 

( c f .  KALMAN) . 
-- Lemma 2 . 1  The polynomial  p(x,y)  in  R[x,yl is posi-  
t i v e   i f  and  only i f  there exist   polynomials 
n1,n2....nm (m = s i ze   (C(p ) )   such   t ha t  

The following two lemmata can  be  es tabl ished 

where is. (x) 1 a r e  a bas i s   fo r   ( t he   vec to r   space  
over R 'of) polynomials of degree less than m. 

Lemma 2.2  L e t  n be   t he   deg ree   o f   @(x) .   I f  pmod0 
is posit ive  of  degree n-1 i n  both x and y then 
D(x)U(y)p(x,y)mod@ is p o s i t i v e   i f  and  only i f  
U(x)  and $ ( x )  are r e l a t i v e l y  prime. 

L e t  fA:R[x,y] x M * M be   the   ac t ion   (c f .  

KALMAN) def ined  in   the  fol lowing manner 

Suppose t h a t  A is  an nxn s t a b i l i t y   m a t r i x  
with  characterist ic  polynomial  $,(x) = det(1x-A). 
Define  $l(x)  and P (x ,y)   in   the  fol lowing manner. 4 

$,(x) = $,(-x)  (2.4) 

I t  can  be shown tha t   P@(x,y)  i s  an  element  of 
R[x,yl  of  degree  n-1  in  both x and  y,  and  that it 
is  posi t ive.   Since  $l(x)  , I$2 (x )   a r e   r e l a t ive ly  
prime  there  exist  polynomials TU, Au such t h a t  

(2.6) 

This  implies (Lemma 2 .2)   tha t  
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which implies   that :  

using 
G. 

We have now developed a l l   t he   necessa ry  
s t ruc ture   to   p rove  Theorems 2 . 1  and 2.2. 

Proof  of Theorem 2.1. Suppose t h a t  A is  a   s t a -  
b i l i t y   m a t r i x .  We c la im  tha t  

P = -  f (%(X,y) ,  Q) 
U 2 A  

is the  unique  solution  of PA + A'P = -Q. Using the 
above  mentioned propert ies   of  t h e  act ion:  

Uniqueness  follows  by  observing  that  the 
2 

l i nea r   ope ra to r  L:R" + Rn2 defined by 

L(P)  = PA + A ' P  

is Onto s ince  "0 r e s t r i c t i o n  was placed on Q. T h i s  
implies that  L is one-one. 

We now show t h a t  P is p o s i t i v e   d e f i n i t e .  

Since  qu(x,y)  i s  p o s i t i v e  t h i s  impl ies   tha t  
(Lema 2.2)  

where  {Ti) are   a   basis .  

Therefore 

1 
P 7 f A ( g U ( X r Y ) ,  Q) 

U 

P is symmetric  and s i n c e  Q 2 0,  it must at  l e a s t  
be posi t ive  semidefini te .  Suppose t h a t   t h e r e  
exists  an  n-vector z#O such  that   z 'Pz = 0. 

This   impl ies   tha t   n i (A)*z  - 0 f o r   a l l  
1 5  i 'n. The polynomials Tl, l l2, .  ..Tn form  a 
basis  for  the  vector  space  of  polynomials  of 
degree less than n. Therefore   there   exis t  con- 
s t a n t  k l , k 2  ...h such  that  

kiRi(x) , I) - I (I nxn i d e n t i t y )  
U 

Since  lri(A).z = 0 f o r   a l l  i the  1 .h .s .   of   the  
above equal i ty  is zero.  This is a   cont rad ic t ion  
s ince   fo r  z+O, Iz#O. 

Therefore P is p o s i t i v e   d e f i n i t e .  

Suppose now t h a t   f o r   e a c h  symmetric pos i t i ve  
de f in i t e   ma t r ix  Q t h e r e   e x i s t s   a  symmetric  posi- 
t i v e   d e f i n i t e   s o l u t i o n  P of (2 .1) .  

the  eigenvalue X. 
Let z be some eigenvector  corresponding to 

- 
-2' .Qz -c 0 (y denotes  complex  conjugate) 

Since P > 0 t h i s   i m p l i e s   t h a t  x + x 0, i.e. 
that  Re(x) < 0. Therefore A is s t a b l e .  

Proof  of Theorem 2.2. Suppose t h a t  A is a s t a -  
b i l i ty   mat r ix .   This   impl ies   tha t  

s ( X , Y )  TU(X)T ( ) P  (X,y)mOd@ u y  e 
is posi t ive.  By l e m a  2.2 %(x  ,y)  can  be  writ ten  as:  
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where  {Ti)  is a basis. Following the  proof  of 
Theorem 2.1 the solution P of (2.2) exists and  can 
be written as: 

Since C'C 2 0 we  have 

for  all 1 5 i 5 n. This means that P 0. Suppose 
now that there exists z#O such  that  z'.P-z = 0. 
This implies  that  we  must  have 

Since {Ti) are a basis there exists  an  nxn  matrix K 
such  that: 

The above represents n equations of the form 

kilTl(x) + ki2T2(x). . . + k 71 (x) = x , i-1 
in n 

l c i c n  

with (kil, ... kin) 
fA(kilTl  (x) + 

lli'n 

that 

2 k. .C.T.(A)z = 0 for all 15 i 5 n 
j-1 1 3  3 

X H ( z )  = 0. 

This is a contradiction  since z#O and the null 
space of H is 101. 

3. Computational  Algorithm 

The proof of Theorem 2.1 is  constructive  and 
purely  algebraic.  It therefore gives great 
insight  into how a computational  algorithm  should 
be  constructed,  for  obtaining  the solution P of an 
equation of the form 

PA + A'P = -Q (2.10) 

where A is a stability  matrix. The algorithm so 
constructed, basically  involves obtaining $2(x) 
the characteristic  polynomial of A. Using the 
Extended Euclidean algorithm a polynomial Tu as 
in  (2.6)  can  be  obtained.  With these polynomials 
P$(x,y), qu(x,y) and the solution P are formed. 

By  restricting the field of interest R, to 
that of the rational  numbers F, the procedure  for 
obtaining the exact  solution of (2.10) is  fully 
implementable,  using the remarkable  facilities 
provided  by the computer programing system 
MACSYMA  available  at M.I.T. 

Three algorithms  are  presented  here,  the 
Rational, Integer and Modular,  which are based  on 
the constructive proof  of  Theorem 1. 

MACSYMA (Project MAC'S Symbolic  MAnipulation 
System) is a large computer programing system 
used  for  performing  symbolic  as  well  as  numerical 
mathematical  computations. This would easily 
allow us to make  parametric  studies. 

We  now  describe the algorithms. 

The Rational Algorithm 

This algorithm  is a mere  implementation  of 
the  steps outlined in the proof of Theorem 2.1. th being the i r o w  of K. 
5 )  Obtain $2, the characteristic  polynomial of A. 

R2) Set P (x,y) = 
.... + kinTn(x),  C) C.Ai-' $2(X)$2(Y) - $l(X)$l(Y) 

4 X + Y  

Define the operator H:Rn + Rn" by: 

The Integer Algorithm 

Multiplying A and Q by a suitable positive 
integer an equivalent  Lyapunov  equation 

AiP 5 PA1 -Q, (3.11 

Since (A,C)  is an observable pair the null space is obtained with  A1, Q1 having  integer  entries. 
Suppose that  $i(x)  is the characteristic poly- 
nomial of  A1 in x .  It  is  clear  that $ ; ( x )  has of H is (0). 

Since C.Ti(A)z= 0 1 5 i 5 n this  implies 
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in teger   coef f ic ien ts   and   therefore  it 
of  Z[x,yl  (the  ring  of  polynomials  in 
i n t e g e r   c o e f f i c i e n t s ) .  

Le t  

$;(x) = $;(-x) 

i s  an  element 
x  and  y  with 

It can  be shown t h a t  P' (x,y) E Z[x,yl , as  well as 
the   f ac t   t ha t   t he re   ex i s t   po lynomia l s   Th(x )  A;(x) 
elements  of Z [x,yl  and u' an   in teger   such   tha t  

S ince   the   l ead ing   coef f ic ien t   o f  $i is uni ty ,  
d iv i s ion  i s  possible   and  with 0'  the   idea l   ($ ; (X) ,  
4: (Y)  1 i n  2 [x,yl  we  have 

q:(X,Y) = Tb(X)TA(y)P'  (x,y)modQ' Q (3.4) 

being  an  element  of z [x,y].  Consequently 
p: = fA1 ( G ( X , Y )  t Q1) has   i n t ege r   en t r i e s   w i th   t he  
so lu t ion  now being  expressed as: 

(3.5) 

In  (3.3) it is required  that  polynomials  T;(x), 
A;(x) and in t ege r  u' be  found  such  that  (3.3) i s  
sa t i s f ied .   Exis tence   can   be  shown i n   t h i s  manner. 

L e t  $;(x) = det(Ix-A1) = aoxn + alxn-l + . . . 
..+an. Define S t o  be  the  n-dimensional  matrix 

a3 a2  al a. 0 0 ... 0 

a5 a4 a3 a2 al a. . . . S = 

- '2n-1  a2n-2 n 

where ak ,  = 0 f o r  k > n  and a. = 1. Since $5 (x) is  
a s tab i l i ty   po lynomia l  S is p o s i t i v e   d e f i n i t e   ( c f .  
BROCKFTT). Since  detrj > 0 it can  be shown t h a t  
for   each  a l lowable  integer   value  of  u' t h e r e   e x i s t  
unique  polynomials T;(x) , h;(x) of   degree  less   than 
n  such  that  

where M . = d e t  Sni, with Sni the  matr ix   obtained n l  
from S by   de l e t ing   t he   n th  row and i t h  
column. 

By l e t t i n g   u '  = k*(2de tS ) ,  k an i n t ege r   g rea t e r  
than  zero we have u' E Z and Ti E 2 [x, y ]  . 

The algorithm  proceeds as follows. 

Obtain A 

Find $; the   character is t ic   polynomial  of A 

Se t   P ' (x ,y )  = 

1' Ql. 

1' 
$;(x)$; ( Y )  -$i (x) $i (Y) 

Q X + Y  

Find T '  and u' . 
Set  q;(x,y) = T~(x)T ; (y )P~(x ,y )mod0 '  

P* = fA (q:(X,Y) r Q l )  

1 
u 1  

Se t  P = - - P* 
( U ' l 2  

Doing a l l  ca l cu la t ions   i n   i n t ege r   a r i t hme t i c  may 
save time s i n c e   g r e a t e s t   c o m n   d i v i s o r  computa- 
t i ons  w i l l  not  be  performed  in  intermediate  steps. 

The Modular  Algorithm 

Let 

p$2(x) = 

p$l (x)  = 

pQ2(x) = 

and 

It can e a s i l y  

(x) = 

( the   no ta t ion  

The Integer   a lgori thm  paves  the way f o r  a 

Suppose  p i s  a prime  that   does  not  divide 
mdu la r   app roach   t o   t he   so lu t ion .  

2 detS. I f  AI = (a  and Q, = ( q .  , )  

l e t  A = ( a .   . m d p ) ,  Q = (4. .modp) , both A and 

pQ being  matrices  with  elements  in Zp, t h e   f i e l d  
of   in tegers  modulo p.   Let  Zp[xfy]  be  the  r ing 
of  polynomials i n  x  and y over Z 

i j  11 

P 11 P 1 3  P 

P' 

p$2  (-x) 

be shown t h a t :  

$;(x) modp 

$i, ( X )  modp 

$:(x)modp  means reduce  each  coeffi- 
c ien t   o f   $ ; (X)   kdulo  p, considering  the  derived 
polynomial  as  an  element  of Z [ x , y ] ) .  L e t  P 

(x+y being  thought of as an element  of z [ x , ~ ]  
p ~ $ ( x , y )  i s  an element  of z [x ,yl . )   P  

I t  fol lows  that   there   exis t   polynomials  T ( x ) ,  

P U  P P  

P 

A (x)  and  u E Z such  that  P U  
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with a l l  opera t ions  done modulo  p. 
I f  P* = ( g .  , )  i n  ( 3 . 5 ) ,  then 

u 13 

The A matrix of the  system i s  given by: 

r O M O O O O O O O O '  

-2K-25 K 5 0 0 0 0 0 0 

O O O M O O O O O O  

K 5 - 2 K - 2  K 5 0 0 0 0 

O O O O O M O O O O  

M '  0 0 K 5 - 2 K - 2 5  K 5 0 0 

0 0 0 0 K 5 - 2 K - 2 5  K 5 
O O O O O O O M O O  

- 

P U  

Now i f  P u a re   ob ta ined   for  a s u f f i c i e n t  

P = (g i j   map) .  

P U  P 
number of  primes,  the  Chinese Remainder Theorem can 
be  used t o   f i n d  P*u  and u' making it p o s s i b l e   t o  
ob ta in   the   so lu t ion  

p = - - '  1 

(u '  2 

Since  considerable  coefficient  growth  takes 
place  in  intermediate  computations  of  the  Integer 
algorithm it may be  advantageous t o  implement the  
mdular   a lgori thm. 

M1) Obtain A ,  Q. 

M 2 )  Le t  0, = de t (1x  - A )  

P P  

P  P 

p+2(x) + , ( Y )  - + p  Igl(Y) 
M 3 )  S e t  P (x,y) = 

M4) Obtain T u. 

M5) Se t  q (x ,y)  = T (x)  T (y) P (x,y)mdpQ 

M6) Obtain P 

P +  X + Y  

P U  P 

P U   P u   P U   P +  

P  u' 
Repeat s t eps  1-6 f o r  a s u f f i c i e n t  number of 

Theorem f ind  Pi, u' . M7) primes and by use  of  the  Chinese Remainder 

6. Numerical  Results 

~ l l  three  algorithms  have  been  programed on 
MACSYMA. The example shown here  corresponds  to   the 
evaluation  of 

G = 5' (t).Q-x(t) d t  

where x ( t )  is  a so lu t ion   of  

- i(t) = A x(t) x(0)  = C ("1 
The system  modeled  by ( * )  is given  below: 

O O O O O O O O O M  

0 0 0 0 0 0 K 5 -2K-2L  

The example shown is  run  with K = 10,000,  M = l ,  
5=1. 
The Q matrix is given  by: 

- 
o o o o o o o o o o 7  
0 1 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0  

0 0 0 1 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 1 0 0 0 0  

0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 1 0 0  

0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 1  - - 
The so lu t ion   to   the   equat ion  PA + A'P = -Q is: 

r , o o o o  0 0 0 0 0 0 0 O l  
1 1 

4 6 

1 0  0 5 0 0 0 0  0 0 0 0 0 0 1  

( 0  0 0 0 5 0 0 0 0  0 0 0 O I  

1 0  0 0 0 0 0 50000  O O I  

0 -  
1 1 

6 2 3 3 

0 0 0 0 0 0 0 0 50000  

1 1 1 5 
0 -  1 2  

L -I 

&y appropriately  choosing  the  values  K,M,5 t h e  
system  can  be made i l l-conditioned. 

1199 



Preliminary tests on the algorithms show t h a t  
the Integer  algorithm  performs  the  fastest ,   but 
t h a t  it requi res  much more s torage than t h e  Modular 
algorithm. 

Since  the  solut ion P is exact  it is qu i t e  
p o s s i b l e   t h a t  its elements  which  are  rational 
numbers may have large  numerators  and denomina- 
tors. But i n  a phys ica l   s i tua t ion   on ly   a   l imi ted  
number of dig i t   accuracy  is required.  Since the 
exac t   so lu t ion  is ava i l ab le  it is presently  under 
investigation  whether a scheme can be devised  that  
would guarantee  an  arbi t rary  digi t   accuracy of an 
approximate  solution. 

7. General izat ions 

Using the same algebra ic  framework the  solu-  
t i on  of the  matrix  equation 

PA + BP = C 

can  a lso  be  obtained  in   the  case when A and B are 
two a rb i t r a ry  nxn s t ab i l i t y   ma t r i ces .   In   t h i s   ca se  
le t  be t h e  idea l   ($2 (x )  , $ 2 ( y ) )   i n   R I X , ~ ]  where 
$2 (x) , $2 (y) , $1 Cy) , $1 (y)   are   def ined  as :  

$,(x) = det (1x  - A) 

$,(y) = det   ( Iy  - B) 

It  can  be shown tha t   there   ex is t   po lynomia ls  AJx) , 
Uu(x) , h i (x )  , 1.I' (x)  such  that:  

U 

The so lu t ion  P of equation PA + BP = C is 
then  given by: 
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