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i. INTRODUCTION 

In this paper we present a number of results related to control and esti- 

mation problems for affine systems with memory. The systems we consider are 

typically described by linear functional differential equations or Volterra 

integro-differential equations. 

Our results may be divided into four categories: 

(i} State-space description of systems with memory. 

(ii) Feedback solution of the finite-time quadratic cost problem. 

(iii) Feedback solution of the infinite-time quadratic cost problem° 

(iv) Optimal linear filtering. 

The .main difficulty in the study of the syste~ considered in this paper 
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is that the state spaces involved are infinite dimensional and that the equations 

describing the evolution of the state involve unbounded operators. Once an ap- 

propriate function space is chosen for the state space a fairly complete theory 

for the control and estimation problems for such systems can be given. 

2. Affine Systems with Memory 

In this paper we shall consider two typical systems: one with a fixed 

memory and one with a time varying memory. 

Let X be the evolution space and U be the control space. We assume that 

X and U are finite-dimensional Euclidean spaces. 

2.1. Constant Memory 

Given an integer N ~ 1 and real numbers - a = QN < "'" < 01 

T > 0, let the system with constant memory be described by: 

< 0 = 0 and 
o 

(1) 

N 
dx 

(t) = A (t)x(t) + [ A.(t)x(t+G.) 
oo i = 1 l 1 

f o 

+ Aol (t,~)x(t+0)dQ + f(t) 

-a 

+ B(t)v(t) in [0,T] 

x(0) = h(0) , -a _< Q < 0, 

where Aoo , Ai, Ao! and B are strongly measurable and bounded, f £ L2(0,T; X) 

and v C L2(0,T; U). 

We first need to choose an appropriate space of initial data and an appro- 

priate state space. It was shown in DELFOUR-MITTER [i], [2], that this can 
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indeed be done provided that (1) is rewritten in the following form: 

{2) 

dx N I x(t+Oi) ' t+0i>0 
d-~ = Aoo(t)x(t) + I Ai(t) 

i=l I h I (t+Q i) , otherwise 

o 
! 

" - a  h I (t+@) , othezwise 

x(O) 

+ f(t) + B(t)v(t) , in [0,T], 

= h O" 

We can pick initial data h = (h°,h ~) in the product space X x L2(-a,O;X), 

where the solution of (2) is x : [0,T] + X. 

We can now define the state at time t as an element x(t) of X x L2(-a;0;X) 

as follows: 

(3) i x(t} O = x(t) 

}~{t)~{e) = .! x(t+0) , t+e_>0 
t 

[ (t+0) , otherwise. 

For additional details see DELFOUR-MITTER [i], [2]. System (I) has a memory of 

fixed duration [-a~0]. 

2.2. T_i,me Varying Memory 

Consider the system 
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(4) 

i 
t 

~ (t) = A (t)x(t) + A (t,r)x(r)dr 
o I 

o 

+ f(t) + B(t)v(t) , in [0,T] 

x(0) = h O in X, 

Where Ao, A I and B are strongly measurable and bour, ded. If we change the variable 

r to G = r-t and define 

(5) 

Ii (t) : A (t) 
O o 

\ oi (t,@) 

I A (t,t+@) , -t < @ < O, 
! 

0 , -~< @< t, 

equation (4) can be rewritten in the form 

(6) 

0 

d"t" I xct÷01 , t÷e>0 1 ~c, : %oCt,xct, ÷ % ct,o~ i dO 
-~ i h I (t+0) , otherwise 

+ f(t) + B(t)v(t) in [0,T] 

x(0) = h ° in X, h I in L2(-~,0;X), 

with h I = 0. In this form equation (6) is similar to equation (2). However 

here we consider the system to have a memory of infinite duration in order to 

accomodate the growing memory duration [-t,0]. The state space will be chosen 

to be the product X x L2(-~,0;X). The state at time t is an element x(t) of 

X x L2(-~,0;X) which is defined as 
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(7) I ~(t) ° = x(t) 

i 
x(t+@) . -t < @ < 0 

[ h  l(t+C)) , _oo < C) < - t  

3. State Equation 

It will be more convenient to work with an evolution equation for the 

state of the system rather than equations (i) or (4). In order to obtain the 

state evolution equation corresponding to equation {1) let 

(S) I H = X x L2(-a~0;X) 

IV = {(h(0)~h) ! h ~ HI (-a,0;X) }. 

The injection of V into H is continuous and V is dense in H. We identify H with 

its dual. Then if V ~ denotes the dual space of V, we have 

VF H~V ~ 

This is the framework utilized by Lions (cf. J.L. LIONS) to study evolution equa- 

tions. Define the unbouxlded operator A(t): V "+ H by, 

(9) 

o 

(t)h(0) + Z Ai{t)h(0 i) + Aol(t,Q)h((9)dQ I\ (~(t)h)° = A°° i=1 ] -a  

(A(t)h) i (Q) = ~(@), 

and the bounded operator 

B(t): U + H by 
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(i0) I 
(B (t)u) O = B(t)u 

(B (t)u) I (0) = 0 

and f(t) S H by 

(ii) f(t) ° = f(t), f(t)l = 0. 

Then for all h in V, it can be shown that x is the unique solution in 

of 

(12) W(0,T) = {z E L2(0,T;V) I D z 6 L2(0,T;H)} [D denotes the distri- 

butional derivative] 

(13) 

l d.~ t 

~(o) 

= A(t)x(t) + B(t)u(t) + f(t) in [0,T] 

= h. 

Similarly in the case of equation (4) we let 

X x L2(-~,0;X) 

{(h(0),h) I h ~ HI(-~,0;X)}. 

We again have 

V C H C V ' .  

We now define A(t): V ~ H as follows: 

(15) 

(A (t)h) = 

(A(t)h) I (0) 

A (t)h (0) 
oo 

= a~-(O), 

I OAol + (t,0)h (0)dO 
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B(t) and f(t) be as defined in {6) and (7). For all h in V, x is the unique 

solution in 

of 

(16) W(0,T) 

I dx " t '  

(17) 

= {z £ L 2 (0,T;V) I D z ~ L 2 (0,T;H) } 

= A(t)x(t) + B(t)v(t) + f(t), in [0,T], 

= h. 

4. Optimal Control Problem in [0,T] 

We now consider a quadratic cost function, 

(18) 

~(vm) = <~ ~(T), ~(T)) H - 2,,},x(T)) H 

IT x(t) )H [ (Q (t) x (t) , 

]o 
-- 2(q(t)~ x(t))H]dt 

[ T 

I0 
(N(t)v(t), v(t))udt, 

where L E ~(H)~ /E H, q E L 2 (0,T;H) and Q: [0,T] ÷ ~(H) and N: [0,T] + ~(U) 

are strongly measurable and bounded. Moreover L, Q(t) and Nit) are self adjoint 

and positive and there exists c > 0 such that 

(19) Vt~ Vu, (N(t)u,u) U > 0. 

For this problem we know that given h in V, there exists a unique optimal control 

function u in L2(0,T;U) which minimizes J(v,h) over all v in L2(0,T;U). Moreover 

this optimal control can be synthesized via the feedback law 

-i ~ 
(20) u(t) = --N(t) B(t)* [~(t)x(t) + r(t)], 
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where ~ and r are characterized by the following equations: 

and 

(21) 

(22) 

(23) 

i d~ (t 
i~ (T) 

I R(t) 
[~(t) 

= A(t)*Z(t) + w(t)A(t) --~(t)R(t)~(t) + Q(t) = 0, in [0,T] 

= B (t)*N (t)B(t) 

I dr- t, ~( ) + [A(t) R(t)~(t)]*r(t) + [~(t)f(t) + q(t)] = 0, in [0,T] 

~r(T) = A 

Here a solution of (21) is a map 7: [0,T] ÷ ~(H) which is weakly continuous 

such that for all h and k in V the map t ÷ (h,~(t)k) H is in HI(0,T;R); a solution 

of (23) is a map r: [0,T] + H such that r E L2(0,T;H) and D r ~ L2(O,T;V'). 

For details see DELFOUR-MITTER [3] and BENSOUSSAN-DELFOUR-MITTER [i]. 

5. Optimal Control Problem in [0, ~] 

We can also give a complete theory for cost functions of the form 

(24) J (v,h) = [(Ox(t), x(t)) H + (Nv(t),v(t))u]dt 

O 

with the following hypothesis: 

i) 

c > 0 such that 

vu (Nu,u) U > c lull; 
2) X is the solution of 

3) 

G E ~(V,U) of 

E,c/~(H), N E ~(U) are positive and self adjoint and there exists 

I dx.t. Ax(t) + BY(t) in [0, ~] 

(25) 

x(0) = h in V; 

(Stabilizability hypothesis) there exists a feedback operator 

the form 

(26) Gh = Gooh(0) + j=l~ Gih(0i) + - Gol (0)h(G)d@ 
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such that the closed loop system 

i da(t) = [A + B G]x(t) in [0, ~] 

(27) 

!x(0) = h ~ V 

be LZ-stable, that is 

(28) %r h E H, 

[ co 

I iI~t)il ~ dt < ~ 

)o 

For a study of the stabilizability problem see VANDEVENNE [i] [2]. 

When system (25) is stabilizable, there exists a unique u in L21oc(0,~;U) 

which mini~nzizes J~ (v,h) over all v in L21oc(0,~;U) for a given h. Moreover this 

optimal u can be synthesized via a constant feedback law. 

(29) u(t) = -- N B* ~ x(t), 

where 7[ is a solution of the algebraic Riccati equation 

(30) ~ * ~ - ~ + 5 = 0  

A solution of (30) is a positive self adjoint elemena of ff~(H) such that 

(30) is verified as an equation in ~(V,V'). The operator 7[ in ~(H) can be 

decomposed into a matrix of operators 

ol 

7[ 

(since H is either X x L2( - a,0;X) or X x L2(--~,0;X)) where 

i T E $Z~(X) , ~ E/~(L2(-- a,0;X) X) 
oo o 1 

E ~(X,L~ ( - a,0;X)) 7[ C ~(L~( - a~0;X)). 711o ~ ii 

Moreover 

' *~ + ~ (0) + ~ (0)* + Q -~ R~ 

~OO * = 7[ > 0 
OO 

= 0 

~ l o  h° )  (0~) = T[lO(~)hO , t~ -~ ~[lO(O:): [-- a,O] + c~(X) 
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~dn N- 1 

de I----~O (a) = ~ (a) [A -- R~oo] + 2 Ai*Woo~ (~-@) 
I0  O0 i =  l 

+ AOI(a)*WOO + W11(e'0) , a.e. in [-- a,0] 

(- a) = ~,~'*~oo lo 

f o 

(w h I Ca) = w Ca)*h I (a)d~ 
Ol 10 

- a  

I (W11hl)(a) = I i W*l(e'8)h1(~)d~ 

(a,8)~ ÷~Wl1(e,8)- : [-- a.O] x ,[-- a.O],÷ /~(X) 

[~ + ~] ~ (a,8) -- Ao1(a) ~o(B) + ~1o(a)Aol C8) 

N-1 

+ 2 Ai*W (S) *~ (a-Q i ) + 
i= 1 io 

N-I 

2 ~ (~)Aj~ (~-@i) j=l I0 

IO IO 

(- a,~) = ~'*Zlo(~)* , z (a,-a) = ~ (a)A's 11 II Io 

(a,B) = ~ (S,a)*. 
~11 I1 

Under additional hypothesis on A and Q we can also describe the asymptotic 

behaviour of the closed loop system 

(31) 
x(0) = h in V. 

in [0, ~] 

Definition Given a Hilbert space of observations Y and an observer M e~(H,Y), 

System (25) is said to be observable by M if each initial datum h at time 0 can be 

determined from a knowledge of v in L21oc(0,~;U ) and the observation 

(32) z(t) = M x(t) in [0,~]. 

When System (15) is observable by Q I/2 , for each initial datum h 
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(33) x(t) + 0 as t + ~, 

where x is the solution of the closed loop system (31)o 

In the special case where 

and Qoo is positive definite, the closed loop system (21) is L2-stable. 

further details see DELFOUR-MCCALLA-MITTER. 

For 

6. Optimal Linear Filterinq and Dualit Y 

Let E and F be two Hilbert spaces. We consider the system 

~(dx't') = %o (t)x(t) + ~ Ai(tlx(t+0i) + a Aol (t,0)x(t+0)d0 
i=I 

(34) ~ + B(t)~(t) + fit) , 

I X(0) = h O + ~o 

~ x(@) = hl(@) + ~I(0) , - a < @ < 0, 

where ~ = (~o ~l) is the noise in the initial datum, and ~ is the input noise with 

values in F. We assume an observation of the form (with values in E) 

(35) z(t) = C(t)x(t) + n(t), 

where ~ represents the error in measurement and C(t) belongs to ~.(X,E). AS in 

BENSOUSSAN [i] {~°,~l,~,n} will be modelled as a Gaussian linear random functional 

on the Hilbert space. 

(36) ~ = X x L2( - a,0;X) x L~(0,T;E) x LZ(0,T;F) 

with zero mean and covariance operator 

P ~ (¢) 

For each T we want to determine the best estimator of the linear random functional 

x(T) with respect to the linear random functional z(s), 0 _< s < T. For the solution 

to this problem see BENSOUSSAN [2] and BENSOUSSAN-DELFOUR-MITTER [2]. 
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