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The Solution of Linear Probabilistic
Recurrence Relations1

Louay Bazzi2 and Sanjoy Mitter2

Abstract. Linear probabilistic divide-and-conquer recurrence relations arise when analyzing the running
time of divide-and-conquer randomized algorithms. We consider first the problem of finding the expected
value of the random process T (x), described as the output of a randomized recursive algorithm T . On input x ,
T generates a sample (h1, . . . , hk) from a given probability distribution on [0, 1]k and recurses by returning
g(x) + ∑k

i=1ci T (hi x) until a constant is returned when x becomes less than a given number. Under some
minor assumptions on the problem parameters, we present a closed-form asymptotic solution of the expected
value of T (x). We show that E[T (x)] = �(x p + x p

∫ x

1
(g(u)/u p+1) du), where p is the nonnegative unique

solution of the equation
∑k

i=1ci E[h p
i ] = 1. This generalizes the result in [1] where we considered the

deterministic version of the recurrence. Then, following [2], we argue that the solution holds under a broad
class of perturbations including floors and ceilings that usually accompany the recurrences that arise when
analyzing randomized divide-and-conquer algorithms.
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1. Introduction. Linear divide-and-conquer recurrence relations arise when analyz-
ing the running time of divide-and-conquer algorithms. In a deterministic setting, such
recurrences are of the form




T (x) = g(x) +
k∑

i=1

ci T (hi x) for x < x0,

T (x) = c for 0 ≤ x ≤ x0,

where h1, . . . , hk are constants in the interval (0, 1). We provided in [1] an asymptotic
closed-form solution for this recurrence, and we argued that the result holds in the
discrete setting. A simple inductive proof of the solution in [1] was presented in [2], and
the result was extended to handle commonly occurring variations of the recurrence. In
this work we first generalize the result in [1] to a probabilistic setting where h1, . . . , hk

are random variables taking values from the interval (0, 1). More precisely, we consider
first the problem of finding the expected value of the random process T (x), described as
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the output of the following randomized recursive algorithm on input x :

T = “On input x :
1. if x ≤ x0, return c
2. generate a sample (h1, . . . , hk) from a given probability distribution

on [0, 1]k

3. return g(x) + ∑k
i=1 ci T (hi x).”

Under some minor assumptions on the problem parameters, we present a closed-form
asymptotic solution of the expected value of T (x). Then, following [2], we argue that
the solution holds under a broad class of perturbations including floors and ceilings that
usually accompany the recurrences that arise when analyzing randomized divide-and-
conquer algorithms. Finally, we provide some illustrative applications and examples,
and we conclude by discussing possible extensions of the work.

We are not aware of any general method for finding the expected value of such
probabilistic recurrences. A related research report is [3], where a similar recursively
defined random process is proved to fall within its expected value with high probability.
Therefore, the result of [3]—when applicable—assures that T (x) will fall with high
probability within the closed-form solution we provide.

2. The Main Result

DEFINITION 2.1. Say that a function g: R
+ → R

+ satisfies the polynomial growth
condition if for each u ∈ (0, 1), there exists x1 > 0 and k > 0 such that g(ux) ≥ kg(x)

for all x > x1.

THEOREM 2.1. Let T (x) be the probabilistic recurrence described as the output of the
following randomized recursive algorithm on input x:

T = “On input x (a nonnegative real number):
1. if x ≤ x0, return c
2. generate a sample (h1, . . . , hk) from a given probability distribution

on [0, 1]k

3. return g(x) + ∑k
i=1 ci T (hi x)”,

where

• k is a strictly positive integer and x0, c, c1, . . . , ck are strictly positive real numbers
satisfying

∑k
i=1 ci ≥ 1,

• none of the hi ’s takes the values 0 or 1 with a nonzero probability,
• g: R

+ → R
+ is a nondecreasing function that satisfies the polynomial growth con-

dition,

then

E[T (x)] = �

(
x p + x p

∫ x

1

g(u)

u p+1
du

)
,
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where p is the nonnegative unique solution of the equation

k∑
i=1

ci E[h p
i ] = 1.

(If p = 0, the lower bound holds under the additional assumption that E[− log hi ] < ∞
for i = 1, . . . , k.)

Note. The random variables h1, . . . , hk need not be independent and are not assumed to
have a probability density function.

EXAMPLE. Consider the case when on input x , T picks h from the uniform distribution
on [0, 1], and recurses by returning x + 0.5T (hx) + 0.5T ((1 − h)x) + T (x/2) until 1 is
returned when x becomes less than 1. In this case 0.5E[h p]+0.5E[(1−h)p]+E[( 1

2 )p] =
1/(p + 1) + 2−p. Solving for p in 1/(p + 1) + 2−p = 1, we obtain p = 1, and thus
E[T (x)] = �(x + x

∫ x
1 u−1 du) = �(x log x).

3. Proof of Theorem 2.1. We solve the probabilistic recurrence by deriving an in-
tegral equation satisfied by the expected value of the recurrence, and then solving the
integral equation asymptotically. The resulting integral equation turns out to have a clean
asymptotic solution, despite the fact that it belongs to a class of integral equations that
are usually considered hard to solve exactly.

Let 	(x) = E[T (x)]. If x ≤ x0, 	(x) = c. Else if x > x0, 	(x) = g(x) +∑k
i=1 ci E[T (hi x)]. Noting that E[T (hi x)] = Ehi [	(hi x)] = ∫ 1

0 	(tx) dµhi
(t), where

µhi is the probability distribution of hi , we obtain

	(x) = g(x) +
∫ 1

0
	(tx) d

∑
i=1

ciµhi (t).

In other words, 	 satisfies the integral equation of Theorem 3.2 below with

α(t) =
k∑

i=1

ciµhi (t) for 0 ≤ t ≤ 1.

Observe that α satisfies the assumed conditions. Namely, α(1) − α(0) = α(1) =∑k
i=1 ci ≥ 1, and α is not constant on the open interval (0, 1) and is left contin-

uous at 1 because none of the hi ’s takes the values 0 or 1 with a nonzero
probability.

THEOREM 3.2. If 	 is a function satisfying the integral3 equation


	(x) = g(x) +
∫ 1

0
	(xt) dα(t) for x > x0,

	(x) = c for 0 ≤ x ≤ x0,

3 The integrals used are assumed to be Lebesgue integrals.
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where

• α is a real-valued nonnegative and nondecreasing function defined on the interval
[0, 1] such that α(1) − α(0) ≥ 1, α is not constant on the open interval (0, 1), and α

is left continuous at 1,
• g: R

+ → R
+ is a nondecreasing function that satisfies the polynomial growth con-

dition, and c and x0 are strictly positive real numbers,

then

(i) 	 is a nonnegative and nondecreasing function that satisfies the polynomial growth
condition,

(ii)

	(x) = �

(
x p + x p

∫ x

x0

g(u)

u p+1
du

)
,

where p is the nonnegative unique solution of the equation∫ 1

0
t p dα(t) = 1.

(If p = 0, the lower bound holds under the additional assumption that
∫ 1

0 (− log t) dα

(t) < ∞.)

Part (i) is needed to establish (ii). The reader may want to skip the proof of (i) and go
to that of (ii) in a first reading.

PROOF OF (i). We want to argue that 	 is a nonnegative and nondecreasing function
that satisfies the polynomial growth condition. The proof uses Lemma 3.3 below. The
nonnegativity of 	 follows directly from that lemma. To show that 	 is nondecreasing,
we construct an integral equation for �δ(x) ≡ 	((1 + δ)x) − 	(x) and conclude from
Lemma 3.3 that it is nonnegative for any δ ≥ 0. Consider any δ ≥ 0. By subtracting
two instance of 	’s integral equation—the first with x as a variable and the second with
(1 + δ)x as a variable—we obtain



�δ(x) = g((1 + δ)x) − g(x) +
∫ 1

0
�δ(xt) dα(t) for x > x0,

�δ(x) = 	((1 + δ)x) − c for
x0

1 + δ
< x ≤ x0,

�δ(x) = 0 for 0 ≤ x ≤ x0

1 + δ
.

We know that g((1 + δ)x) − g(x) is nonnegative because g is nondecreasing. If we can
show that 	((1 + δ)x)− c is nonnegative for x0/(1 + δ) < x < x0, the nonnegativity of
�δ will follow from Lemma 3.3. We will show something stronger, we argue below that
	(x) − c is nonnegative for any x ≥ 0. Again we use Lemma 3.3 on �(x) ≡ 	(x) − c
which satisfies


�(x) = g(x) + c

∫ 1

0
dα(t) − c +

∫ 1

0
�(xt) dα(t) for x > x0,

�(x) = 0 for 0 ≤ x ≤ x0,
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and is thus nonnegative because g(x) + c
∫ 1

0 dα(t) − c = g(x) + c(α(1) − α(0) − 1) ≥
g(x) ≥ 0.

To show that 	 satisfies the polynomial growth condition, consider any u ∈ (0, 1).
We know that g satisfies this condition, so let kg and xg be such that g(ux) ≥ kgg(x) for
all x ≥ xg . Now let k = min{	(0)/	(xg), kg}. We argue below that 	(ux) ≥ k	(x)

for all x ≥ 0. Let �(x) = 	(ux) − k	(x). � satisfies the following integral equation:




�(x) = g(ux) − kg(x) +
∫ 1

0
�(xt) dα(t) for x > xg,

�(x) ≥ 	(0) − k	(xg) for 0 ≤ x ≤ xg.

The nonnegativity of � follows from Lemma 3.3 because we have selected k in such a
way that g(ux) − kg(x) ≥ 0 for all x > xg and 	(0) − k	(xg) ≥ 0.

LEMMA 3.3. If � is a function satisfying the integral inequality




�(x) ≥
∫ 1

0
�(xt) dβ(t) for x > x0,

�(x) ≥ 0 for 0 ≤ x ≤ x0,

where x0 is strictly positive, and β is a nonnegative and nondecreasing function defined
on [0, 1] such that it is left continuous at 1, then � is nonnegative.

PROOF. The proof is by contradiction. Assume that �(x) < 0 for some x ≥ 0. We
consider two cases, the first when β(1−) = β(1) and the second when β(1−) = β(1).

Consider the case when β(1−) = β(1), and accordingly let t0 in (0, 1) be such that
0 < β(1)−β(t0) < 1. The existence of t0 is based also on the fact that β is left continuous
at 1. Let ξ = β(1)−β(t0), x1 = inf{x ≥ 0: �(x) < 0}, M = inf{�(x): x ∈ [0, x1/t0)},
and x2 ∈ [0, x1/t0) such that �(x2) < ξ M . Observe that x1 > 0 because x0 > 0 and
hence the interval [0, x1/t0) is not empty. We have

�(x2) ≥
∫ 1

0
�(x2t) dβ(t)

=
∫ t0

0
�(x2t) dβ(t) +

∫ 1

t0

�(x2t) dβ(t)

≥
∫ 1

t0

�(x2t) dβ(t)(1)

≥ (β(1) − β(t0)) inf{�(x): x ∈ [t0x2, x2]}
≥ ξ M(2)

> �(x2),

which is not possible. Note that (1) follows from the fact that x2t < x1 when 0 < t < t0,
and (2) follows from the fact that [t0x2, x2] ⊂ [0, x1/t0).
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Now consider the case when β(1−) = β(1), which is actually simpler. Let t0 in (0, 1)

be such that β(1) = β(t0), x1 = inf{x ≥ 0: �(x) < 0}, and let x2 in [0, x1/t0) be such
that �(x2) < 0. We have

�(x2) ≥
∫ 1

0
�(x2t) dβ(t)

=
∫ t0

0
�(x2t) dβ(t) +

∫ 1

t0

�(x2t) dβ(t)

≥
∫ 1

t0

�(x2t) dβ(t)

= 0,

which is not possible. Here again the second inequality follows from the fact that x2t < x1

when 0 < t < t0.

This completes the proof of part (i) of Theorem 3.2.

PROOF OF (ii). If x > x0, then

	(x) = g(x) +
∫ 1

0
	(xt) dα(t).

Multiplying both sides by x−(p+1) (p ≥ 0) and integrating with respect to x from x0 to
y we obtain

∫ y

x0

	(x)x−(p+1) dx =
∫ y

x0

g(x)x−(p+1) dx +
∫ 1

0

∫ y

x0

	(xt)x−(p+1) dx dα(t).

We can expand the kernel of the last integral as follows:

∫ y

x0

	(xt)x−(p+1) dx

= t p
∫ yt

tx0

	(u)u−(p+1) du

= t p
∫ y

x0

	(u)u−(p+1) du−t p
∫ y

yt
	(u)u−(p+1) du+t p

∫ x0

tx0

	(u)u−(p+1) du

= t p
∫ y

x0

	(u)u−(p+1) du − y−pt p
∫ 1

t
	(yu)u−(p+1) du

+ cx−p
0 t p

∫ 1

t
u−(p+1) du,
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where the last term follows from the fact that 	(u) = c if u ≤ x0. Replacing in the
previous equation, we obtain after rearrangement

y−p
∫ 1

0
t p

∫ 1

t
	(yu)u−(p+1) du dα(t)

=
(∫ 1

0
t p dα(t) − 1

) ∫ y

x0

	(u)u−(p+1) du

+
∫ y

x0

g(x)x−(p+1) dx + cx−p
0

∫ 1

0
t p

∫ 1

t
u−(p+1) du dα(t).

We claim that there is one and only one nonnegative value of p for which
∫ 1

0 t p dα(t) = 1.

To see why this is the case it is sufficient to observe that the function s(p) = ∫ 1
0 t p dα(t)

satisfies:

• s(0) = α(1) − α(0) ≥ 1,
• limp→+∞ s(p) = ∫ 1

0 (limp→+∞ t p) dα(t) = 0,
• s is continuous and nonincreasing on [0, ∞) because

d

dp
s(p) =

∫ 1

0
ln (t)t p dα(t) ≤ 0.

If we set p to this unique solution, the previous integral equation reduces to

∫ 1

0
t p

∫ 1

t
	(yu)u−(p+1) du dα(t)

= y p
∫ y

x0

g(x)x−(p+1) dx + cx−p
0 y p

∫ 1

0
t p

∫ 1

t
u−(p+1) du dα(t).

Observe that 	 appears now only in the left-hand side of the equation. To solve the
equation asymptotically, we show that

∫ 1

0
t p

∫ 1

t
	(yu)u−(p+1) du dα(t) = �(	(y)).

This follows from Lemma 3.4 below which is applicable on 	 since, by part (i), 	 is a
nonnegative and nondecreasing function that satisfies the polynomial growth condition.

It follows that

	(y) = �

(
cx0kyp + y p

∫ y

x0

g(u)

u p+1
du

)
,

where k = ∫ 1
0 t p

∫ 1
t u−(p+1) du dα(t), which is a positive constant by the argument in

the the lemma below where it corresponds to k(0).

LEMMA 3.4. If 	 is real-valued nonnegative and nondecreasing function that satisfies
the polynomial growth condition, α is a real-valued nonnegative and nondecreasing
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function defined on the interval [0, 1] such that it is not constant on the interval (0, 1),
and p ≥ 0, then

∫ 1

0
t p

∫ 1

t
	(yu)u−(p+1) du dα(t) = �(	(y)).

(If p = 0, we need
∫ 1

0 (− log t) dα(t) < ∞ for the upper bound to hold.)

PROOF. Let t0 and t1, 0 < t0 < t1 < 1, be such that α(t0) < α(t1), and let y0 and k0 be
such that 	(t0 y) ≥ k0	(y), ∀y ≥ y0. For any y > y0, and any u ∈ [t0, 1), we have

k0	(y) ≤ k0	

(
y

u

t0

)
≤ 	

((
y

u

t0

)
t0

)
= 	(yu),

where the first inequality follows from the fact that 	 is nondecreasing. Integrating twice
after scaling the kernels, we obtain

k0	(y)

∫ 1

t0

t p
∫ 1

t
u−(p+1) du dα(t) ≤

∫ 1

t0

t p
∫ 1

t
	(yu)u−(p+1) du dα(t)

≤
∫ 1

0
t p

∫ 1

t
	(yu)u−(p+1) du dα(t).

Now, observe that because 	 is nondecreasing we also have

∫ 1

0
t p

∫ 1

t
	(yu)u−(p+1) du dα(t) ≤ 	(y)

∫ 1

0
t p

∫ 1

t
u−(p+1) du dα(t).

Therefore

k0k(t0)	(y) ≤
∫ 1

0
t p

∫ 1

t
	(yu)u−(p+1) du dα(t) ≤ k(0)	(y),(3)

where

k(a) =
∫ 1

a
t p

∫ 1

t
u−(p+1) du dα(t).

We argue now that k(0) < ∞ and k(t0) > 0.
We have two cases to consider; p = 0 and p = 0. If p = 0, then t p

∫ 1
t u−(p+1) du =

(1 − t p)/p. Hence k(0) ≤ (α(1) − α(0))/p < ∞, and

k(t0) ≥
∫ t1

t0

1 − t p

p
dα(t) ≥ (α(t1) − α(t0))

1 − t p
1

p
> 0.

Otherwise, p = 0, then t p
∫ 1

t u−(p+1) du = − log t . Hence k(0) < ∞ (by assumption),
and as in the previous case k(t0) ≥ (α(t1) − α(t0))(− log (t1)) > 0.

This completes the proof of part (ii) of Theorem 3.2.
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4. Handling Perturbations. In algorithms design, probabilistic divide-and-conquer
recurrences that usually arise are variations of the recurrences that we have considered
so far. For instance, a common situation is




E[T (n)] = g(n) +
k∑

i=1

ci E[T (vi (n))] for n > n0,

E[T (n)] = �(1) for 0 ≤ n ≤ n0,

where n is an integer, and the vi (n)’s are integer valued random variables satisfying
0 ≤ vi (n) ≤ n − 1 and given by vi (n) = hi n + �(1), where the hi ’s are real random
variables from the interval [0, 1]. Such perturbations are due to floors, ceilings, and/or
the structure of the algorithm. Following [2], where the deterministic solution in [1] was
shown to hold under a broad class of perturbations that include floors and ceilings, we
adapt the probabilistic situation to a similar class of perturbations.

Namely, we consider recurrences of the form



E[T (n)] = g(n) +
k∑

i=1

ci E[T (vi (n))] for n > n0,

E[T (n)] = �(1) for 0 ≤ n ≤ n0,

(4)

where each vi (n) is an integer-valued random variable satisfying

0 ≤ vi (n) ≤ n − 1,

and is given by

vi (n) = hi n + ei (n),

with hi a random variable taking real values from the interval [0, 1], and ei (n) a real-
valued random variable satisfying, for n large enough,

|ei (n)| < n1−ξ

for some ξ , 0 < ξ < 1, common to all the vi ’s. The other parameters g(x), k, c1, . . . , ck

are as in the previous sections. Here also we assume that none of the hi ’s takes the values
1 or 0 with a nonzero probability.

THEOREM 4.5. If T (n) satisfies (4), then

E[T (n)] = �

(
n p + n p

∫ n

1

g(u)

u p+1
du

)
,

where p is the nonnegative unique solution of the equation

k∑
i=1

ci E[h p
i ] = 1.

(If p = 0, the lower bound holds under the additional assumption Evi [− log(vi (n)/n)] <

∞.)
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The proof verifies by induction that the result of the previous section holds if such per-
turbations are allowed. We follow the technique introduced in [2] to make the induction
work with the perturbations.

The argument is to some extent along the lines of the proof in the previous section.
The differences are mainly that the argument in part (i) of Theorem 3.2 is not needed,
but we need more technicalities to handle the discrete situation and the perturbations in
general.

PROOF. First we establish the upper bound. We argue by induction on n that

E[T (n)] ≤ a(1 − n−µ)

(
n p + n p

∫ n

1

g(u)

u p+1
du

)
,(5)

where a is a large enough constant selected so that the induction can start and will be
tuned further to make the induction work, and

µ =




ξ

2
if p ≥ 1,

pξ

2
if 0 ≤ p < 1.

(6)

Assume that (5) holds for all m, 1 ≤ m < n, and assume that n is larger than the
constants in Lemmas 4.6 and 4.7 below. We want to argue that (5) holds for n. Since
1 ≤ vi (n) < n, we have

E[T (n)] ≤ g(n) + a
∑

i

ci Evi

[
(1 − vi (n)−µ)

(
vi (n)p + vi (n)p

∫ vi (n)

1

g(u)

u p+1
du

)]

= a

(
n p + n p

∫ n

1

g(n)

u p+1

) ∑
i

ci Evi

[
(1 − vi (n)−µ)

(
vi (n)

n

)p]

+ g(n) − a
∑

i

ci Evi

[
(1 − vi (n)−µ)vi (n)p

∫ n

vi (n)

g(u)

u p+1
du

]
.

Using Lemmas 4.6 and 4.7 below, we get

E[T (n)] ≤ a

(
n p + n p

∫ n

1

g(n)

u p+1

)
(1 − n−µ)

∑
i

ci Ehi [h
p
i ] + g(n) − akg(n),

and hence (5) by making a large enough and since p satisfies
∑

i ci Ehi [h
p
i ] = 1. Note

that the existence of such a unique p follows from the previous section and uses the fact
that

∑
i ci ≥ 1.

LEMMA 4.6. For n large enough,

Evi

[
(1 − n−µ)h p

i − (1 − vi (n)−µ)

(
vi (n)

n

)p]
> 0.

PROOF. See the Appendix.
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LEMMA 4.7. There is a constant k > 0 such that for n large enough,

Evi

[
(1 − vi (n)−µ)vi (n)p

∫ n

vi (n)

g(u)

u p+1
du

]
≥ kg(x).

PROOF. The proof is as in Lemma 3.4 with some additional technicalities to handle
the perturbations. Let α be the probability distribution of hi . Since hi takes values other
than 0 and 1 with a nonzero probability, let t0 and t1, 0 < t0 < t1 < 1, be such that
α(t0) < α(t1). We can bound from below the expected value in the statement of the
lemma by

∫ t1

t0

(1 − (tn − n1−ξ )−µ)(tn − n1−ξ )p
∫ n

tn+n1−ξ

g(u)

u p+1
du dα(t)

≥ (1 − (t0n − n1−ξ )−µ)(t0 − n−ξ )p
∫ t1

t0

n p
∫ n

(t+θ)n

g(u)

u p+1
du dα(t),

where θ > 0 such that t1 +θ < 1 and n is assumed to be large enough so that θn > n1−ξ .
Since g satisfies the polynomial growth condition, let k0 > 0 be such that g((t0 +θ)n) >

k0g(n) for n large enough. For t > t0, we have

n p
∫ n

(t+θ)n

g(u)

u p+1
du =

∫ 1

t+θ

g(un)

u p+1
du ≥ g((t0 + θ)n)

∫ 1

t+θ

du

u p+1
≥ g(n)k0

∫ 1

t+θ

du

u p+1
,

where the first inequality follows from the fact that g is nondecreasing. The lemma then
follows with

k = k0(1 − (t0n0 − n1−ξ

0 )−µ)(t0 − n−ξ

0 )p
∫ t1

t0

∫ 1

t+θ

du

u p+1
dα(t),

where n0 is large enough so that k > 0. Note that the fact that α(t0) < α(t1) and t1+θ < 1
guarantees that the integral term of k is positive. Indeed, when p > 0, this integral term
reduces to

1

p

∫ t1

t0

((t + θ)−p − 1) dα(t) ≥ 1

p
(α(t1) − α(t0))((t1 + θ)−p − 1),

and when p = 0, it becomes
∫ t1

t0
log(t + θ)−1 dα(t) ≥ (α(t1) − α(t0)) log(t1 + θ)−1.

Now the lower bound follows by suitably modifying the upper bound argument. We
argue by induction on n that

E[T (n)] ≥ a(1 + (n + 1)−µ)

(
n p + n p

∫ n

1

g(u)

u p+1
du

)
,(7)

where a > 0 is small enough so that the induction can start and will be tuned further as
before to make the induction work, and µ is as in (6).
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If we assume that (7) holds for all m, 1 ≤ m < n, and assume that n is large enough
so that Lemmas 4.8 and 4.9 below are applicable, we get

E[T (n)] ≥ g(n)

+ a
∑

i

ci Evi

[
(1 + (vi (n) + 1)−µ)

(
vi (n)p + vi (n)p

∫ vi (n)

1

g(u)

u p+1
du

)]

= a

(
n p + n p

∫ n

1

g(n)

u p+1

) ∑
i

ci Evi

[
(1 + vi (n)−µ)

(
vi (n)

n

)p]

+ g(n) − a
∑

i

ci Evi

[
(1 + (vi (n) + 1)−µ)vi (n)p

∫ n

vi (n)

g(u)

u p+1
du

]
,

and hence, from Lemmas 4.8 and 4.9 below,

E[T (n)] ≥ a

(
n p + n p

∫ n

1

g(n)

u p+1

)
(1 + (n + 1)−µ)

∑
i

ci Ehi [h
p
i ] + g(n) − akg(n),

which lead us to (7) by making a small enough and using the fact that
∑

i ci Ehi [h
p
i ] = 1.

LEMMA 4.8. For n large enough,

Evi

[
(1 + (n + 1)−µ)h p

i − (1 + (vi (n) + 1)−µ)

(
vi (n)

n

)p]
< 0.

PROOF. See the Appendix.

LEMMA 4.9. There is a constant k > 0 such that for n large enough,

Evi

[
(1 + (vi (n) + 1)−µ)vi (n)p

∫ n

vi (n)

g(u)

u p+1
du

]
≤ kg(x).

PROOF. Here again the proof follows Lemma 3.4. Since g(n) is nondecreasing and
vi (n) ≥ 0, the expected value under consideration is at most g(n)k, where

k = 2Evi

[
vi (n)p

∫ n

vi (n)

1

u p+1
du

]
.

To see why k < ∞, we consider the cases p > 0 and p = 0 separately. If p > 0, then

k = 2

p
Evi

[
1 −

(
vi (n)

n

)p]
≤ 2

p
,

else if p = 0, then k = 2Evi [log(n/vi (n))] < ∞ by assumption.

This completes the proof of Theorem 4.5.
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5. Applications and Examples. Below are some illustrative applications following
[3] and some examples. All the recurrences are assumed to be initially �(1), and we use
the notation

ζn(x) =




1 if x < 0,

�x� if 0 ≤ x < n,

n − 1 if x ≥ n.

5.1. QuickSort. On input S, a set of n elements, QuickSort picks uniformly an element
p of S and partitions S in linear time around p into S1 = {x ∈ S: x ≤ p} − {p} and
S2 = {x ∈ S: x > p}, then it recurses on S1 and S2 until S becomes sorted. If we let
T (n) be the running time of QuickSort, we obtain the following recursion for its expected
value:

E[T (n)] = E[�(n) + T (ζn(hn + �(1))) + T (ζn((1 − h)n + �(1)))]

for n large enough, where h is a continuous random variable uniformly distributed on
[0, 1]. Solving for p in the characteristic equation E[h p] + E[(1 − h)p] = 1/(p + 1) +
1/(p + 1) = 1, we obtain p = 1, and thus E[T (n)] = �(n log n).

5.2. A Randomized Selection Algorithm. Hoare’s algorithm finds the kth-smallest el-
ement in a set S of n elements by first choosing uniformly an element p of S and
partitioning S around p in linear time into S1 and S2 as described in the QuickSort case.
Then depending on k, the index of p, and the size of S1 the algorithm decides whether
it should stop, recurse on S1, or recurse on S2. If we let T (n) be the running time of
the selection algorithm, we get E[T (n)] ≤ E[an + T (ζn(max{h, (1 − h)}n + �(1)))]
for n large enough, where a > 0 and h is a continuous random variable uniformly dis-
tributed on [0, 1]. Solving for p in E[max{h, (1 − h)}p] = 1, we obtain p = 0, and thus
E[T (n)] = O(n).

5.3. Random Permutations. The number T (n) of cycles in a randomly chosen n-
permutation satisfies E[T (n)] = E[1 + T (�hn� − 1)] if n ≥ 1 and E[T (0)] = 0,
where h is a continuous random variable uniformly distributed on [0, 1]. Solving for
p in E[h p] = 1, we obtain p = 0, and thus E[T (n)] = O(log n). Note that we can-
not conclude that E[T (n)] = �(log n) since we are now in the case p = 0 where
Eh[− log((�hn� − 1)/n)] = ∞ due to the ceiling.

5.4. Examples. (1) If E[T (x)] = E[
√

x + T (hx) + T (x/3)] for x large enough,
where h is uniform on [0, 1], then E[h p] + E[( 1

3 )p] = 1/(p + 1) + ( 1
3 )p = 1 implies

p = 0.7626 . . . and thus E[T (x)] = �(x0.7626...).
(2) If E[T (x)] = E[x5 log x + 3T (hx) + 8T (h3x)] for x large enough, where h is

uniform on [0, 1] , then 3E[h p] + 8E[(h3)p] = 3/(p + 1) + 8/(3p + 1) = 1 implies
p = 5 and thus E[T (x)] = �(x5 log2 x).

(3) If E[T (n)] = E[n3 + 3
4 T (ζn(h1n +√

n))+0.5T (ζn(h2n −√
n)) + 0.5T (�n/2�)]

for n large enough, where h1 = max{r, s}, h2 = (s + t)/2, and r, s are independent and
uniform on [0, 1], then 3

4 E[h p
1 ] + 0.5E[h p

2 ] + 0.5E[( 1
2 )p] = 1 implies p = 1, and thus

E[T (n)] = �(n3).
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6. Possible Extensions of the Work. The setting in which we analyzed the prob-
abilistic recurrence is very general. However, one minor assumption that we did not
attempt to investigate its necessity is the condition imposed on the hi ’s or the vi ’s to get a
lower bound when p = 0, namely

∫ 1
0 − log t dα(t) < ∞ or Evi [− log (vi (n)/n)] < ∞

respectively in Theorems 3.2 and 4.5.
A more general question is whether the solution of the probabilistic recurrence holds

under perturbations in the continuous situation, i.e., in the setting of Theorems 2.1 or
3.2. This sounds true, but it is not obvious how to establish it with reasonable restrictions
on the hi ’s.

A similar recursively defined random process was shown in [3] to fall within its
expected value with high probability. Therefore, the result of [3]—when applicable—
assures that T (x) will fall with high probability within the closed-form solution we
provided. Translated to our setting, the assumption made in [3] on T (x) restricts the
recurrence to the case where E[T (x)] ≥ E[

∑k
i=1 ci T (hi0x)] for each x and each pos-

sible value (h10, . . . , hk0) of the random vector (h1, . . . , hk). As explained in [3], this
assumption is violated by many probabilistic recurrences that arise in computational
geometry and data structures analysis. A possible research direction might be in finding
the necessary and sufficient conditions for the high-probability result to hold, or at least
in weakening that assumption.

Acknowledgments. We thank the anonymous referees for valuable suggestions, and
David Karger for helpful discussions.

Appendix

LEMMA 4.6. For n large enough,

Evi

[
(1 − n−µ)h p

i − (1 − vi (n)−µ)

(
vi (n)

n

)p]
> 0.

PROOF. Let

f (x, t) = (1 − x−µ)t p − (1 − ϒx (tx + x1−ξ )−µ)(t + x−ξ )p,

where

ϒx (y) =




0 if x < 0,

y if 0 ≤ y ≤ x,

x if y > x,

and let α be the probability distribution of hi . The lemma will follow if we can argue that∫ 1
0 f (x, t) dα(t) > 0 for x large enough since (1−n−µ)h p

i −(1−vi (n)−µ)(vi (n)/n)p ≥
f (n, hi ). We consider the cases p ≥ 1 and 0 ≤ p < 1 separately.

Assume that p ≥ 1. Then there is a constant c > 0 such that (t + x−ξ )p ≤ t p + cx−ξ

for x large enough and for all 0 ≤ t ≤ 1. Since hi is not 1 with probability 1, let t1,
0 < t1 < 1, be such that

∫ t1
0 t p dα(t) > 0.



The Solution of Linear Probabilistic Recurrence Relations 55

If 0 ≤ t ≤ t1, we have

f (x, t) ≥ ((t1x + x1−ξ )−µ − x−µ)t p − (1 − ϒx (tx + x1−ξ )−µ)cx−ξ ,

else if t1 < t ≤ 1, we use the bound

f (x, t) ≥ −(1 − x−µ)cx−ξ .

Thus
∫ 1

0
f (x, t) dα(t) ≥ ((t1x + x1−ξ )−µ − x−µ)

∫ t1

0
t p dα(t) − 2cx−ξ

= x−µ((t1 + x−ξ )−µ − 1)

∫ t1

0
t p dα(t) − 2cx−ξ

> 0

when x is large enough since µ < ξ by (6).
Otherwise 0 ≤ p < 1. Then (t + x−ξ )p ≤ t p + ptp−1x−ξ . Since hi takes values

other than 0 and 1 with a nonzero probability let t0, t1, 0 < t0, t1 < 1, be such that∫ t1
t0

t p dα(t) > 0, and assume that x is large enough so that x−ξ ≤ t0. Note that if
x−ξ ≤ t ≤ 1, we have (t + x−ξ )p ≤ t p + px−pξ .

If x−ξ ≤ t ≤ t1,

f (x, t) ≥ ((t1x + x1−ξ )−µ − x−µ)t p − (1 − ϒx (tx + x1−ξ )−µ)px−pξ ,

else if t1 < t ≤ 1,

f (x, t) ≥ −(1 − x−µ)px−pξ ,

otherwise if 0 ≤ t < x−ξ ,

f (x, t) ≥ −(t + x−ξ )p ≥ −2px−pξ .

Thus
∫ 1

0
f (x, t) dα(t) ≥ ((t1x + x1−ξ )−µ − x−µ)

∫ t1

t0

t p dα(t) − (2p + 2p)x−pξ

= x−µ((t1 + x−ξ )−µ − 1)

∫ t1

t0

t p dα(t) − (2p + 2p)x−pξ

> 0

when x is large enough since µ < pξ by (6).

LEMMA 4.8. For n large enough,

Evi

[
(1 + (n + 1)−µ)h p

i − (1 + (vi (n) + 1)−µ)

(
vi (n)

n

)p]
< 0.
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PROOF. Let

f (x, t) = (1 + (x + 1)−µ)t p − (1 + (ϒx (tx + x1−ξ ) + 1)−µ)ϒ1(t − x−ξ )p,

where ϒx is as in Lemma 4.6, and let α be the probability distribution of hi . Since
(1 + (n + 1)−µ)h p

i − (1 + (vi (n) + 1)−µ)(vi (n)/n)p ≤ f (n, hi ), we can argue that∫ 1
0 f (x, t) dα(t) < 0 for x large enough. Here again, we consider the cases p ≥ 1 and

0 ≤ p < 1 separately.
Assume that p ≥ 1. Then there is a constant c > 0 such that (t − x−ξ )p ≥ t p − cx−ξ

when x−ξ ≤ t ≤ 1. Let t0, t1, 0 < t0, t1 < 1, be such that
∫ t1

t0
t p dα(t) > 0, and assume

that x is large enough so that x−ξ < t1.
If 0 ≤ t ≤ x−ξ ,

f (x, t) ≤ (1 + (x + 1)−µ)t p ≤ (1 + (x + 1)−µ)x−pξ ,

else if x−ξ < t ≤ t1,

f (x, t) ≤ ((x + 1)−µ − (t1x + x1−ξ + 1)−µ)t p + (1 + (ϒx (tx + x1−ξ ) + 1)−µ)cx−ξ ,

otherwise if t1 < t ≤ 1,

f (x, t) ≤ (1 + (x + 1)−µ)cx−ξ .

Thus∫ 1

0
f (x, t) dα(t)

≤ ((x + 1)−µ − (t1x + x1−ξ + 1)−µ)

∫ t1

t0

t p dα(t) + (2 + 4c)x−ξ

= −x−µ((t1 + x−ξ + x−1)−µ − (1 + x−1))

∫ t1

t0

t p dα(t) + (2 + 4c)x−ξ

< 0

when x is large enough since µ < ξ by (6).
Otherwise 0 ≤ p < 1. Then (t −x−ξ )p ≥ t p − p(t −x−ξ )p−1x−ξ when x−ξ ≤ t ≤ 1.

As before, let t0, t1, 0 < t0, t1 < 1, be such that
∫ t1

t0
t p dα(t) > 0, and assume that x

is large enough so that 2x−ξ ≤ t0. Note that if 2x−ξ ≤ t ≤ 1, we have (t − x−ξ )p ≥
t p − px−pξ .

If 2x−ξ ≤ t ≤ t1,

f (x, t) ≤ ((x + 1)−µ − (t1x + x1−ξ + 1)−µ)t p + px−pξ (1 + (ϒx (tx + x1−ξ ) + 1)−µ),

else if t1 < t ≤ 1,

f (x, t) ≤ (1 + (x + 1)−µ)px−pξ ,

otherwise if 0 ≤ t < 2x−ξ ,

f (x, t) ≤ (1 + (x + 1)−µ)t p ≤ (1 + (x + 1)−µ)2px−pξ .
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Thus
∫ 1

0
f (x, t) dα(t)

≤ ((x + 1)−µ − (t1x + x1−ξ + 1)−µ)

∫ t1

t0

t p dα(t) + (4p + 2p+1)x−pξ

= x−µ((t1 + x−ξ + x−1)−µ − (1 + x−1)−µ)

×
∫ t1

t0

t p dα(t) + (4p + 2p+1)x−pξ

< 0

when x is large enough since µ < pξ by (6).
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