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1 Introduction

In his book, Filtrage Optimal des Systémes Linéaires, Alain Bensoussan pre-
sented a variational view of optimal filtering for linear infinite-dimensional
stochastic differential systems. The viewpoint he presented is related to the
work of Bryson and Frazier [1] where the Kalman Filter was viewed in terms
of the solution of a linear optimal control problem with a quadratic cost cri-
terion. Implicit in this view is the duality between estimation and control
as reflected in the duality of the concepts of controllability and observability.
It has been an open question as to whether this duality can be extended
to te non-linear situation in a clear conceptual and mathematically precise
way. A hint that this might be possible is contained in my joint work with
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Wendell Fleming [2] where we presented a stochastic control view of non-
linear filtering using a logarithmic transformation due originally to Hopf.
This logarithmic transformation allows one to transform the robust form of
the Zakai equation (originally due to Martin Clark [3]; see also the work of
Mark Davis [4]) into a Bellman equation where the observations Y (·) appear
as a parameter. This Bellman equation has the interpretation as the value
function of an appropriate stochastic control problem. Our motivation at
that time was to prove a theorem on the existence of solutions to the Zakai
equation with unbounded observations. A physical or system-theoretic inter-
pretation of the stochastic control problem was not given in that paper. The
main contribution of this paper is to show that the duality between filtering
and control is exactly the variational duality between Relative Entropy and
Free Energy which is at the heart of the variational characterization of Gibbs
measures [5]. This duality plays an important role in the work of Donsker
and Varadhan on large derivations and is a result in the duality between
conjugate convex functions (cf. Deuschel–Stroock [6]).

Although I examine a variational approach to Non-linear Filtering in this
paper, this research has implications for Bayesian Estimation and places
Maximum Entropy Estimation in the correct contextual framework. There-
fore this line of inquiry is relevant to Image Analysis where attributes of
images are modelled as Markov random fields.

There has recently been considerable activity on the stability of non-linear
filters with respect to incorrectly chosen initial density but where the obser-
vation path is fixed. To date, the situation of stability of the filter where
other probabilistic parameters are varied has not been examined. The ideas
of this paper indicate why relative entropy is a natural Lyapunov function for
studying stochastic stability of diffusion (or conditional diffusion) processes.
It is well known that there is a close relationship between Hamilton–Jacobi
equations and Lyapunov Functions via the value function of an optimal con-
trol problem. These ideas were generalized to an input–output setting by
J.C. Willems in his work on Dissipative Systems [7]. We suggest that there
is a similar relationship between the Bellman equation for Stochastic control
problems and stability of stochastic dynamical systems, using the Davis–
Varaiya theory of Partially Observed Stochastic Control [8]. This leads to a
definition of a Stochastic Dissipative System which I believe has important
connections to the recent work on Nonequilibrium Statistical Mechanics [9].
In some sense, I am hinting at the development of a Non-equilibrium Sta-
tistical Mechanics where the fundamental objects are not states (probability
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measures) but information states (conditional probability measures).
In this paper, I emphasize the conceptual ideas and not the technical

details which are of considerable importance. A detailed version of this work
will be presented in my forthcoming paper with Nigel Newton [10].

2 Gibbs Measures (Variational Characteriza-

tion)

To set the stage, consider the finite situation. Let S be a finite set, the set
of sites and let E be a finite set, the state set and let Ω = ES. Consider the
Hamiltonian describing a system

H(ω) =
∑

A⊂S
ΦA(ω),(2.1)

where ΦA : Ω→ R is a potential function.
Let

ν(ω) = Z−1 exp[−H(ω)], ω ∈ Ω(2.2)

where the partition function

Z =
∑

ω∈Ω

exp[−H(ω)].

ν(ω) is the Gibbs measure corresponding to the Hamiltonian H. For a prob-
ability measure µ on Ω, let

µ(H) =
∑

ω∈Ω

µ(ω)H(ω)(2.3)

denote the average energy of the system.
Let

H(µ) = −
∑

ω∈Ω

µ(ω) log
(
µ(ω)

)
(2.4)

denote the Entropy of the system. Then the Free energy corresponding to µ
is given by

F (µ) = µ(H)−H(µ).(2.5)
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We then have

Proposition 2.1. For all probability measures µ on Ω

F (µ) = µ(H)−H(µ) ≥ − logZ,(2.6)

with equality iff µ = ν.

The proof relies on Jensen’s inequality and the strict convexity of the
function ϕ(x) = x log x on [0,∞). ¥

Let (Ω,F) be a measurable space and let P(Ω) denote the set of all
probability meausures on (Ω,F). For µ ∈ P(Ω), the relative antropy is a
map H(· | µ) : P(Ω)→ R is defined as

H(ν | µ) =

∫∫

Ω

(
log

dν

dµ

)
dν(2.7)

if ν is absolutely continuous w.r.t. µ, and dν
dµ

is the Radon–Nikodym Deriva-

tive of ν with respect to µ. H(ν | µ) is said to be the Relative Entropy of ν
w.r.t. µ. The following properties of Relative Entropy are well known.

Proposition 2.2.

(i) H(ν | µ) ≥ 0

(ii) H(ν | µ) = 0⇔ ν = µ

(iii) H(ν | µ) is a convex function of µ and ν. ¥

We now present a generalization of Proposition 2.1 which exhibits the
Fenchel-Duality relationship between Free Energy and Relative Entropy (cf.
[6] and [11]).

Using the notation of this section, let µ ∈ P(Ω) and Φ : Ω → R a
measurable function. The Free energy of Φ w.r.t. µ is defined by

F (Φ) = log

(∫
eΦdµ

)
∈ (−∞,∞].(2.8)

We make the assumption that Φ bounded below and eΦ ∈ L1(µ). Let O be
this class of Φ’s.

We then have
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Proposition 2.3. (i) For every ν ∈ P(Ω)

H(ν | µ) = sup
Φ∈O

[∫

Ω

Φ dν − F (Φ)

]
(2.9)

F (Φ) = sup
µ∈P(Ω)

[∫
Φ dν −H(ν | µ) : H(ν | µ) < +∞

]
.(2.10)

Moreover if ΦeΦ ∈ L1(µ) then the supremum in (2.10) is attained at ν∗ given
by

dν∗

dµ
=

eΦ

∫
eΦ dµ

Note that ν∗ is a Gibbs measure corresponding to the potential Φ.

3 Bayesian Estimation and Gibbs Measures

In this section, we discuss how the ideas of the previous section apply to
Bayesian Estimation. In the process we give an Information Theoretic view
of Bayesian Estimation.

Let (Ω,F , P ) be a probability space, (X,X ) and (Y,Y) measurable
spaces, and let

X : Ω→ X

and Y : Ω→ Y

measurable mappings that induce probability measures PX , PY and PXY on
X ,Y and X × Y , respectively. We assume

(H1) there exists a σ-finite (reference) measure, λY , on Y such that PXY ¿
PX ⊗ λY .

Let L be the associated Radon–Nikodym derivative. Let H : X × Y →
R ∪ {+∞} be any measurable function such that

H(X, y) =

{
− log(L(X, y)) a.s. if y ∈ Y

0 otherwise,
(3.1)
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where Ȳ is the set of all y such that L is integrable w.r.t. Px. We think of
H as the Hamiltonian and we define the Gibbs measure

Λ(x, y) =
exp(−H(x, y))∫

X
exp(−H(x̃, y)) dPX(x̃)

.(3.2)

Then, for any bounded, measurable Φ : X→ R, the function
∫

X

Φ(x)Λ(x, ·) dPX(x) : Y → R

is measurable; and
∫

X

Φ(x)Λ(x, Y ) dPX(x) = E(Φ(X)|Y ) a.s.

In particular, PX|Y : X → Y → [0, 1], defined by

PX|Y (A, y) =

∫

A

Λ(x, y) dPX(x),(3.3)

is a regular conditional probability for X given Y . Equations (3.1)–(3.3) con-
stitute an ‘outcome-by-outcome’ abstract Bayes’ formula, yielding a posterior
probability measure for X for each outcome of Y .

Let P(X ) be the set of probability measures on (X,X ) and, for P̃X ∈
P(X ), let H(P̃X | PX) be the relative entropy,

H(P̃X | PX) =

∫

X

log

(
dP̃X
dPX

(x)

)
dP̃X(x) if P̃X ¿ PX and log

(
dP̃X
dPX

)
∈ L1(P̃X)

+∞ otherwise,

(3.4)

and let F (P̃X , y) be the free energy of P̃X relative to (PX , H(·, y)),

F (P̃X , y) =

{
H(P̃X | PX) +

∫
X
H(x, y) dP̃X(x) if H(·, y) ∈ L1(P̃X)

+∞ otherwise.

(3.5)

Theorem 3.1. Suppose that (H1) is satisfied, L is a version of dPXY
d(PX⊗λY )

,

and H and PX|Y are as defined in (3.2) and (3.3). Then for any y such that
∫

X

L(x, y) log
(
L(x, y)

)
dPX(x) <∞,(3.6)
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PX|Y (·, y) is the unique element of P(X ) with the following property:

F
(
PX|Y (·, y), y

)
= − log

(∫

X

exp
(
−H(x, y)

)
dPX(x)

)
(3.7)

= min
P̃X∈P(X )

F (P̃X , y).(3.8)

The fact that H(· | PX) is strictly convex on the subset of P(X ) for which
it is finite establishes the uniqueness of PX|Y (·, y). ¥

Remark. If the mutual information between X and Y is finite,
∫

X×Y

log

(
dPXY

d(PX ⊗ PY )

)
dPXY <∞,(3.9)

then there exists a version of L for which (3.6) is satisfied for all y.
The following is an information-theoretic interpretation of Theorem 3.1.

Let

A =

{
x ∈ X :

∫

Y

L(x, y) dλY (y) = 1

}

and H̃(x, y) =

{
H(x, y) if x ∈ A
0 otherwise.

Then A ∈ X , PX(A) = 1 and PY |X : Y ×X→ [0, 1], defined by

PY |X(B, x) =

∫

B

exp
(
−H̃(x, y)

)
dλY (y),

is a regular conditional probability for Y given X. Let

IY (y) = − log

(∫

Y

dPY |X
dλY

(y, x) dPX(x)

)

= − log

(∫

X

exp
(
−H(x, y)

)
dPX(x)

)
(3.10)

and IY |X(y, x) = − log

(
dPY |X
dλY

(y, x)

)
(3.11)

= H̃(x, y),
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be, respectively, the information and the (regular) X-conditional information
in the observation ‘Y = y’, both relative to the reference measure λY . Then,
for all y ∈ Y

H(X, y) = IY |X(y,X) a.s.

and Theorem 3.1 shows that for all P̃X ∈ P(X )

H(P̃X | PX) +

∫

X

IY |X(y, x) dP̃X(x) ≥ IY (y),(3.12)

with equality if and only if P̃X = PX|Y (·, y).

4 Non-Linear Filtering

The variational representation of Bayes’ formula of the last section is de-
veloped further here for the special case where the observations are of the
following ‘signal plus white noise’ variety:

Yt =

∫ t

0

hs(X) ds+ Vt for 0 ≤ t ≤ T.(4.1)

Here, (ht(X) ∈ Rd, 0 ≤ t ≤ T ) is the ‘signal’ process depending on the
quantity to be estimated, X, and (Vt, 0 ≤ t ≤ T ) is a d-dimensional Brownian
motion (noise) process, independent of X. The abstract space (Y,Y) now
becomes the Borel space (C0([0, T ];Rd),BT ) of continuous functions from
[0, T ] to Rd with initial value 0. We continue to use the notation Y and Y .

It is well known that, if h satisfies

(H2) E

∫ T

0

‖ht(X)‖2 dt <∞,

then (H1) is satisfied when λY is Wiener measure, and the Radon–Nikodym
derivative takes the form:

dPXY
d(PX ⊗ λY )

(X, Y ) = exp

(∫ T

0

h′t(X) dYt −
1

2

∫ T

0

‖ht(X)‖2 dt

)
a.s.

(4.2)

Let (Ft, 0 ≤ t ≤ T ) be a filtration on (Ω,F , P ), to which the process
(ht(X),Vt) is adapted, and we assume that
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(H3) (ht(X),Ft; 0 ≤ t ≤ T ) is a semimartingale;

then we can ‘integrate by parts’ in (4.2) and define L as any measurable
function such that, for each y,

L(X, y) = exp

(
y′Th0(X) +

∫ T

0

(yT − yt)′ dht(X)− 1

2

∫ T

0

‖ht(X)‖2 dt

)
a.s.

(4.3)

and for each y ∈ Y

H(X, y) = −y′Th0(X)−
∫ T

0

(yT − yt)′ dht(X) +
1

2

∫ T

0

‖ht(X)‖2 dt a.s.

Theorem 3.1 thus shows that, for each y, the regular conditional prob-
ability for X given the observation (Yt, 0 ≤ t ≤ T ) is the only probability
measure on (X,X ) with the property that

F
(
PX|Y (·, y), y

)
= min

P̃X∈P(X )
F (P̃X , y)(4.4)

= − log
(
E exp(−H(X, Y ))

)
,

where

F (P̃X , y) = H(P̃X | PX) +

∫

X

H(x, y) dP̃X(x).

Consider now the further specialization, in which X is an Rn-valued dif-
fusion process satisfying the following Itô equation:

Xt = X0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dWs, 0 ≤ t <∞,(4.5)

X0 ∼ µ.

Here, X0 is an Rn-valued random variable with distribution µ, (Wt,Ft; 0 ≤
t <∞) is a n-dimensional Brownian motion, and X0, W and V (of (4.1)) are
independent. The abstrat space X of Section 2 now becomes the ‘path space’
C([0,∞);Rn), and X is the σ-field generated by the co-ordinate process on
X. We impose conditions on the coefficients b and σ such that (4.5) has
a strong solution Φ : Rn × C0([0,∞);Rn) → C([0,∞);Rn). In particular,
this means that (Xt = Φt(X0,W ),Ft; 0 ≤ t < ∞) is a continuous (Ft)-
semimartingale satisfying (4.5). The observation, Y , is now h(Xt) for some
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measurable h : Rn → Rd. Under appropriate hypotheses on b, σ, h there
exists a continuous, regular conditional probability distribution for X given
Y , PX|Y , and this is the only probability measure on the path space (X,X )
with the property (4.4) for the Hamiltonian

H(X, y) = −y′Th(X0)−
∫ T

0

(yT − yt)′ dh(Xt) +
1

2

∫ T

0

‖h(Xt)‖2 dt a.s.

(4.6)

There is a dynamic programming interpretation of the optimization prob-
lem (4.4) as the following argument shows. Let PX|X0 : X ×Rn → [0, 1] be a
regular conditional probability for (Xt, 0 ≤ t <∞) given X0, e.g., let

PX|X0(A, z) = E1Φ−1(A)(z,W ),

where Φ is the strong solution of (4.5), PX|X0 is also a regular conditional
probability for (Xt, s ≤ t < ∞) given Xs. Let Λ : [0, T ] × X × Y → R+

be any measurable function such that, for each x, y, Λ(·, x, y) is continuous,
and, for each s, y,

Λ(s,X, y) = exp

(
(ys − y0)′h(X0) +

∫ s

0

(ys − yt)′ dh(Xt)−
1

2

∫ s

0

‖h(Xt)‖2 dt

)
a.s.,

and, for some 0 ≤ s ≤ T , let

Ls(x, y) = Λ(s, x, y)

∫

X

L(T − s, x̃, Ssy) dPX|X0(x̃, xs),

where Ss is the ‘shift’ operator:

(Ssy)t = ys+t;

then
Ls(X, y) = E

(
L(X, y) | Xt, 0 ≤ t ≤ s).

Let (Xt, 0 ≤ t <∞) be the following filtration on (X,X )

Xt = σ(χs, 0 ≤ s ≤ t) for 0 ≤ t <∞,
where χ is the coordinate function on X, and suppose that A ∈ χs; then

∫

A

L(x, y) dPX(x) =

∫

A

Ls(x, y) dPX(x)

=

∫

A

exp
(
−L)s(x, y)

)
dPX(x),
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where

Hs = − log(Ls).(4.7)

We thus have the following Bayes’ formula for the restriction of PX|Y to Xs,
PXs|Y , (the nonlinear path interpolator for (Xt, 0 ≤ t ≤ s))

PXs|Y (A, y) = PX|Y (A, y)(4.8)

=

∫
A

exp(−Hs(x, y)) dPX(x)∫
X

exp(−Hs(x, y)) dPX(x)
for A ∈ Xs,

and by Theorem 3.1, PXs|Y is the only probability measure on Xs with the
property

Fs
(
PXs|Y (·, y), y

)
= min

P̃Xs∈P(Xs)
Fs(P̃Xs , y)(4.9)

= − log

(∫

X

exp
(
−Hs(x, y)

)
dPXs(x)

)

= − log

(∫

X

exp
(
−H(x, y)

)
dPX(x)

)
,

where PXs is the restriction of PX to Xs, H is the Hamiltonian of the path
estimator, (4.6),

Fs(P̃Xs , y) = H(P̃Xs | PXs) +

∫

X

Hs(x, y) dP̃Xs(x)(4.10)

=

(
H(P̃Xs | PXs) +

∫

X

− log
(
L(s, x, y)

)
dP̃Xs(x)

)

+

∫

Rn
− log

(∫

X

L(T − s, x̃, Ssy) dPX|X0(x̃, z)

)
dν̃(z),

and ν̃ is the distribution of Xs under P̃Xs .
The first term on the right-hand side of (4.10) is the free energy of P̃Xs

for the problem of estimating (Xt, 0 ≤ t ≤ s) given (Yt, 0 ≤ t ≤ s); the
second term is the minimum free energy for the problem of estimating (Xt,
s ≤ t ≤ T ) given (Yt − Ys, s ≤ t ≤ T ) when the initial distribution is
the Dirac measure at the point z, averaged over ν̃ (the terminal distribution
associated with P̃Xs). Thus (4.10) is a dynamic programming equation for
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the path estimator (4.4), the integrand of the second term on the right-hand
side being the value function:

v(z, s) = − log

(∫

X

L(T − s, x̃, Ssy) dPX|X0(x̃, z)

)
.

This minimum free energy is achieved by the posterior regular conditional
probability distribution for (Xt, s ≤ t ≤ T ), i.e., the regular conditional
probability given that Xs = z and that Y = y. Unlike the prior regular
conditional probabilities, these are not stationary. This is because of the
non-constancy of y and the ‘finite observation horizon’, T . It turns out that
they can be constructed by a Girsanov transformation, which relates the path
estimation problem to a problem in stochastic optimal control.

Let u : Rn× [0, T ]→ Rn be a measure function satisfying a linear growth
condition. We consider the ‘controlled’ Itô equation

Xu
t = φ+

∫ t

0

(
b(Xu

s ) + σ(Xu
s )u(Xu

s , s)
)
ds+

∫ t

0

σ(Xu
s ) dW̃s(4.11)

where φ ∈ Rn is a non-random initial condition and u : Rn × [0, T ] → Rn is
a measurable feedback control function satisfying a linear growth condition.
The aim is to find a u such that the following cost is minimized:

J(u, y) = Ẽ

∫ T

0

(
1

2
‖u(Xu

t , t)‖2 +
1

2
‖h(Xu

t )‖2 − y′Th(φ)(4.12)

− (yT − yt)′
(
Lh(Xu

t ) + div(Xu
t )σ(Xu

t )u(Xu
t , t))

)
dt

where (Ω̃, F̃ , (F̃t), P̃ , Ṽ , Xu) is a weak solution of (4.9), Ẽ is expectation with
respect to P̃ , y ∈ C0([0, T ];Rd)

div =

[
∂

∂z1

∂

∂z2

· · · ∂
∂zn

]

and L =
n∑

i=1

bi
∂

∂zi
+

1

2

n∑

j=1

ai,j
∂2

∂zi∂zj
.

Equation (4.11) has a unique weak solution; i.e., all weak solutions to (4.11)
have the same distribution on (C([0, T ];Rn),BT ), P u

X . That a weak solution
exists follows from the following argument. Let P̃ be a measure on the space
(Ω,F , (Ft)) of the path estimator, defined by

dP̃

dP
= exp

(∫ T

0

u′(Xt, t)dVt −
1

2

∫ T

0

‖u(Xt, t)‖2 dt

)
.
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This defines a probability measure. Under P , the process (W t, 0 ≤ t ≤ T ),
defined by

W t = Wt −
∫ t

0

u(Xs, s) ds,

is a Brownian motion and so (Ω,F , (Ft), P ,W,Φ(φ,W )) is a weak solution
to (4.9). We note that, for this solution,

J(u, y) = F (P u
X , y),

where F is the free energy functional of the path estimator.
The following is the Hamilton–Jacobi–Bellman equation for the above

stochastic optimal control problem

∂v

∂t
+ Lv +

1

2
‖h‖2 − y′Th(φ)− (yT − yt)′Lh

+ inf
θ∈Rn

{
1

2
‖θ‖2 − [(yT − yt)′div h]θ + (div ν)θ

}
= 0

θ(·, T ) = 0.

The circle has now been closed and I have now shown how my previ-
ous work with Fleming has a natural Information Theoretical interpretation.
It would be interesting to make a connection with the work on Maximum
A Posteriori Probability Filters via the variational representation of condi-
tional distributions I have obtained here (cf. the work of Mortensen, Hijab
and Zeitouni). Finally, the variational interpretation has implications in ob-
taining lower bounds for estimation error.

5 On Stochastic Dissipativeness

Consider a partially observed stochastic control problem

dXt = b(t,Xt, ut) dt+ dWt, Xt ∈ Rn(5.1)

and ut ∈ R and where the last m-components of Xt form a vector Yt which
is observed and where the control is feedback control

ut = u(t, Y[0,t])
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leading to the controlled equation

dXt = f
(
t,Xt, u(t, Y[0,t]) + dWt.

We are required to choose the control u(·) to minimize

J(u) = E

{∫ T

0

c(t,Xt, ut) dt+ γ(XT )

}
.(5.2)

where c > 0. Henceforth cus denotes c(s,Xs, u).
Let V u

t denote the minimum expected future cost given that the law u is
used in [0, t] and given the σ-field of observations FYt . Now the Principle of
Optimality states that for 0 ≤ t < t+ h ≤ T and u ∈ U , V u

t satisfies

V u
t ≤ Eu

{∫ t+h

t

cusds | Fyt
}

+ Eu{V u
t+h | Fut } a.s.

V u
T = Eu{γ | FyT} a.s.

where Eu represents expectation with respect to P u where P u is the trans-
formed measure corresponding to the Girsanov Functional

Lust = exp

{∫ t

s

f(τ,Xτ , uτ ) dXτ −
1

2

∫ t

s

‖f(τ,Xτ , uτ )‖2dτ

}
.

For u ∈ U , define the process (W u
t ,Fyt , P u) by

W u
t = Eu

{∫ t

0

cus ds | Fyt
}

+ V u
t .

Then (W u
t ,Fyt , P u) is a sub-martingale and u is optimal ⇔ W u

t is a mar-
tingale. This implies that (V u

t ,Fyt , P u) is a positive supermartingale for
optimal u.

Now we think of cus as a supply rate and V u
t as a storage function and we

say that (5.1) is dissipative w.r.t. the supply rate cus if for all admissible con-
trols u and all finite intervals, there exists a V u

t (as defined previously) which
is a positive supermartingale. The implication of these ideas to stability
questions in non-linear filtering will be explored elsewhere [10].
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