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Abstract

The average cost control problem for linear stochastic systems with
Gaussian noise and quadratic cost is considered in the presence of
communication constraints. The latter take the form of finite alpha-
bet codewords, being transmitted to the controller with ensuing delay
and distortion. It is shown that if instead of the state observations
an associated "innovations process" is encoded and transmitted, then
the separation principle holds, leading to an optimal control linear
in state estimate. An associated "off-line" optimization problem for
code length selection is formulated. Some possible extensions are also
pointed out.
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1 Introduction

Most traditional analyses of control systems presuppose that the observation
vector is available in its entirety to the controller at each decision epoch. In
many real engineering systems, however, the situation is different. What
the controller sees will not often be the original observation vector from
the sensor, but a quantized version of it transmitted over a communication
channel with accompanying transmission delays and distortion, subject to
bit rate constraints. This calls for control systems analysis that explicitly
accounts for such communication constraints. This problem has attracted
some attention in recent years, see, e.g. [3, 5, 7, 8, 9]. For related work on
multirate control of sampled-data systems, see [6] and the references therein.
The aim of this work is to show that the classical Linear-Quadratic-Gaussian
(LQG) problem does admit a rather clean treatment in this framework, with
the proviso that it is not the state or the observation vector that is encoded
and transmitted, but an associated process we dub the 'innovations' process
by slight abuse of terminology. In fact, a 'separation principle' holds and
this will be the main result of this exercise.

There are two key features of our formulation that make this work. The
first is the choice of 'innovations process' alluded to above in place of the
observation process as the signal to be quantized and encoded. Unlike the
latter, the former is an i.i.d. Gaussian sequence with statistics independent
of control. This allows us to use a fixed optimal vector quantizer for which
extensive analysis is available for the Gaussian case [4]. Secondly, the least
squares estimation at the output end of the channel can now be based only on
the current channel output and does not have to remember the past outputs,
as it ideally should, if the observations were to be encoded directly. This
makes the estimation scheme at the controller end completely transparent.
These observations will become self-evident as we proceed.

The second key feature is the centroid property of the optimal vector
quantizer, which allows us to interpret the quantized random variable as
the conditional expectation of the original random variable given an appro-
priate sub-a-field. This interpretation nicely fits in with the least squares
estimation scheme we use.
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The paper is organized as follows. The next section describes the problem
formulation in detail. Section 3 derives the optimal controller. Section 4
describes the associated optimal code-length selection problem. Section 5
sketches some possible extensions.

2 Preliminaries

Consider the control system

Xk+l = AXk + Buk + vk, k > O, (1)

where

i. {Xk} is an Rd-valued 'state' process, X0 prescribed,

ii. {Uk} is an Rm-valued control process,

iii. A E Rdxd, B e Rdxm

iv. {vk} is i.i.d. N(O,Q) noise, that is, normally distributed, zero-mean
with covariance Q

v. the following 'nonanticipativity' condition holds: {vj,j > k} is inde-
pendent of {xj, uj, v j-l, j < k} for all k > 0.

Let G E IRdxd, F E R`mxm be prescribed positive semidefinite matrices.
Our control problem is to minimize

n-I

limsup E E [XTGXk + UTFUk]
n-+oo n7k=O

over {Uk} as above, subject to the communication mechanism described
below. Before getting into the details thereof, we lay down the following
assumptions:

Al. The pair (A, B) is controllable.

A2. The pair (A, G2) is observable.

A3. [IA112 _ Amax(ATA) < 1.
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The above control problem is well-posed under (A1)-(A2) [2, pp. 228-
229]. (A3) will be used later. We come now to the encoding and communi-
cation mechanism.

Fix an integer M > 1, the 'code length.' Also let N > 1 be another
integer, the 'communication delay' given by N = +(M) for some prescribed
nondecreasing map k : N -+ N. (Typically, b(n) = [n/r] + 1 where [.]
represents integer part and r > 0 is the transmission rate in bits per second.)
For k > O, let

N-1

X(k+l)N = ANXkN + E AN-iBukN+i + Vk+l,

i=o

where Vk+l = ((k+l)N for

i-1

(kN+i = Ai--1VkN+j, 0 < i < N.
j=o

Then {Vk} are i.i.d. N(O,QN) where

i-1

Qi = Ai-j-lQ(AT) i- , 0 < i < N.
j=o

We call {Ok} the innovations process by abuse of terminology.
At time kN, k > O, start transmitting M-bit encoding of Ok. The

transmission is complete at time (k + 1)N.
Let {a l,..., ae} denote the range of the vector quantizer, assumed to

satisfy the usual optimality conditions [4, Section 11.2]. Let {A1,..., Ae}
denote the finite partition of Rd generated by the vector quantizer, such
that Ai gets mapped to ai, 1 < i < e. Let (k denote the a-field generated
by the events {vk E Ai}, i < i < e. Then the centroid condition of optimal
vector quantizer [4, p. 352] translates into

Vk = E[Vk/(k], k > 0.

Letting Pi = P(vk E Ai), 1 < i < e, it is clear that

E[Ok] = piai = 0.

We assume a memoryless channel that maps ai to aj with probability
q(i,j), 1 < i, j < e. Let v: be the output of the channel to input Vk. Then
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assuming that the channel noise is independent of {Ok}, the LMS estimate
of ~k at time k is vk = E[vk/vk] = E[tk/vj] calculated as follows using the
Bayes rule:

tk = ~piiq(i,j)(-.psq(s,j)) ai I{v,=a,}'
2 S

Clearly, E[vk] = 0 and

E _ cov(Uk) = E pipmq(i, j)q(m, j)(ypsq(s, j)) aia -

The controller thus receives Uk at time (k + 1)N, k > 0, and has to
optimize the control system based on this information. The next section
studies this control problem.

3 The optimal controller

With the aim of formulating a 'separated control problem,' we first study
the evolution of Xk = the LMS estimate of Xk, k < O. At time (k + 1)N,
X(k+i)N is obtained as follows:

Step 1. Update XkN to

XkN = XkN+Vk
N-1

= ANX(k-1)N + E AN-iBu(k-1)N+i + k 

i=O

Step 2. Set X((k+l)N = AN'ykN + N-t' AN-iBukN+i ·

For times kN + i, O < i < N, k > O, we have

Step 3. i-1

XkN+i = AiXkN + A Ai '- j- BukN+ j

j=o

( = AJXkN+i-1 + BukN+i-1 ·

Let ek = Xk - Xk denote the estimation error and Rk = cov(ek), k > 0.
Then the evolution of {Rk} is described by: RN = QN and for k > 1,

IARkN+i_A T + Q, < i < N

RkN+i =ANRkN(AN)T + (ANE(AN)T _ AN)N(AN) T ) +QN, i = N
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In particular, the evolution of {Rk} is deterministic and independent of
{uk}. Combining this with the observation that

E[XTGXk] = E[Xr G£k] + tr[GRk], (2)

we can consider the following 'separated' control problem: Minimize

n-1

limsup E E [kTGXk + Uk Fk] (3)
n-+oo n1 i=0

where {Xk} evolves according to Step i-Step 3 above. This evolution can
be rewritten as

Xk+1 = AXK + Buk + Wk, k > O,

where {wk} is a zero mean noise sequence given by

0O k {LiN, i > 0}
wk = ANi_ k =iN i<ON, i 

Now one can mimic the usual arguments for LQG control with minor mod-
ifications, to obtain the optimal controller. We sketch them below, closely
following the treatment of [2, p. 228-229].

Under our assumptions A1-A2, the unique positive semidefinite solution
{KI} to the Riccati equation:

Kk+i = AT (Kk - KkB(B T KkB + F)-L BTKk) A+ G, to = 0,

converges as k -+ oo to the unique positive semidefinite solution K of the
algebraic Riccati equation

K = AT (K - KB(BTKB + F)-BTK) A + G.

The optimal value of the n-stage costs [1, p. 130-132]

'F L= (v~ G + uI k k)]

is seen to equal

1 XvT r,- v , X r r,- _ T .W __. 1
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and tends to

n--1

A= lim -1 E[wTKkwk ]

k=O

= tr [(AT)NKANE] .

Also, the N-stage optimal feedback policy in its initial stages tends to the
stationary feedback policy

p(x) = -(BTKB + R)-1BTKAx . (4)

Using the definitions of A, K and M(-), it is easy to show that

XTIKx = min [xTGx + uTFx + (Ax + Bu)TK(Ax + Bu)] ,

xTKx + NA =

min [xTGx + uTFx + E [(Ax + Bu + WkN)TK(Ax + Bu + +WkN)] ,

k> O 0,

with the minimum in both cases being attained by u = [s(x). Now one
can mimic the standard dynamic programming arguments of [1, p. 191-192]
[2, p. 229] to deduce that under arbitrary admissible control {uk), the cost
(3) is greater than or equal to A, with equality if uk = u,(Xk), k > 0. We
summarize these findings in the following:

Theorem 1. The optimal feedback controller for the separated control
problem (and hence for the original control problem) is given by

Uk = l(k), k > 0,

for /(.) defined by (4).

4 Optimal Codelength

Consider the matrix equation

R = ANR(AN) T + C(N) (5)
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where C(N) = ANE(AN)T + QN - ANQN(AN)T. Under A3, (5) has a

unique symmetric positive definite solution R given explicitly by
00

= Z ANiC(N)(AT)Ni. (6)
i=O

As k -* oo, RkN -+ R, as can be easily verified.
Given (2) and the dynamics of {Rk}, the total cost for the original control

problem is

N-1

J(N) A A(N) + - E tr [GAiR(AT)i ] + tr[GQ], (7)
i=0

where A is written as A(N) to make its dependence on N explicit. Recalling
that N = +(M), the choice of optimal M would be obtained by minimizing
M -+ J(,O(M)) over M e N. The expression (7) has a complicated depen-
dence on N, but this optimization problem is 'off-line.' Also, the following
could be used to advantage for any computational scheme:

i. To go from N to N + 1, the quantities ANK(AT)N, ANE(AT)N, QN

can be updated by pre- and post-multiplying by A, AT resp. Sim-
ilarly, ANQN(AT)N is updated by pre- and post-multiplying by A 2

and (AT) 2 respectively. This takes care of the updates of A(N) and
C(N).

ii. Updating R = R(N) poses a harder problem. One possible approxi-
mation scheme is to use for each N the recursion

Rk+l = ANRk(AT)N + C(N) ,k >_ 1,

till a suitable stopping criterion is satisfied and use the resultant matrix
R(N) as an approximation for R(N). Repeat the iteration for N + 1
with C(N) replaced by C(N + 1), using fR(N) as the initial guess.
Our assumption A3 ensures good convergence behavior of the above
recursion.

iii. Invoking assumption A3 again, the summations in 6 and 7 could simply
be approximated by a finite summation with a fixed number of terms
for moderately large values of N.

In conclusion, observe that in our model, shorter codes correspond to low
resolution and low delays, while longer codes mean higher resolution, but
longer delays. Thus the above optimization problem captures the tradeoff
between delay and accuracy.
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5 Extensions and open issues

i. Partial observations: Suppose we do not observe {Xk}, but an accom-
panying r-dimensional observation process {Yk} described by

Yk = HXk + r/k, k > O,

where H E Idxr and {rlk} are i.i.d. N(O, S), independent of {vk}. Sup-
pose the pair (A, H) is observable and the pair (A, Q'/ 2 ) controllable.
Then we can carry through the foregoing analysis for this problem
with just one change: replace (1) by the steady state Kalman filter [4,
R. M. Gray].

ii. Coding issues: The preceding section considered optimization over
code length, not over codes. Also, the entire analysis ignores the fact
that if the encoding is sequentially transmitted and received, each bit
carries its own information. The situation is particularly transparent
for tree codes [4, Ch. 15]. These are based on successive refinements of
partitions, to which we can assign a corresponding increasing family
of a-fields along the lines of ( (which then corresponds to the largest
a-field in this chain). If the 'centroid rule' is observed at each stage of
refinement, the first m bits of an M-bit codeword (m < M) would cor-
respond to the conditional expectation with respect to the m-th a-field
in the chain. Thus the controller receives a succession of conditional
expectations over finer and finer a-fields during each N-interval. The
updates rules of Step 1-Step 3 of Section 3 can be easily modified to ac-
commodate this situation and the rest of the analysis is similar to that
above. This would, in fact, seem to make a case for using tree codes in
control applications. The situation for other coding schemes, however,
is complicated. Also, the problem becomes considerably harder if we
consider variable length codes. Finally, we have used a simple model
for the channel. More complex situations need to be analyzed.

iii. Distributed control: If several observations are being recorded, en-
coded and transmitted in a distributed manner, with or without syn-
chronism, the problem would appear to be much more difficult and at
the same time, much more interesting for applications. We hope to
address this in subsequent work.
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