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METROPOLIS-TYPE ANNEALING ALGORITHMS FOR GLOBAL
OPTIMIZATION IN Ra*

SAUL B. GELFAND AND SANJOY K. MITTER

Abstract. The convergence of a class of Metropolis-type Markov-chain annealing algorithms for global
optimization of a smooth function U(. on Ea is established. No prior information is assumed as to what
bounded region contains a global minimum. The analysis contained herein is based on writing the Metropolis-
type algorithm in the form of a recursive stochastic algorithm Xk+l Xk-ak(V U(Xk)+ k)+ bkWk, where
Wk} is a standard white Gaussian sequence, {sck} are random variables, and ak A/k, b v/-/x/k log log k

for k large. Convergence results for {Xk} are then applied from our previous work SIAMJournal on Control
and Optimization, 29 (1991), pp. 999-1018]. Since the analysis of {Xk} is based on the asymptotic behavior
of the related Langevin-type Markov diffusion annealing algorithm dY(t) -V U(Y(t)) dt+ c(t) dW(t),
where W(. is a standard Wiener process and c(t)= x/-/v/g for large, this work demonstrates and
exploits the close relationship between the Markov chain and diffusion versions of simulated annealing.
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1. Introduction. Let U(.) be a real-valued function on some set E. The global
optimization problem is to find an element of the set S*= {x: U(x)<= U(y) for all
y E} (assuming that S* ). Recently, there has been much interest in the simulated
annealing method for global optimization. Annealing algorithms were initially proposed
for finite optimization (E finite), and later developed for continuous optimization
(E Ed). An annealing algorithm for finite optimization was first suggested in 17], [2]
and is based on simulating a finite-state Metropolis-type Markov chain. The Metropolis
algorithm and other related algorithms such as the "heat bath" algorithm, were
originally developed as Markov chain sampling methods for sampling from a Gibbs
distribution [1]. The asymptotic behavior of finite state Metropolis-type annealing
algorithms has been extensively analyzed [3], [5], [9], [12], [14], [21], [24], [25].

A continuous-time annealing algorithm for continuous optimization was first
suggested in [10], [13], and is based on simulating a Langevin-type Markov diffusion
as follows:

(1.1) dY(t)=-VU(Y(t)) dt+c(t) dW(t).

Here U(.) is a smooth function on Ed, W(.) is a standard d-dimensional Wiener
process, and c(. is a positive function with c(t)- 0 as . In the terminology of
simulated annealing algorithms, U(x) is called the energy of state x, and T(t) c2(t)/2
is called the temperature at time t. Note that for a fixed temperature T(t)= T, the
resulting Langevin diffusion, like the Metropolis chain, has a Gibbs distribution
oc exp (-U(x)/T) as its invariant measure. Now (1.1) can be viewed as adding
decreasing white Gaussian noise to the continuous time gradient algorithm

(1.2) (t)=-VU(z(t)).
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We use (1.1) instead of (1.2) for minimizing U(. to avoid getting trapped in strictly
local minima. The asymptotic behavior of Y(t) as t has been studied in
[4], [10], [11], [18]. In [10], [18] convergence results were obtained for a version of
(1.1), which was modified to constrain the trajectories to lie in a fixed bounded set
(and hence is only applicable to global optimization over a compact subset of Rd); in
[4], [11] results were obtained for global optimization over all of Rd. Chiang, Hwang,
and Sheu’s main result from [4] can be roughly stated as follows: If U(. is suitably
behaved and c2(t)= C/log for large with C> Co (a constant depending only on
U(. )), then Y(t) - S* as - 3 in probability.

A discrete-time annealing algorithm for continuous optimization was suggested
in [8], [18] and is based on simulating a recursive stochastic algorithm

(1.3) Xk+ Xk--ak(V U(Xk)+ k)+ bkWk.

Here U(. is again a smooth function on d, {k} is a sequence of d-valued random
variables, { Wk} is a sequence of independent standard d-dimensional Gaussian random
variables, and {ak}, {bk} are sequences of positive numbers with ak, bk0 as k-.
Algorithm (1.3) could arise from a discretization or numerical integration of the
diffusion (1.1) so as to be suitable for implementation on a digital computer; in this
case, k is due to the discretization error. Alternatively, algorithm (1.3) could arise by
artificially adding decreasing white Gaussian noise (i.e., the bkWk terms) to a stochastic
gradient algorithm

(1.4) Zk+I Zk ak(V U(Zk) + ),

which arises in a variety of optimization problems including adaptive filtering, iden-
tification and control; in this case, SCk is due to noisy or imprecise measurements of
V U(.) (cf. [19]). We again use (1.3) instead of (1.4) for minimizing U(.) to avoid
getting trapped in strictly local minima. In the following, we refer to (1.4) and (1.3)
as standard and modified stochastic gradient algorithms, respectively. The asymptotic
behavior of Xk as k- has been studied in [8], 18]. In 18] convergence results were
obtained for a version of (1.3), which was modified to constrain the trajectories to lie
in a compact set (and hence is only applicable to global optimization over a compact
subset of d); in [8] results were obtained for global optimization over all ofd. Also,
in [18] convergence is obtained essentially only for the case where SCk =0; in [8]
convergence is obtained for {SCk} with unbounded variance. This latter fact has important
implications when V U(.) is not measured exactly. Our main result from [8] can be
roughly stated as follows: If U(.) and {:k} are suitably behaved, ak =A/k and
b2k B/k log log k for k large with B/A> Co (the same Co as above), and {Xk} is
tight, then Xk 5;* as k - in probability (conditions are also given in 8] for tightness
of {Xk}). Our analysis in I-8] of the asymptotic behavior of Xk as k- is based on
the behavior of the associated stochastic differential equation (SDE) (1.1). This is
analogous to the well-known method of analyzing the asymptotic behavior of Zk as
k-o based on the behavior of the associated ordinary differential equation (ODE)
(1.2) 19], [20].

It has also been suggested that continuous optimization might be performed by
simulating a continuous-state Metropolis-type Markov chain [10]. This method has
been applied to the restoration of noise corrupted images [16], [23]. In these works,
Gaussian random field models are used so that the state space is unbounded. Although
some numerical work has been performed with continuous-state Metropolis-type
annealing algorithms, there has been very little theoretical analysis, and, furthermore,
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the analysis of the continuous-state case does not follow from the finite-state case in
a straightforward way (especially for an unbounded state space). The only analysis of
which we know is in [16], where a certain asymptotic stability property is established
for a related algorithm and a particular cost function that arises in a problem of image
restoration.

In this paper, we demonstrate the convergence of a class of continuous-state
Metropolis-type Markov-chain annealing algorithms for general cost functions. Our
approach is to write such an algorithm in the form of a modified stochastic gradient
algorithm (1.3) for suitable choice of :k, and to apply results from [8]. A convergence
result is obtained for global optimization over all of d. Some care is necessary to
formulate a Metropolis-type Markov chain with appropriate scaling. It turns out that
writing the Metropolis-type annealing algorithm in the form (1.3) is more complicated
than writing standard variations of gradient algorithms, which use some type of
finite-difference estimate of V U(. ), in the form (1.4) (cf. [19]). Indeed, to the extent
that the Metropolis-type annealing algorithm uses an estimate of V U(. ), it does so in
a much more subtle manner than a finite-difference approximation, as is seen in the
analysis.

Since our convergence results for the Metropolis-type Markov-chain annealing
algorithm are ultimately based on the asymptotic behavior ofthe Langevin-type Markov
diffusion annealing algorithm, this paper demonstrates and exploits the close relation-
ship between the Markov chain and diffusion versions of simulated annealing, which
is particularly interesting in view of the fact that the development and analysis of these
methods has proceeded more or less independently. We note that similar convergence
results for other annealing algorithms based on the continuous-state Markov-chain
sampling method (such as the "heat bath" method) can be obtained by a procedure
similar to that used in this paper.

It is important to note that, although we establish the convergence of the
Metropolis-type Markov-chain annealing algorithm by effectively comparing it with
the Langevin-type Markov diffusion annealing algorithm, the finite-time behavior of
the algorithms may be quite different. Some indication of this arises in the analysis;
see Remarks 1 and 2 in 4.

The paper is organized as follows. In 2 we discuss appropriately modified versions
of tightness and convergence results for modified stochastic gradient algorithms, as
given in [8]. In 3 we present a class of continuous-state Metropolis-type annealing
algorithms and state some convergence theorems. In 4 we prove the convergence
theorems of 3, using the results of 2.

2. Modified stochastic gradient algorithms. In this section, we give convergence
and tightness results for modified stochastic gradient algorithms of the type described
in 1. The algorithms and theorems discussed below are a slight variation on the
results of [8] and are appropriate for proving convergence and tightness for a class of
continuous state Metropolis-type annealing algorithms (see 3 and 4).

We use the following notation throughout the paper. Let V U(.), A U(.), and
HU(. denote the gradient, Laplacian, and Hessian matrix of U(. ), respectively. Let
I" [, (’, "), and (R) denote Euclidean norm, inner product, and outer product, respectively.
For real numbers a and b, let a v b maximum {a, b}, a ^ b minimum {a, b}, a]+=
a v 0, and [a]-= a ^ O. For a process {Xk} and a function f(. ), let En,,{f(Xk)} denote
conditional expectation, given X, =x, and let E,.,.,2,,,2{f(X)} denote conditional
expectation, givenX Xl and X,2 x_ (more precisely, these are suitably fixed versions
of the conditional expectation). Also, for a measure /x(.) and a function f(.), let
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I(f)=fdl. Finally, let N(m,R)(.) denote normal measure with mean m and
covariance matrix R, and let I denote the identity matrix.

2.1. Convergence. In this section, we consider the convergence of the discrete-time
algorithm

(2.1) Xk+l Xk-- ak(V U(Xk)+ k)+ bkWk.
Here U(.) is a smooth real-valued function on Rd, {k} .is a sequence of Rd-valued
random variables, { Wk} is a sequence ofindependent standard d-dimensional Gaussian
random variables, and

A
ak =--, bk x/k log log k’

k large,

where A, B are positive constants.
For k=0, 1,..., let k tr(Xo, Wo,’’’, Wk-1, o,’’’, :k-1). In the following,

we consider the following conditions (a,/3 are constants whose values are specified
later).

Condition 1. U(.) is a C2 function from d to [0, ) such that

lim (VU(x) ]_])Ixl- IVU(x)[’ 1,

inf (IV U(x)[2- A U(x)) > -oo.

Condition 2. For e > 0, let

d’(x) - exp - dx, Z= exp -i dx<oo.

r has a weak limit r as e- 0.
Condition 3. Let K be a compact subset of Rd. Then there exists L, ko => 0 such

that, for every k _-> ko,

(2.2a) E{]kJE]k} <-- La’, VXk K, with probability one (w.p.1),

(2.2b) Lak, VXk K, w.p.1.

Wk is independent of k.
We note that r concentrates on S*, the global minima of U(. ). The existence of

r and a simple characterization in terms of HU(. is discussed in [15].
In [4] and [8], it was shown that there exists a constant Co, which plays a critical

role in the convergence of (1.1) and (1.3), respectively (in [4] Co was denoted by Co).
Co has an interpretation in terms of the action functional for the perturbed dynamical
systems

(2.3) dY(t)=-VU(Y(t)) dt+e dW(t).

Now, for 4(" an absolutely continuous function on Rd, the (normalized) action
functional for (2.3) is given by

inf
1 (I( t, x, y) [4,(s)+V

th(t)=y
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According to [4],

Co=23- sup (V(x,y)-2U(y)),
x,y So

where V(x, y) limt_o I(t, x, y), and So is the set of all the stationary points of U(. ),
i.e., So={X: V U(x)=0}; see [4] for a further discussion of Co, including some
examples.

Let K1 c d, and let {X} denote the solution of (2.1) with Xo x. We say that
{X" k >= 0, x K1} is tight if, given e > 0, there exists a compact K2 c d such that
Po.x{Xk K2} > 1 e for all k -> 0 and x K1. Below is our theorem on the convergence
of X as k-oo.

THEOREM 1. Assume that Conditions 1-3 hold with a >-1 and fl >0. Let {Xk}
be given by (2.1), and assume that {X: k >= O, x K} is tightfor K a compact set. Then,
for B/A > Co and any bounded continuous function f(. on d,

(2.4) lim Eo,,(f(Xk))= 7r(f)

uniformly for x in a compact set.
Note that since 7r concentrates on S*, under the conditions of Theorem 1, we

have that Xk- S* as k c in probability.
Theorem 1 is the same as [8, Thm. 2], except there we assumed that (2.2) was

valid for all k_>-0. However, examination of the proof of [8, Thm. 2] shows that we
actually established that

(2.5) lim Eox.ko o{f(Xk)} 7r(f)
k->eo

uniformly for Xo in a compact set and all x, only assuming that (2.2) is valid for all
k-> ko. It is easy to show that (2.4) follows from (2.5) and the assumption that
{X" k => 0, x K} is tight.

2.2. Tightness. In this section, we consider the tightness of the discrete-time
algorithm

(2.6) Xk+l Xk ak(bk(Xk) + rlk) + bktrk(Xk) Wk.

Here {Ok(" )} are Borel functions from d to Rd, {O-k(" )} are Borel functions from Rd
to , {r/k} is a sequence of d-valued random variables, and { Wk}, {ak}, {bk} are as in
2.1. Below, we give sufficient conditions for the tightness of {X" k _-> 0, x K}, where
K is a compact subset of d. Note that algorithm (2.6) is somewhat more general than
algorithm (2.1). We consider this more general algorithm because it is sometimes
convenient to write an algorithm in the form (2.6) (with bk(X) # V U(x) for some x, k)
to verify tightness, and then to write the algorithm in the form (2.1) to verify conver-
gence. We give an example of this situation when we consider continuous-state
Metropolis-type annealing algorithms in 3 and 4.

Let (k-" o’(Xo, Wo,’’’, Wk-1, o,’’’, Tlk-1). We consider the following condi-
tions (a,/3, 3’1, /2 are constants whose values are specified later).

Condition 4. Let K be a compact subset of d. Then

sup Ig,, (x)l <
k;xeK

lim a<,
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lim a > O,

lim (,(x)x)I  (x)l’lxl
> 0.

Condition 5. Let K be a compact subset of a. Then

sup Itrk(x)[<o, lim <

Condition 6. There exists L 0 such that

(2.7a) w.p.1,

(2.7b) IE{nl}lta(lxl+ 1) w.p.1.

Wk is independent of k-
THEOREM 2. Assume that Conditions 4-6 hold with a > 1, fl > 0, and 0 <- /2 <-- ")/1 <

1/2. Let {Xk} be given by (2.6), and let K be a compact subset ofd. Then {X: k _-> 0, x K}
is a tight family of random variables.

Theorem 2 is proved similarly to [8, Thm. 3], where we assumed that crk(’)= 1
and did not allow the bounds in (2.7) to be state-dependent. The extension to the
present case is straightforward.

3. Metropolis-type annealing algorithms. In this section, we review the finite-state
Metropolis-type Markov-chain annealing algorithm, generalize it to an arbitrary state
space, and then specialize it to a class of algorithms for which the results in 2 can
be applied to establish convergence.

The finite-state Metropolis-type annealing algorithm may be described as follows
[12]. Assume that the state space E is finite set. Let U(.) be a real-valued function
on E (the "energy" function) and { Tk} be a sequence of strictly positive numbers (the
"temperature" sequence). Let q(i,j) be a stationary transition probability from to j,
for i, j E. The one-step transition probability at time k for the finite-state Metropolis-
type annealing chain {Xk} is given by

(3.1)
P{Xk+l =jlx i}= q(i,j)sk(i,j), j i,

P{Xk+ i[Xk i}= 1- Y q(i,j)sk(i,j),
ji

where

(3.2) sk(i,j)=exp (-[U(j)- U(i)]+).
This nonstationary Markov chain may be interpreted (and simulated) in the following
manner. Given the current state Xk i, generate a candidate state Xk =j with probability
q(i,j). Set the next state Xk/l =j if Sk(i,j)> Ok, where Ok is an independent random
variable uniformly distributed on the interval [0, 1]; otherwise, set Xk+ i. Suppose
that the stochastic transition matrix Q=[q(i,j)] is symmetric, i.e., q(i,j)= q(j, i), and
the temperature Tk is fixed at a constant T> 0. Then it is easy to show that the resulting
stationary Markov chain has a Gibbs invariant measure with mass az exp (-U(i)! T).
Furthermore, if the chain is recurrent, then the chain, in fact, has a unique Gibbs
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invariant probability measure, and the transition probabilities converge to the Gibbs
probabilities as k oo for all initial states. Of course, if a finite-state Markov chain
is irreducible, then it is recurrent. There has been much work on the convergence
and asymptotic behavior of the nonstationary annealing chain when T,0
[3], [5], [9], [12], [14], [21], [24], [25].

We next generalize the finite-state Metropolis-type annealing algorithm (3.1), (3.2)
to a general state space. In the formulation and analysis of general state space Markov
chains, it is usually assumed that the state space 5; is a or-finite measure space, say
(Z, A,/z) (see [22, Chap. 1] for a thorough discussion of general state space Markov
chains). Let U(. be a real-valued measurable function on such a E, and let { Tk} be
as above. Let q(x, y) be a stationary transition probability density with respect to /x
from x to y, for x, y E. The one-step transition probability at time k for the general
state Metropolis-type annealing chain {Xk} is given by

(3.3) P{Xk+I AIX x}= fa q(x, y)Sk(X, y) dl(y)+ rk(X)la(X),

where

(3.4) s(x, y)=exp (_ U(y)- U(x)]+)T

(rk(X) gives the appropriate normalization, i.e., rk(X) 1-- q(x, y)Sk(X, y) dl.z(y)). Note
that if/x does not have an atom at x, then rk(X) is the self transition probability starting
at state x at time k. Also, note that (3.3), (3.4) reduces to (3.1), (3.2) when the state
space is finite and/z is counting measure. The general state chain may be interpreted
(and simulated) similarly to the finite-state chain" here q(x, y) is a conditional probabil-
ity density for generating a candidate state Xk y, given the current state Xk x.
Suppose that the stochastic transition function Q(x, A) a q(x, y) dlx(y) is symmetric,
i.e., q(x, y)= q(y, x), and the temperature T is fixed at a constant T>0. Then it is
easy to show that the resulting stationary Markov chain has a Gibbs invariant measure
with density (with respect to z) exp (-U(x)/T). Furthermore, if this measure is
finite and the chain is/x-recurrent, then the chain, in fact, has a unique Gibbs invariant
probability measure, and the transition probability measure converges to the Gibbs
measure (in the total variation norm) as k for all initial states [22, Thm. 7.1, p. 30].
It is known that if a chain is /x-irreducible2 and satisfies a certain condition due to
Doeblin [6, Hyp. (D), p. 192], then it is tz-recurrent. In [7, Chap. 3], we use this theory
to give some sufficient conditions for the ergodicity of general state Metropolis-type
Markov chains when Z is a compact metric space and /x is a finite Borel measure.
However, there has been almost no work on the convergence and asymptotic behavior
of the nonstationary annealing chain when T 0, although, when is a compact
metric space, we would expect the behavior to be similar to when Z is finite.

We next specialize the general state Metropolis-type annealing algorithm (3.3),
(3.4) to a d-dimensional Euclidean state space. This is the most important case and
the one that has seen application [16], [23]. Actually, the Metropolis-type annealing
chain that we consider is not exactly a specialization of the general state chain described
above. Motivated by our desire to show convergence of the chain by writing it in the

If, for every x E and A A such that/x(A) > 0, Po,x {.-Jk=l {Xk A} 1, then {X} is/x-recurrent.
If, for every xE and AA such that/x(A) > 0, Po,x (._J=l {X A}>0, then {X} is/x-irreducible.
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form of the modified stochastic gradient algorithm (2.1), we are led to choosing a
nonstationary Gaussian transition density

(3.5) qk(x,y)= (1 ly-xla

)(2,rrbkrak(x))d/2 exp - bktrk(X)

and a state-dependent temperature sequence

(3.6) Tk(x) bZktrZk(X) ( cnst rzk(x))2ak log log k

where

(3.7) trk(X) (klXl) v 1, 60.
To understand these choices, suppose that x lies in some fixed compact set. Then, for
k large enough,

1 ( 1 ly_-_xl:(3.8) qk(x,y) (2rb)d/a exp -- b ]

and

(3.9) Tk(X) Tk
2a

The choice of the transition density (3.8) is clear, given that we want to write the chain
in the form (2.1). The choice of the temperature schedule (3.9) is also clear if we view
(2.1) as a sampled version of the associated diffusion (1.1) with sampling intervals ak
and sampling times k

k-
n=o an, since then we should have the corresponding sampled

temperatures T(tk) ca(tk)/2. Indeed, it is straightforward to check that, if C B/A,
then

bk c2( tk)
Tk

2ak 2
T( tk) as k->

(recall that ak- A/k, bk B/k log log k, and c2(t)- C/log for large k, t). Finally,
the reason that the Ixl dependence is needed in trk(x), and hence both (3.5), (3.6), is
that to establish tightness of the annealing chain by writing the chain in the form of
(2.6), we need a condition similar to the following:,

I  (x)l-->const Ixl, Ixl large, k fixed,

for suitable choice of k(" ). In other words, the annealing chain must generate a drift
(toward the origin) at least proportional to the distance from the origin. This discussion
leads us to the following continuous-state Metropolis-type Markov-chain annealing
algorithm and convergence result. To establish convergence, we must assume, along
with Conditions 1 and 2, the following condition.

Condition 7. It holds that

inf li-- sup IHU(y)[
>o Ixl- ly-xl<,lxl U(x)

This condition is satisfied if, for example, U(x)---constlx[ p and HU(x)=
O(Ixl p-2) as Ix - o0, for some p _-> 2.
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Metropolis-Type Annealing Algorithm 1. Let {Xk} be a Markov chain with one-step
transition probability at time k given by

(3 10) e{x+ AIx x} f s(x, y) dN(x, bkrk(x)i)(y)+2 2 rk(X)la(X)

where

(3.11) trk(X) (alx [) v 1,

(3.12) sk(x, y)=exp ( 2ak U(y)- U(x)]+)b2 o-(x)
and 3’ > 0 (rk(x) gives the correct normalization).

THEOREM 3. Assume that Conditions 1, 2, and 7 hold, and also that

lim IV U(x)l <(3.13)
Ixl-,oo [x----

Let {Xk} be the Markov chain with transition probability given by (3.10)-(3.12) and with
0 < <. en, for B/A > Co and any bounded continuous function f(. on Nd,
(3.14) lim Eo{f(Xk)} (f)

k

uniformly for x in a compact set.
The proof of Theorem 3 is in 4.1. Observe that the conditions of Theorem 3 are

satisfied if, for example, V U(x) const x and HU(x) O(1) as ]x m. We can allow
for faster growth in V U(x) by using a suitable modification of (3.12).

Metropolis-Type Annealing Algorithm 2. Let {Xk} be a Markov chain with one-step
transition probability at time k given by

(3.15) P{X+ AIX x}= ( s(x, y) dN(x, b(x)Z)(y)+ r(X)A(X),
JA

where

(3.16) k(X) (aZlxl) v 1,

( 2ak U(y)- U(x)]+.) if U(x)<=sk(x, y) exp k o’S(X) a
(3.17) ( 2ak [ly12-lx12]+ IX[2""1

=exp\ b, -(’i ]
if U(x)>a

and 3’ > 0 (rk(x) gives the correct normalization). Note that if K is any fixed compact,
Xk=x K, and k is very large, then (3.17) and (3.12) coincide. Note also that (3.17),
like (3.12), only uses measurements of U(. (and not V U(. )).

THEOREM 4. Assume that Conditions 1, 2, and 7 hold, and also that

(3.18) lim IVU(x)] Ix]
<.

ixl Or(x)
Let {Xk} be the Markov chain with transition probability given by (3.15)-(3.17) and with
0 < 3" < . Then, for BA> Co and any bounded continuous function f(. on Re,
(3.19) lim Eo,x{f(Xk)} 7r(f)

uniformly for x in a compact set.
The proof of Theorem 4 is in 4.2. Observe that the conditions of Theorem 4 are

satisfied if, for example, V U(x).-- const Ixlp-2x and HU(x) O(Ix[ p-2) as Ixl o, for
some p -> 2.
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4. Proofs of Theorems 3 and 4. In the following, cl, c2,’’" denotes positive
constants whose value may change from proof to proof. We need the following lemma.

LEMMA 1. Assume that V(.) is a C2 function from Ra to . Let

s(x, y) exp (-hi V(y) V(x)]+)
and

where A > O. Then

for all x, y Rd.
Proof Let

(x, y) exp (-A[(V V(x), y x)]+),

Is(x, y)- (x, Y)I -<- A sup IHV(x + e(y x)) [y xl2
ee(O,1)

f(x, y) V(y) V(x) -(7 V(x), y x).

Then, by the second-order Taylor theorem,

(4.1) If(x,y)[<= sup InV(x+e(y-x))lly-xl2.
ee(0,1)

By separately considering the four cases corresponding to the possible signs of V(y)-
V(x) and (V V(x), y- x), it can be shown that

(4.2) Is(x, y) (x, Y)I --< 1 -exp (-hiT(x, y)l) -<- hlf(x, y)l.
Combining (4.1) and (4.2) completes the proof, rq

4.1. Proof of Theorem 3. We write

(4.3) Xk+l Xk ak(V U(Xk) + k) + bk Wk
(this defines k) and apply Theorem 1 to show that, if {X: k =>0, x e K} is tight for
K compact, then (3.14) is true. We further let O(x)= V U(x), write

(4.4) Xk+ Xk- ak(t(Xk) + r/k) + bkrk(Xk) Wk
(this defines r/k), and apply Theorem 2 to show that {X: k -> 0, x K} is, in fact, tight
for K compact, and that (3.14) is, in fact, true.

We first show that we can find a version of {Xk} in the form

(4.5) X+, X + bo-(X)&W.
To do this, we inductively define the sequence { W, ’} of random variables as follows.
Assume that Xo, Wo," , W_, ’o," ", ’-1 have been defined. Let W be a standard
d-dimensional Gaussian random variable independent of Xo, Wo," , W_I, ’o," ",

’_, and let ’ be a {0, 1}-valued random variable with

(4.6) e{k 11Xo, Wo, Wk, o, rk-,} Sk(Xk, Xk + bkO’k(Xk) Wk).

Using (4.6), it is easy to check that (4.5) is a Markov chain that has transition probability
given by (3.10)-(3.12). Hence (4.5) is indeed a version of {Xk}, and we henceforth
always deal with this version.

Now, comparing (4.3) and (4.4) with (4.5), we have that

bk(4.7) SCk -V U(Xk)+ (1 O’(Xk)k) Wk

and

bk(4.8) r/=-O(X)+--o-(X)(1-,)W.
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Furthermore, it is easy to show that Wk is independent of k and k, and also that
P{k e k} P{k IXk} and P{k [k} P(qk IXk}. We use these facts below.

The following lemmas give the crucial estimates for E(ll=l), IE(l)l,
E{Iw[=l%}, and [E{k[

LEMMA 2. Let K be a compact subset of d. ere exists L, ko 0 such that, for
every k ko,

(a) IE{[}lL(a/b) for all XkeK, w.p.1;
(b) E{II=I} t(bk/ak) for aH Xk K, w.p.1.
LEMMA 3. ere exists L 0 such that
(a) IE{nl}lL(aL-=/b)([X[+l) w.p.1;
(b) E{nI}L(b/a+*)(IXI+I) w.p.1.
Assume that Lemmas 2 and 3 are true. Then Condition 3 is satisfied with

1 and 0 < fl <. Conditions 4-6 are satisfied for a T > 1, 0 < fl <-2% and
T T2 0 (recall that we assume that 0 < T < )- Hence Theorems 1 and 2 apply, and
Theorem 3 follows. It remains to prove Lemmas 2 and 3. We use the following claim.

CLAIM. Let ud with ]u 1. en
(a) io.,w>, dS(0, )(w)= O();
(b) o,.w>, w aS(0, )(w)= O();
(c) o,.w>, ww dN(0, )(w)= O().
Proo Let Ul= u, and extend Ul to an ohonormal basis {u,..., Ud} for d.

Then, by changing variables (rotation) and using the mean value theorem, we obtain
that

(a)

(b)

(c)

ProofofLemma 2(a). Since K is compact and a- 0, we can choose ko such that
a[Xk[ <-_ 1 (and so Crk(Xk)= 1) for all Xk K and k_-> ko. Hence, using (4.7) and the
fact that P{k " Ik} P{k " IXk} and Wk is independent of Xk, we have, for k >- ko
and Xk K (w.p.1), that

b-V U(Xk)+-- E{(1 Srk) Wk[Xk}
ak

(4.9) =-V U(X)- bk E{ WkE{k [Xk, Wk}lXk}
ak

-V U(Xk)-- bk E{ WP{k 11X, W}IXk}
ak

-V U(Xk)-- b_._k E{ WkP{k l[Xk, Wk}}.
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Henceforth, we assume that k -> ko and condition on Xk X K. Then, using (4.6), we
obtain that

Let

(4.10) E{#lX= x}= -V U(x)- b I ws(x, x + bw) dN(O, I)(w).
ai

2ak )(4.11) k(X, y) exp b--k [(V U(x), y x)]+

and k(X, y) Sk(X, y) S"k(X, y). Using the fact that HU(. O(1) on a compact, we
obtain that, for any fixed 6 > 0,

sup ]HU(x + e(y x)) _-< Cl,
e(O,1)

for all lY-xl < & Hence, using Lemma 1,

ak(4.12) ]k(X, Y)I <- C2 b---k lY XI:, lY Xl < 6.

Of course,

(4.13)

Using (4.12), (4.13), and a standard estimate for the tail probability of a Gaussian
random variable, we obtain, for i-> 0, that

I lwl’l  (x, x + b w)l dN(O, I)(w)

<= [w[’lgg(x x + b,w)[ dN(O, I)(w)
wl,5/ bk

(4.14) + wl(x, x + bw) dN(O, I)(w)
[wl>/b

Nc3a+c3exp(- c)
=O(a).

Now, expanding (4.10) and using (4.14) gives

E{X x}= -V U(x) b (x, x+b) dN(O, I)()

b [ (x, x + b) N(O, )()

(4.5 -U(x- b [ f(x, x +b g(o,(

+O(b)

(4. - U(xl b [ a(0,(

w exp (V U(x), ) dN(O, I)(w)

+O(b).



METROPOLIS-TYPE ANNEALING ALGORITHMS 123

Clearly,

(4.17) E{sCk IXk x} O(bk)

for x such that 7U(x)=0. Henceforth, we assume that VU(x)SO. Let V t)(x)=
7 U(x)/[7 U(x)]. Completing the square in the second integral in (4.16), we obtain that

{ x x} -v U(x) b [
ak d(VO(x),w)<-o

wdN(O,I)(w)

(4.18) _mbk fak v O(x),w>>=o
wexp 2 ak IVU(x) dN - V U(x), I (w)

+O(bk).

Now V U(x)= O(1), and so

((ak)
2

12) ((ak]2](4.19) exp 2 [VU(x) =1+0 \-] ].

Substituting (4.19) into (4.18), using VU(x)=O(1) and ak/bk=O(1), and changing
variables from W+2(ak/bk)VU(x) to W, gives

l{"lx’ x}= -V U(x)- b" Iak v O(x),w)<-o
wdN(O,I)(w)

ak VlJ(x),w)>=O(ak/bk)
w dN(O, I)(w)

+2V U(x) I<VO(x).w>>--_O(,,k/bk) dN(O,I)(w)

(4.20)
+o ( akk) + O bk

bk foak _-<(V [J(x),w)<=O(ak/bk)
wdN(O,I)(w)

-2V U(x) aN(O, I)( w)

Hence, by (a) and (b) of the claim, and by again using V U(x)= O(1), we have that

(4.21)

Combining (4.17) and (4.21) completes the proof of Lemma 2(a). H
ProofofLernrna 2(b). As in the proof of Lemma 2(a), choose ko such that a[lXk <-- 1

(and so trk(Xk) 1) for all Xk K and k-> ko. Hence, using (4.7) and the fact that



124 S. B. GELFAND AND S. K. MITTER

P{sCg " Ig} P{g " IXg}, Wg is independent of Xg, and V U(. 0(1) on a compact,
we have, for k => ko and Xg K (w.p.1), that

E{((1-)W)@((1-g)W)IXg}+e(X)- {w@w{x, wllx}+e(X)

I- {WNwP{ lx, w}}+ e(X),

where

eg(Xg) o ( b- IV U(Xk)[ + IV U(Xk)[2)

Henceforth, we assume that k >= ko and condition on Xk X K. Then, using (4.6), we
obtain that

(4.23)

x, I- W(WSk(X,X+bkW dN(O,I)(w)
\ak/

Let gg(x, y) be given by (4.11) and gk(X,y)= Sk(X,y)--gk(X,y). Then, expanding
(4.23) and using (4.14), gives

I w(R) WCk(X, X + bkW) dN(O, I)(w)

--( b-k]2 f w(R)wk(X,X+bkw) dN(O, I)(w)
\ak/

(4.24) I- W@WS"k(X,X+bkW) dN(O,I)(w)
\ak/

(4.25)
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Clearly,

(4.26) {:(R) Ix =x}= o(b)
for x such that V U(x)=0. Henceforth, we assume that VU(x)S0. Let V(x)=
V U(x)/IV U(x)l. Completing the square in the second integral in (4.25), we obtain that

O(x),w)<=o
w(R)wdN(O,I)(w)

(4.27)

w(R)w

exp 2 ak (iVU(x)I)2 dN ----k VU(x),I (w)

Substituting (4.19) into (4.27), using V U(x)= O(1) and ak/bk O(1), and changing
variables from W+2(ak/bk)VU(x) to W gives

v O(x),w)-<_o
w(R)wdN(O,I)(w)

-k Vll(x),w)_O(ak/bk)
w(R)wdN(O,I)(w)

(4.28) +O(1) + O(b_)
\ ak/ <=(’VO(x),w)<O(ak/bk)

w(R)wdN(O,I)(w)

Hence, by part (c) of the Claim,

(4.29) E(:k(R) k Xk X} O(b-2)
Combining (4.26) and (4.29) and using Ikl2<--__](k(R)(kl completes the proof of
Lemma 2(b).

Proof ofLemma 3. Using (4.8) and the fact that P{rlk’lk}=P{rlk’lXk}, Wk
is independent of Xk, and q(x)= V U(x)= O(Ixl+ 1), we get, similarly to (4.9) and
(4.22), that

E(Tk Jk} -O(Xk)- bk
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and

where

tr2k(Xk)I

r(X) {W(R) WP{= lX, W}}+ e(X),

(bk )ek(X) 0 O’k(Xk)I/(Xk)I + Io(x)l

o (x)([xl+l)+lxl

Hencefoh, we condition on Xk X and assume, for simplicity, that x 1 and a 1.
Let

( 2ak[(VU(x),y--x)]+)(4.30) k(X, y) exp b
and gk(X, y)= Sk(X, y)- S(X, y). Using Condition 7, we obtain, for some > 0, that

sp I(x+
o,1

for all I-xl < lxl. By assumption, however, V U(x)= O(Ixl), and so, by the mean
value theorem, U(x)= O(x). Hence, using Lemma 1, we obtain that

a x
and, similarly to the derivation of (4.14), we obtain that

(4.31) wl(x,x+b(x)w) dN(O,)(w)=O(a).

Next, using (4.31), we obtain, similarly to the derivation of (4.15) and (4.24), that

{Ix x} -(x- b(x [ s(x, x +b(x g(o,(

+O(b(x

and
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At this point, we separately consider the cases where alx[<= and > 1 (tYk(X) --1 and
alxl, respectively). Proceeding as in the proof of Lemma 2 and using (x)- O(Ix[)
and a k-V/bk O(1), we can show that

and

F{w,lX,--x}--o(aL-=b 1’
aL-’ Ixl), aZIxl > 1,=0 ’bk

E {’rIk @ "Ok Xk --x}--O(al’/), a’lx[ <--_ 1,

0 (ab, [x12), a[x[ > 1.

Combining the two cases completes the proof of the lemma.
Remark 1. In Fig. 1 we demonstrate the type of approximations used in the proof

of Theorem 3. In Fig. l(a) we show the transition density pk(X, y) for the Markov
chain with transition probability given by (3.10)-(3.12); in Figure l(b) we show the
transition density p’k(X, y) for the same Markov chain but using k(X, y) (4.30) in place
of Sk(X, y) (3.12); and in Fig. l(c) we show the transition density p’(x, y) for the
Markov chain of (2.1) with sck 0. Note that the densities in Figs. l(a) and 1 (b) contain
impulsive components associated with the positive probability of no transition. All
three densities are "close" for sufficiently large k and x in a compact set, and this is
the basis of the proof. However, for small k, the transition densities can be quite
different. In particular, it is seen that the Metropolis-type algorithm takes a less "local"
point of view than the gradient-based algorithms.

y)

(a)

(b)

(c)
p"k(X,y)

FIG. 1. Three transition probability densities.
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Remark 2. The Metropolis-type Markov-chain annealing algorithms use only
measurements of U(.) (and not V U(.)). Another class of algorithms that use only
measurements of U(.) could be based on a finite-difference approximation DkU(’)
of VU(.),

(4.32) Xk+l Xk akDkU(Xk) + bk Wk.
Suppose that DkU(" is a random direction forward finite-difference approximation;
i.e., suppose that Ok is an independent random vector uniformly distributed on the
d-one-dimensional unit sphere, and

U(x + hkOk)- U(x)
DkU(X) Ok

hk
({hk} is a sequence of nonzero numbers with hk-0). If we write (4.32) in the form
(2.1), then, by analysis similar to [19, pp. 58-60], it can be shown that :k is bounded
for Xk in a compact. However, when we write (3.10)-(3.12) in the form (2.1), the best
estimate we can obtain suggests that :k is unbounded for Xk in a compact (see Lemma
2(b), and note that bk/ak- Oe). Hence the Metropolis-type approximation appears to
be much farther away from an exact gradient-based algorithm than a finite-difference
approximation.

4.2. Proof of Theorem 4. We write

Xk+ Xk ak(V U(Xk) + k) + bkWk
(this defines sck) and apply Theorem 1 to show that, if {X: k->_ 0, x K} is tight for
K compact, then (3.19) is true. We further let

Ok(x) V U(x) if U(x) a
2x if U(x)>a

write

(this defines */k), and apply Theorem 2 to show that {X: k => 0, x e K} is, in fact, tight
for K compact and (3.19) is, in fact, true.

The following lemmas give the crucial estimates for
E{lqk][Cgk}, and [E{rlkl 3k}[ (compare with Lemmas 2 and 3).

LEMMA 4. Let K be a compact subset of Nd. Then there exists L, ko >- 0 such that,
for every k >->_ ko,

(a) for all Xk K, w.p.1;
(b) E{l  l=l  I <- L(b/a) for all Xk K, w.p.1.
LEMMA 5. There exists L >-_ 0 such that
(a) [E{glqg}[<-_Z(a-a/bg)(IX,l/ 1) w.p.1;
(b) _-< L(bk/a+2’)(tXk[-+ 1) w.p.1.
Assume that Lemmas 4 and 5 are true. Then Condition 3 is satisfied with a -1/2 >

1 and 0 </3 < 1/2. Conditions 4-6 are satisfied with a 1/2 2 y > 1, 0 </3 < 1/2 4% yl

% and y2 0 (recall that we assume that 0 < y < ). We note that the second relation
in Condition 4 is verified with 3’1 =y by considering the two cases where U(x) is <
or >= (Ixl2+l)/a and applying (3.18); in fact, we obtain that d/k(X)=O(Ix]/a as

ixl- c uniformly for all k. Hence Theorems 1 and 2 apply, and Theorem 4 follows.
It remains to prove Lemmas 4 and 5.
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Proof of Lemma 4. Since K is compact and a 0, we can choose ko such that
U(Xk)<----(lXkl+l)/a’ for all XkK and k>=ko. Hence the proof of Lemma 4 is the
same as that of Lemma 2.

Proof of Lemma 5. Using G(x)=O(lx[/a[+l) (see discussion following the
statement of Lemmas 4 and 5), we get, similarly to the proof of Lemma 3, that

and

where

E{ rlk k} Ok Xk b__k
ak

trk(Xk) E{WP{ 1 IX, Wk}}
Wk

(x)t

r(x) {w(R) wP{= !lx, w}}+ e(X)
Wk

(bk )e(X) 0 (.)1.()1 + Io(x)l=

Ix12O(kk O’k(Xk)(@Vk + l) + akv ,]
Hencefogh, we condition on Xk X and assume for simplicity that Ixl 1 and ak 1.

Let

( 2ak [(VU(x),y-x)]+) if U(x)
Ix]+ls(x, y) exp b (x) a

exp b (x) if U(x) >a
and (x, y) s(x, y)- (x, y). Now if a C function V(. satisfies Condition 7, then,
for some > 0,

sup Iv(+( xl .:_, +
ee(0,1)

for all ly-x < lxl; so this inequality holds when V(z)= U(z) and when V(z)= zl.
Hence, by considering the two cases when U(x) is N or > ([xl+ 1)/a and using
Lemma 1, we obtain that

F" I xl I xl < (x,l(x,l b (x’
and, similarly to the derivation of (4.14), we obtain that

(4.33) [wl(x, x + b(x)w) dN(O, I)(w) O(a-).

Next, using (4.33), we obtain, similarly to the derivation of (4.15) and (4.24), that

{nx xt= -(x b(x [ (x, x +b(x (0,(
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and

r2k(X)I

0"2k(X) W(Wk(X,X+bkO’k(X)W dN(O,I)(w)

+Oa+ a r a /

We now separately consider the cases where a]xl and >1 ((x)= 1 and
respectively). Proceeding as in the proof of Lemma 2 and using (x)= O(lx[/a) and
a-2/b 0(1), we can show that

E{n INk x} 0 bg ]’
a lxl 1,

0
b

and

E{ "rlk ( ’rlk Xk X} O ak2,) a " x <- 1,

O( b--kklXl2) alx[ > 1.

Combining the two cases completes the proof of the lemma. [3

Acknowledgments. The authors thank the referees, for a careful reading of the
manuscript, which uncovered an important technical problem, and for suggesting its
solution.
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