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Simulated Annealing Type Algorithms for 
Multivariate Optimization 1 

Saul  B. Ge l fand  2 and  Sanjoy  K. Mi t t e r  3 

Abstract. We study the convergence of a class of discrete-time continuous-state simulated annealing 
type algorithms for multivariate optimization. The general algorithm that we consider is of the form 
Xk§ ~ = Xk -- ak(VU(Xk) + (k) + bkWk . Here U(-) is a smooth function on a compact subset of Nd, {r 
is a sequence of R<valued random variables, { Wk} is a sequence of independent standard d-dimensional 
Gaussian random variables, and {ak}, {bk} are sequences of positive numbers which tend to zero. These 
algorithms arise by adding decreasing white Gaussian noise to gradient descent, random search, and 
stochastic approximation algorithms. We show under suitable conditions on U(. ), {r {ak}, and {bk} 
that Xk converges in probability to the set of global minima of U(. ). A careful treatment of how Xk is 
restricted to a compact set and its effect on convergence is given. 

Key Words. Simulated annealing, Random search, Stochastic approximation. 

1. Introduction.  I t  is des i red  to select a p a r a m e t e r  value x* which minimizes  a 

s m o o t h  funct ion U(x)  over  x s D, where D is a c o m p a c t  subset  of  Nd. The  s tochast ic  
descent  a lgo r i thm 

(1.1) Zk+ 1 = Zk  -- a k ( V U ( Z k )  + (k) 

is often used where {r is a sequence of N"-valued r a n d o m  var iables  and  {ak} is a 
sequence of posi t ive  numbers  with a k --, 0 and  ~ a k = oe. An  a lgo r i thm of  this type  
might  arise in several  ways. The  sequence {Zk}  could  co r r e spond  to a s tochast ic  

a p p r o x i m a t i o n  [1],  where the sequence {~k} arises f rom noisy or  imprecise  
measurement s  of  V U ( . )  or  U( . ) .  The  sequence {Zk} could  also co r r e spond  to a 

r a n d o m  search [2],  where the sequence {~k} arises f rom r a n d o m l y  selected search 
direct ions.  N o w  since D is c o m p a c t  it is necessary to ensure the t ra jector ies  of {Zk} 

are b o u n d e d ;  this m a y  be done  ei ther  by  pro jec t ing  Z k back  into D if it ever  leaves 
D, or  by  fixing the dynamics  in (1.1) so tha t  Z k never  leaves D or  only leaves D 
finitely m a n y  t imes with p robab i l i t y  1 (w.p.1). Let  S be the set of local  m i n i m a  of  
U(.  ) and  let S* be the set of  g loba l  m in ima  of  U( .  ). U n d e r  sui table  condi t ions  on 

U(-) ,  {~k}, and  {ak}, and  assuming  tha t  {Zk}  is bounded ,  it  is well k n o w n  tha t  
Z k ~ S as k ~ oo w.p. 1. In  par t icu lar ,  if U( .  ) is well behaved,  a k = A / k  for k large, 
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{r are independent with E{lCkl 2} = O(a~), and [E{r = O(a~k) where c~ > --1, 
fl > 0, and {Zk} is bounded by a suitable device, then Z k ~ S as k ~ oe w.p.1. 
However, if U(. ) has a strictly local minima, then in general Zk ~ S* as k ~ oe 
w.p.1. 

The analysis of the convergence w.p.1 of {Zk} is usually based on the conver- 
gence of an associated ordinary differential equation (ODE) 

~(t) = -VU(z(t)) .  

This approach was pioneered by Ljung [3] and further developed by Kushner and 
Clark [4], Metivier and Priouret [5], and others. Kushner and Clark also analyzed 
the convergence in probability of {Zk} by this method. However, although their 
theory yields much useful information about the asymptotic behavior of {Zk} 
under very weak assumptions, it fails to obtain Zk ~ S* as k ~ ~ in probability 
unless S = S* is a singleton: see p. 125 of [4]. 

Consider a modified stochastic descent algorithm 

(1.2) Xk+l = Xk -- ak(VU(Xk) + ~k) + bkWk, 

where {Wk} is a sequence of independent Gaussian random variables with 
zero-mean and identity covariance matrix, and {bk} is a sequence of positive 
numbers with bk ~ 0 .  The bkWk term is added in artificially by Monte Carlo 
simulation so that {Xk} can avoid getting trapped in a strictly local minimum of 
U(.). In general, Xk ~ S* as k ~ oe w.p.1 (for the same reasons that Zk ~ S* as 
k ~ oe w.p.1). However, under suitable conditions on U(. ), {r {ak}, and {bk}, and 
assuming that {Xk} is bounded, we shall show that Xk ~ S* as k--* oe in 
probability. In particular, if U(. ) is well behaved, a k = A/k and b 2 = B/k log log k 
for k large where B/A > Co (a constant which depends on U(.)), {~k} are 
independent with E{[~k] 2} = O(a~) and [E{~k}L = O(a~) where ~ > - 1 ,  fl > 0, and 
{Xk} is bounded by a suitable device, then Xk--+ S* as k ~ Go in probability. 
We actually require a weaker condition than the independence of the {~k}; see 
Section 2. 

Our analysis of the convergence in probability of {Xk} is based on the 
convergence of what we call the associated stochastic differential equation (SDE) 

(1.3) dx(t) = -VU(x( t ) )  dt + c(t) dw(t), 

where w(.) is a standard d-dimensional Wiener process and c(.) is a positive 

function with c(t) --* 0 as t ~ oo (take tk = ~,=0 a, and bk x/~kC(tk) to see the 
relationship between (1.2) and (1.3)). The simulation of the Markov diffusion x(. ) 
for the purpose of global optimization has been called continuous simulated 
annealing. In this context, U(x) is called the energy of state x and T(t) = c2(t)/2 is 
called the temperature at time t. This method was first suggested by Grenender [6] 
and Geman and Hwang [7] for image processing applications with continuous 
grey levels. We remark that the discrete simulated annealing algorithm for 
combinatorial optimization based on simulating a Metropolis-type Markov chain 
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[8], and the continuous simulated annealing algorithm for multivariate optimiza- 
tion based on simulating the Langevin-type Markov diffusion discussed above 
both have a Gibbs invariant distribution oc e x p ( -  U(x)/T) when the temperature 
is fixed at T. The invariant distributions concentrate on the global minima of U(. ) 
as T-4 0. The idea behind simulated annealing is that if T(t) decreases slowly 
enough, then the distribution of the annealing process remains close to the Gibbs 
distribution oc e x p ( - U ( x ) / T ( t ) )  and hence also concentrates on the global 
minima of U(. ) as t -4 ~ and T(t) -40. Now the asymptotic behavior of x(. ) has 
been studied intensively by a number of researchers [7], [10]-[12]. Our work is 
based on the analysis of x( . )  developed by Chiang et al. [11] who prove the 
following result: if U(.)  is well behaved and e Z ( t ) : - C / l o g  t for t large where 
C > Co (the same Co as above), then x(t) -4 S* as t -4 oc in probability. 

The actual implementation of (1.3) on a digital computer requires some type of 
discretization or numerical integration, such as (1.2). Aluffi-Pentini et al. [13] 
describe some numerical experiments performed with (1.2) for a variety of test 
problems. Kushner [12] was the first to analyze (1.2) but for the case of 
a k = b k = A/log k, k large. Our work differs from [12] in the following ways. First, 
we give a careful treatment of how the trajectories of {Xk} are bounded and its 
effect on the convergence analysis. Although bounded trajectories are assumed in 
[12], a thorough discussion is not included there. Second, although a detailed 
asymptotic description of X ,  as k -4 oe is obtained in [12], in general, X ,  ~ S* as 
k -4 oe in probability unless ~, = 0. The reason for this is intuitively clear: even if 
{~,} is bounded, ak~k and akVCk can be of the same order and hence can interfere 
with each other. On the other hand, we get X ,  -4 S* as k -4 0o in probability for 
~k ~ 0 and in fact for ~k with E{l~kl 2} ---- O(k 0 and 7 < 1. This has practical 
implications when VU(.) is not measured exactly: we give a simple example. 
Finally, our method of analysis is different from [12] in that we obtain the 
asymptotic behavior of X k as k -4 oe from the corresponding behavior of x(t) as 
t - 4  o0. 

2. Main Results and Discussion. In the following ]. I and ( . ,  .) are the Euclidean 
norm and inner product, respectively. []. II is the supremum norm. 

Our analysis, like Kushner's [12], requires that we bound the trajectories of 
{Xk}. We proceed as follows. Take D to be a closed ball in ~d, say D = {x: Ixl -< r}. 
We modify (1.2), (1.3) in a thin annulus {x: r o _< I x l -  r} and make suitable 
assumptions to ensure that {Xk} and x(-) remain in D. The actual algorithm is 

(2.1) 
Xe+I = Xk -- ak(VU(Xk) + ~k) + bka(Xk)Wk, 

Xe+ 1 = Xe+llD(Xk+I) + XklDc(J~k+ 1), 

and the associated SDE is 

(2.2) dx(t) = - V U ( x ( t ) )  dt + c(t)a(x(t)) dw(t). 
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In what follows we make the following assumptions. Let 0 < ro < r~ < r 
(typically r - ro ~ 1). 

(A1) U(.)  is a twice continuously differentiable function from D to [0, oo) with 
rain U(x) = 0 and (VU(x), x} > 0 for JxJ > ro. 

(A2) o'(.) is a Lipshitz continuous function from D to [0, 1] with o-(x) = 1 for 
fx[ _< rl, o-(x) e (0, 1] for rl < Ix[ < r, and o-(x) = 0 for Ix] = r. 

(A3) ak = A/k, b~ = B/k log log k, k large, where A, B > 0. 
(A4) c2(t) = C/log t, t large, where C > 0. 

For  k = 0, 1 . . . .  let ~'k be the o--field generated by 

{Xo, 4o, . . . ,  ~-1 ,  Wo . . . . .  ~ - d "  

(AN) E{l~kl 2 I~g} = O(a~), g{r = O(dk) as k---, oo uniformly w.p.1; ~k = 0 
when [Xk[ >>_ r t w.p.1; W k is independent o f ~  k for all k. 

For  e > 0 let 

dn"(x) = ~ / e x p  e2 j dx, = exp ~ j dx. 

(A6) rc ~ has a unique weak limit rc as e ~ 0. 

We remark that ~ concentrates on S*, the global minima of U(. ). The existence 
of ~ and a simple characterization in terms of the Hessian of U(.)  is discussed in 
[14]. We also remark that under the above assumptions, it is clear that x(t) always 
stays in D, and it can be shown (see the remark following Proposition 1) that )~k 
eventually stays in D. 

For a process u( .)  and function f ( . ) ,  let Et,.u,{f(u(t))} denote conditional 
expectation given u(t 1) = u 1 and let Eta, ,I; t2, u2 { f(u(t))} denote conditional expecta- 
tion given u(t l )= ul and u( t2)= u2 (more precisely, these are suitable fixed 
versions of conditional expectations). Also for a measure ~t(. ) and a function f ( .  ) 
let #( f )  = ~ f d~. 

By a modification of the main result of [11] there exists constants Co, C1 such 
that for C o < C < C 1 and any continuous function f ( .  ) on D 

(2.3) lim E o . x { f ( x ( t ) ) }  = zc(f) 
t ~ o 9  

uniformly for x ~ D (this modification follows easily from Lemma 3 below). The 
modification is needed here because [11] deals with a nondegenerate diffusion 
(a(x) = 1 for all x in (2.2)) while we are concerned with a degenerate diffusion 
(o-(x) --* 0 as [xl T r in (2.2)). The constant Co depends only on U(x) for Ix[ < ro and 
is defined in [11] in terms of the action functional for the dynamical system 
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~(t) = - V U ( z ( t ) ) .  The constant C 1 depends only on U(x) for Ixl ~ ro and is given 
by 

C1 = ~-( inf U ( x ) -  sup U(x) ) .  
klxl=ra Ixl=ro 

In [11] only C > Co and not C < Ca is required; however, U(x) and VU(x) must 
satisfy certain growth conditions as I xl ~ oo. Note that a penalty function can be 
added to U(.)  so that C1 is as large as desired. Here is our theorem on the 
convergence of {X,} .  

THEOREM. Let  ~ > --1, fl > O, and C O < B /A  < C1. Then for any continuous 
function f (. ) on D 

(2.4) lim Eo,~{f (Xk)  } = re(f) 
k~ao 

uniformly for x E D. 

Since rc concentrates on S*, (2.3) and (2.4) imply x(t) --. S* as t --. oo and Xk --* S* 
as k ~ oo in probability, respectively. 

The proof of the theorem requires the following three lemmas. Let {tk} and fl(. ) 
be defined by 

k - 1  

tk = ~ an, k = O , l , . . . ,  
n=O 

ff (~) log s du = S 213, s > l .  

It is easy to check that fl(s) is well defined by this expression and in fact satisfies 
s q- s 2/3 ~ fl(s) ~_~ s q- 2S 2/3. 

LEMMA 1. Let ~ > -- 1, fl > O, and B /A  = C. Then there exists ~ > 1 such that for 
any continuous function f ( .  ) on D 

lim sup ( E o , x ; . , , { f ( X k )  } --  E t . , r { f ( x ( t k ) ) }  ) = 0 
n~oO k ; tn<_tk<Ttn  

uniformly for x, y ~ D. 

LEMMA 2. Let  T > O. Then for any continuous function f ( . ) on D 

lim sup (Et, ,y{f(x(f l(s  + T)))} - Es, y{f(x( f l (s  + T)))}) = 0 
n~ct? S: tn~S<_tn+ l 

uniformly for y ~ D. 
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LEMMA 3. Let  Co < C < C1. Then there exists T > 0 such that for any continuous 
function f ( . ) on D 

lim (E~,r{f(x(fl(s + T ) ) ) }  - n ~ ( ~ + r ) ( f ) )  = 0 
s ~ o o  

uniformly for y e D. 

The proofs of Lemmas 1 and 2 are given in Section 3 and Lemma 3 is proved in 
Section 4. Note that the lemmas are concerned with approximations on intervals of 
increasing length (Tt, - t, ~ ~ as n ~ oo, fl(s) - s ~ 0o as s ~ oo). Lemma 3 is a 
modification of results obtain in [11] for a nondegenerate diffusion (a(x) = 1 for all 
x in (2.2)). 

We now show how the lemmas may be combined to prove the theorem. 

PROOF OF THE THEOREM. Choose T as in Lemma 3. Note that fl(s) is a strictly 
increasing function and s + s 2/3 <_ fl(s) <_ s + 2s 2/3 for s large enough. Hence for k 
large enough we can choose s such that tk = fi(S + T). Clearly, s < tk and s ~ Go as 
k --, oo. Furthermore,  for k and hence s large enough we can choose n such that 
t. <_ tk <- yr, and t, _< s _< t, + 1. Clearly, n < k and n --* c~ as k -* 0o. We can write 

(2.5) 

Now 

Eo,x{ f (Xk)  } - Tiff) = fD P~ e dy}(Eo.x; . , , { f (Xk)}  - re(f)). 

(2.6) Eo,x; . ,y{f(Xk) } - re(f) = Eo,x; . , , { f (Xk)  } -- Et. ,y{f(x(tk))} 

+ Et. ,y{f(x(f l(s + T)))} - E~,r{f(x(fl(s + T)))} 

+ E~,,{f(x(fl(s + T)))} - rcc(s+r)(f) 

+ ~(~ + r ) ( f )  _ ~ ( f )  ~ 0 as k ~ 

uniformly for x, y e D by Lemmas 1-3 and (A6). Combining (2.5) and (2.6) 
completes the proof. [] 

As an illustration of our theorem, we examine the random directions version of 
(1.2) that was implemented in 1-13]. If we could make noiseless measurements of 
VU(Xk),  then we could use the algorithgm 

(2.7) X k  + 1 ~" X k  - -  akVU(Xk) + bkWk 

(modified as in (2.1)). Suppose that VU(Xk)  is not available but we can make 
noiseless measurements of U(. ). If  we replace VU(Xk)  in (2.7) by a forward finite 
difference aproximation of VU(Xk),  then d + 1 evaluations of U( . )  would be 
required at each iteration. As an alternative, suppose that at each iteration a 
direction Dk is chosen at random and we replace VU(Xk)  in (2.7) by a finite 
difference approximation of the directional derivative (VU(Xk) ,  Dk)D k in the 
direction D k, which only requires two evaluations of U(-). Conceivably, fewer 
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evalutions of U(. ) would be required by such a random directions algorithm to 
converge. Now assume that the {Dk} are random vectors each distributed 
uniformly over the surface of the ( d -  1)-dimensional sphere and that Dk is 
independent of X o, Wo . . . . .  Wk- 1, Do . . . . .  Dk- 1. By analysis similar to that on 
pp. 58-60 of [4] it can be shown that such a random directions algorithm can be 
written in the form of(1.2) with E{~kl~k} = O(hk) and ~k = O(1) where {hk} are the 
finite difference intervals (hk ~ 0). Hence the conditions of the theorem will be 
satisfied and convergence will be obtained provided hk = O(k-~) for some 7 > 0-4 

Our theorem, like Kushner's [121 requires that the trajectories of {Xk} be 
bounded. However, there is a version of Lemma 3 in [11] which applies with 
D = ~a assuming certain growth conditions on U(-). We are currently trying to 
obtain versions of Lemmas 1 and 2 which also hold for D = R a. On the other hand, 
we have found that bounding the trajectories of {Xk} seems useful and even 
necessary in practice. The reason is that even with the specified growth conditions 
I Xkl tends occasionally to very large values which leads to numerical problems in 
the simulation. 

3. Proofs of Lemmas 1 and 2. Throughout  this section it is convenient to make 
the following assumption in place of (A4): 

(A4') c2(tk) = C/log log k, k large, where C > 0, and c2(.) is a piecewise linear 
interpolation of {r }. 

Note that under (A4') C2(t) ~ C / l o g  t a s  t --~ ct3, and if B/A = C, then b k = X/~RRC(tk) 
for k large enough. The results are unchanged whether we assume (A4) or (A4'). We 
also assume that ak, bk, and c(t) are all bounded above by 1. In the following cl, 
c2 . . . . .  denote positive constants whose value may change from proof to proof. 

We start with several propositions. 

PROPOSITION 1. 

P{Xk+I r D j~-k} = O(a 2 +~) as k --+ co, 

uniformly w.p.1. 

PROOF. We shall show that for k large enough (and w.p.1) 

(3.1) P{)Tk+ ~ q~D, IWkl ~ ~ [ ~ k )  ~ c~a 2+~, 

(3.2) P{2k+~bD,  l G l ~ / k l & }  ~c2a  2+~, IXk l<r , ,  

(3.3) P{)~+ 1 6 0 ,  ]Wk[ ~ " ~ l ~ k }  = 0, ISkl ~ rl. 

Combining (3.1)-(3.3) gives the proposition. 

4 Note that we are assuming that VU(. ) is known exactly (and points outward) in a thin annulus near 
the boundary of D so that assumptions (A1) and (A5) are satisfied; this could be accomplished by using 
a penalty function in a straightforward manner. 
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Using a standard estimate for the tail probability of a Gaussian random variable 
we have 

P{Xk+ l C D, lWkl > x /k l~k}  <_ d exp(--  k )  < cla 2+~ w.p.1 

and (3.1) is proved. 

Assume IXk[ < r 1. Let 0 < e < r - rl. Using the fact that N~kbk -~ 0 and also the 
Chebyshev inequality we have for k large enough 

P{Xk+, r D,[Wkl <-- x/k[ff k} 

<- P{ l-a (VU(X ) + + b, l > r - -< 

a~E{l~121~k} 
- -  P{ak[~kl > r - r~ - ~ lO~k} ___ ~ , ~  _< caa~ +~ w.p.1 

and (3.2) is proved. 
Assume [Xk[ ~ r 1. By assumption <VU(Xk), X k ) >  C3 > 0 and ~k = 0. Let 

Xk = Xk + bka(Xk)Wkl(iw~l<_,/k }. Since a ( . )  is Lipshitz, a(x) > 0 for Ixl < r, and 

a(x) = 0 for I x[ = r, we have a(x) < c4 inf I r l =,ix - y[. Hence IRk -- Xk[ < c4x/kbk 

infly I = , I X k -  Y I, and since x/kbk ~ 0 as k ~ o% we get X k -  Xk ~ 0 as k ~ oe 
and also X k e D  for k large enough. Now X k - - X k ~ O  as k ~ o o  implies 
(VU(Xk), Xk) > C5 > 0 for k large enough. Hence Xk e D for k large implies 
R k - akVU(Xk) ~ D for k large. Hence for k large enough 

P{X k +x q~ D, ]VVk[ <_ x/kl ~k} <-- P{%k - akVU(Xk) q~ D l~k} = 0 w.p. 1 

and (3.3) is proved. [] 

REMARK. By Proposit ion 1 and the Borel-Cantelli lemma P U n  ~k_>,{)~k ~ D} = 1 
when a > - 1 .  

PROPOSITION 2. For each n let {Un, k}k>_n be a sequence of nonnegative numbers such 
that 

Un, k+ 1 <__ (1  + Mak)Un,k + Ma~,  

Un, n <-- Ma~n, 

k >  n, 

where c~ > 1, e > O, and M > O. Then there exists a ~ > 1 such that 

lim sup U,,,k = O. 
n ~ o o  k : t n ~ t k ~ t n  
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PROOF. We may set M = 1 since a k = A / k  for k large and the proof  is for 
arbitrary A > O. Now 

k - 1  k - 1  k - 1  

U.,k <--Un,. Iq  (l  +az)  + ~ am I-I ( l + a z )  
l = n  m = n  l = m + l  

( / ) < u , , , +  a~ .exp ~ a,, , 
m = n  / k m = n  

since 1 + x _< e x. Also ~ k - 1 %  <_ A(log(k/n) + 1/n) and ~ k - 1  a,. ~ _< 
A(1/(6 - 1)n ~-1 + 1/na), and if t k <_ 7t., then k <_ clnL Choose 7 such that 1 < 
~, < 1 + min{6 - 1, e}/A. It follows that 

/ 1  1 " ~  
sup l,tn, k~C2l~_e+_.~_l_lll'l(~'-l)A--~O as n ~ o o .  [] 

k : t n  <--tk <<_ ?tn 

REMARK. Proposit ion 2 is used to make the long time comparisons in the proofs 
of Lemmas 1 and 2. Proposit ion 2 does not hold if we take a k = A / k  ~ for t / <  1. 

Define 3( "," ) by 

x ( t )  = x ( s )  - ( t  - s ) ( V U ( x ( s ) )  + r t ) )  + c ( s ) G ( x ( s ) ) ( w ( t )  - w ( s ) )  

for t_> s_> O. 

PROPOSITION 3. 

E{l~(t, t + h)l 2 Ix(t)} = O(1), 

E{~(t, t + h)lx(t)} = O(h 1/2) 

as h ~ O, uniformly for  a.e. x(t)  e D and t >_ O. 

PROOF. We use some elementary facts about  stochastic integrals and martingales 
(see [15]). First write 

(3.4) f 
t + h  

h~(t, t + h) = (VU(x(u))  - VU(x( t ) ) )  du 
*3t 

~ t + h  

-- (c(u)a(x(u)) -- c(t)~(x(t))) dw(u). 
~ t  

Now a standard result is that 

E,.x{lx( t  + h) - x(t)[ 2} = O(h) 

as h--* 0, uniformly for x e D and t in a finite interval. In fact, under our 
assumptions the estimate is uniform here for x e D and all t > 0. Let K1, K1 be 
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Lipshitz constants for VU(.), a(.), respectively. Also note that c(.) is piecewise 
continuously differentiable with bounded derivative (where it exists) and hence is 
also Lipshitz continuous, say with constant K 3. Hence 

(3.5) 

and 

(3.6) 

< K1Et,~.( ~ ]x(u)-x( t )[du 

('t+h 
< 2K~hJ, E,,~{lx(u) - x(t)l z} du = O(h 3) 

Et, x { f  tt+h (c(u)a(x(u))-c(t)a(x(t)))dw(u)2 } 

f 
t + h  

= E~,~{Ic(ulo(x(u)) - c(t)a(x(t))l 2} du 
i t  

< 3K~ E,,~{Ix(u) - x(t)l 2 } du + 3K~ (u - 0 2 du = O(h 2) 
d t  ,Jr 

as h ~ 0, uniformly for x e D and all t > 0. The proposition follows easily from 
(3.4)-(3.6) and the fact that the second (stochastic) integral in (3.4) defines a 
martingale as h varies. [] 

Now in Lemma 1 we compare the distributions o f S  k and X(tk). This is done most 
easily by comparing Xk and X(tk) to Yk and Yk (defined below), respectively, which 
are equal in distribution. 

Let 

Yk+1 = Yk -- akVU(Yk) + bka(Yk)Wk, 
Yk+l = Yk+l lD(Yk+I) - t -  YklDc(Yk+l). 

LEMMA 1.1. There exists 7 > 1 such that for any continuous function f (. ) on D 

lim sup ( E o , x ; , , y { f ( X k )  } - En, r{f(Yk)})  = 0 
n-~oo k : t n < t k < T t n  

uniformly for x, y ~ D. 

PROOF. Assume all quantities are conditioned on X o = x and Xn = Y~ = y, with 
x, y ~ D. Let A k = Xk -- Yk. Write 

(3.7) E{ IAk+ x 12} = E{ IAk+ 11211~§ ,*m u ~ +  ~,o~} 

+ E{ IAk+ i 121~ . . . .  m ~ . . . .  m}" 
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We est imate the first term in (3.7) as follows. We have by Propos i t ion  1 that  

(3.8) E{IAk+1121(2~+,r ~r <- c~(P{2k+~ r D} + P{]rk+ ~ r D}) 
<_ C2 a2 +~, k > n. 

We est imate the second te rm in (3.7) as follows. I f  )~k+ ~ �9 D and Yk+ 1 �9 D, then 

Ak+l = ak -- ak(VU(Yk + Ak) -- VU(Yk)) + bk(cr(Yk + ak) -- o'(Yk))Wk -- ak~k. 

Hence 

(3.9) E{ IAk+1121(~+ 1~0~(~+ 1~0~} 

_< E{lAk - ak(VU(Yk + Ak) -- VU(Yk)) 

+ bk(a(Yk + Ak) -- a(Yk))W~ - akCkl 2} 
<_ E{IA~I 2} + a~E{IVU(Yk + Ak) - VU(Yk)l z} 

+ akE{l(a(Yk + Ak) -- tr(Yk))Wkl 2} 

+ ~E{I~I ~} 
+ 2aklE{(Ak, VU(Yk + Ak) -- VU(Yk)>} I 

+ 2a],/ZlE{(Ak, (a(Yk + Ak) -- a(Yk))Wk>} I 

+ 2aklE{(Ak,  ~k)}] 
+ 2a3/2IE{(VU(Y~ + A~) - VU(Yk), (G(Yk + Ak) -- a(YD)I'Vk>} I 

+ 2a2IE{(VU(Yk + Ak) -- VU(Yk), ~k>}] 

+ 2a3/21E{<(a(Yk + AD - r  ~k>}l, k > n. 

Let  K1, K 2 be Lipshitz constants  for VU(-) ,  a ( .  ), respectively. Using the fact that  
Xk, Yk and hence A k are ~ k  measurable ,  Wk is independent  of ~ k ,  E{Wk} = 0, and 

e{lCkl=l~k} ~ c3a~, Ie(r -< csa~k w.p.1 

we have 

e { i v u ( ~  + A~) - VU(~)l  ~} 

E{l(~r(~ + A~) - ~(Y~))W~l ~} 

E(Ir 2} 
IE{<A~, VU(Y~ + A~) - v u ( ~ ) > }  I 

IE{<A~, (~r(Y~ + Ak) - G(YD)W~>} I 

IE{<ak, ~k>}l 
f E { < v u ( ~  + a~) - VU(Y~), (~(Y~ + A~) -- ~(Y~))W~>} [ 

IE{<VU(Yk + ak) - VU(YD, ~k>}l 
IE{<(~r(Y~ + Ak) -- a(Yk))~, ~k>}l 

K2E(IAkl2}, 

<__ c3a~, 

<_ K1E(IAkl2), 
= O, 

< caa~E{IAkl }, 
= 0, 

< K~csaPkE{ IA~I ), 

< K2x/~3a~/2E{IAkF} 
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for k > n. Substituting these expressions into (3.9) gives (after some simplification) 

(3.10) E{lAk+ll21{yc1,+~eo}c~{~k+,eo}} 
< (1 + c4ak)E{lA~,l z} + c4a~'E{IAkl} + c3a 2+c~ 

62 < (1 + c4ak)E{lAkl 2} + C4ak E{lAkl2} 1/2 + c3a2k +~ 

62 k > 11, _< (1 + csag)g{lAgl 2} + tsar,  _ 

where 51 = min{1 + fl,(3 + a)/2}>1 and 52 = min{61,2 § ~} > 1 since ~ > - 1  
and fl > 0. 

Now combine (3.7), (3.8), and (3.10) to get 

62 k > n, E{lAk+ll 2} _< (1 § c6ak)E{lAkl 2} + c6ak, _ 

E{IA,,I 2} =0  

for n large enough. Applying Proposition 2 there exists ? > 1 such that 

(3.11) lim sup E{[Ak[ 2} = 0. 
n~o~ k:tn <_tk <_ ytn 

Finally, let f ( . )  be a continuous function on D. Since f ( - )  is uniformly 
continuous on D, given e > 0 there exists 6 > 0 such that [ f ( u ) -  f ( v ) [  < e 

whenever ]u - v[ < 5 and  u, v e D. Hence 

IE{f(X,)}  -E{ f (Yk ) } l  < eP{IAgl < 5} + 2[[fItP{IAkl > 5} 

2]lft] < + E{IA,,/2}, 

and by (3.11) 

li--m sup ] E { f ( X , ) }  - E{ f (Yk) } [  < ~, 
n~oo k:tn<_tk<_ytn 

and letting e -* 0 completes the proof. 

and 

Let 

= 1) - 

~k+l  = ~ - -  akVU(~) + b k a ( Y k ) W k ,  

Yk+, = ~k+ l l n (~+  X) + Yklnc(~k+ 1)" 

[] 
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LEMMA 1.2. 
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There exists 7 > 1 such that for any continuous function f ( . ) on D 

lim sup (Er.,y{f(X(tk))} -- E. , , { f (~ )} )  = 0 
n--~oo k : t n  <--tk <- Ttn 

uniformly for y e D. 

PROOF. Define {~k} by 

X ( t k +  1)  = X ( t k )  - -  ak(VU(x(tk)) + ~k) + bka(X(tk))VVk" 

Let ~k be the a-field generated by {x(0), ~o,-.- ,  ~k-1, ff'O . . . . .  Wk_l}. It can be 
shown that ~k is conditionally independent of ~k given X(tk). Hence by Proposition 
3 

(3.12) E{[~kl2l~k} ~ C1, [E(~k[~a~k} I <__ Cl al/2 w.p.1. 

Henceforth assume all quantities are conditioned on x(tn) = Y ,  = y, y ~ D. Let 
Ak = X(tk) -- Yk. Using (3.12) and proceeding similarly to the proof of Lemma 1.1 
we can show with 3 = 3/2 that 

E{IAk+ll 2} _ (1 + Cmak)E{lAkl 2} + Cma~, k >_ n, 

E{IA.I 2} = 0 .  

Applying Proposition 2 there exists a 7 > 1 such that 

lim sup E{[Ak[ 2} = 0. 
n--~oo k : t n  <_k < )~tn 

The lemma follows from this. [] 

PROOF OF LEMMA 1. Follows immediately from Lemmas 1.1 and 1.2. [] 

PROOF OF LEMMA 2. Let x( -; s, y) denote the process x(. ) emitted from y at time s. 
Fix y ~ D, n, and s ~ [t,, t,+ 1), and let x l ( .  ) = x(.; t,, y) and x2(. ) = x(.; s, y). 

Now recall that 

Et, x { l x ( t + h ) - x ( t ) 1 2 } = O ( h )  as h ~ 0  

uniformly for x ~ D and all t > 0 (this is a standard result except for the uniformity 
for all t which was remarked on in Proposition 3). Hence 

E{lx l (s )  - x2(s)[ z} <_ cl(s - t.) < caa.. 

Let Ak = X~(tk) -- Xz(tk) for k > n. Similarly to the proofs of Lemmas 1.1 and 1.2 we 
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can show with 6 = ~ that  

E{Iae+~l 2} <__ (1 + czak)E{IAkl 2} + czar, k >_ n + 1, 

E { I a , + t l  2} ~ (1 + c2(t,+ ~ - s))E{Ixl(s) - N2(S)[ 2} ~'- c2(tn+ 1 - -  S )  fi 

< (1 + C2an)cla n + c2a~n <_ C3an+ 1 

and the same inequalities hold if we take suprema over s ~ It , ,  t ,+0 .  Applying 
Proposi t ion 2 there exists 7 > 1 such that  

(3.13) lim sup sup E{IAkl 2} = 0. 
n--*oo k : t n +  t <_tk~ ~tn s : t n  <S<_tn+ 1 

Note  that  fl(s) is a strictly increasisng function of s and s + $ 2 / 3 ~  f l ( S )  

s + 2s 2/3 for s large enough. Hence for n large enough we can choose s such 
that  t. < s < t .+ l  and m such that  t m < fl(s) < tm+~ and t .+i  < t m <_ 7tn. Now 

(3.14) E([xa(fl(s)) - x2(fl(s))l 2} <_ (1 + c2(fl(s ) - -  tm))E{lAml 2} + c2a~ 

< c4 sup E{IAkl 2} + c2a~.. 
k : t n +  t ~ t k  << - ytn 

Combining (3.13) and (3.14) gives 

lim sup E{ Ixl(fl(s)) - x2(fl(s))l 2} = O. 
n--*o~ S:tn<_S<_tn+ l 

The lemma follows from this. [] 

4. Proof  of Lemma 3. The idea behind the proof  of Lemma 3 is roughly as 
follows. Recall that D = {x: ixl < r} and r0 < rl < r. First, we show that  no mat ter  
where x(s) is (Ix(s)l < r), there exists T > 0 such that  I x(s + T)I _< ro with large 
probabil i ty for s large. Then we show that  Ix(t)l < rl for all t ~ [s + T, fl(s + T)] 
with large probabil i ty for s large. This allows us to make use of results from [ l l ]  
which hold for a nondegenerate  diffusion (a(x) = 1 for all x in (2.2)). 

LEMMA 3.1. Given 6 > 0 there exists T > 0 such that 

lim P~,y{ix(s + T)[ < ro + 6} = 1 
8 ~ o 0  

uniformly for l Yl ~ r. 

PROOF. Let  

~(t) = - V U ( z ( t ) ) ,  

where z(s) = y, l Yl < r. Then there exists T > 0 (where T does not  depend on s 
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or y) such that  

(4.1) z(s + T) < r o. 

This follows f rom the fact that  

Iz(t)l 2 - Iz(s)l 2 = - 2  (VU(z(u)), z(u)) du 

and (VU(z(t)), z(t)) > cl > 0 when Iz(t)l > ro, 
N o w  for z(s) = x(s) = y, l Y[ < r, 

Ix(t) - z(t)l < (VU(x(u)) - Vg(z(u))) du + c(u)o(x(u)) dw(u) 

fs r fs dw(u) , < K I x ( u ) -  z(u)ldu + c(u)a(x(u)) 

where K is a Lipshitz constant  for VU(. ). Hence by Gronwal l ' s  inequali ty 

Ix(t) - z(t)l < exp(K( t  - s)) sup c(u)a(x(u)) dw(u) 
s<v<_t I'Js 

Hence by the Mar t ingale  inequali ty 

(4.2) Ps, r{lx(s + T) - z(s + T)I > b} 

< Ps'YI~s_<v_<s+rsup f f  c(u)a(x(u))dw(u) >fie -xT} 

< ~ E s ,  y ~ c(u)a(x(u)) dw(u) 

r ~s+ T 
- ~2 .,s Es, y{lc(u)a(x(u))l 2} du 

8 2KT 
<__ ~ -  TC2(S) ~ 0 as s ~ oo. 

Combin ing  (4.1) and (4.2) gives the lemma.  

LEMMA 3.2. Let 

v = inf{t: Ix(t)l > rl}. 

433 

[ ]  
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Let C O < C < C1. Then there exists 8 > 0 such that 

lim Ps,, {z >/~(s)} = 1 
S ~ o o  

uniformly for[y[ < ro + 8. 

PROOf. Let 0 ( . )  be a twice continuously differentiable function from Ea to Ea 
such that for some R > r and K > 0 

-- g(x),  Ixl-< r, 
0(x) Klxl2, Ixl > R, 

and VU(x) 4- 0 for r < Ixl < R (in view of (A1) such a [?(.) exists). For e > 0 let 

d~(t)  = - V0(~(t))  dt + e dw(t) 

and 

r = inf{t: I)~"(t)[ > rl}. 

For 0 < 8 < rl - ro let 

Ca(8 ) = inf 0 ( x ) -  sup U(x). 
Ixl=r~ [xl=ro+~ 

On p. 750 of [11] it is shown that for any t / >  0 and 8 > 0 

uniformly for lY] - ro + 8. Since C2(8) ~ 2C1 as 8 --, 0, it follows that for any t />  0 
there exists 8 > 0 such that 

(4.3) Vo,y{r > e x p ( ~  (2C 1 - t /))}-o 1 as e---,0 

uniformly for [Yl -< ro + & 
Next let 

dR(t) = -VU(2(t))  dt + c(t) dw(t) 

and 

= inf{t: 12(t)l > rl}. 
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On p. 745 of [11] it is shown that  

(4.4) Ps, y{'~ > fl(s)} - P0,y{~ c(s) > s 2/3} ~ 0 

uniformly for l yl ~ r. 
N o w  choose q > 0 such that  

1 2 
- _> 

as s ~  

and choose fi > 0 such that  (4.3) is satisfied. Hence  using (4.3) and ( 4 . 4 )  

e~,,{z > fl(s)} = es,~,{'~ > fl(s)} 

= Po.,{2<(') > s 2/3} + (P,,y{'~ > fl(s)} -- Po,y{2a') > s2/3}) 

{ > Po,y f:(~) > exp ~ Ca - t/ + o(1) 

~ 1  as s ~  

435 

uniformly for [y] < ro + 6. []  

PROOF OF LEMMA 3. Let  2(.  ) be defined as in the p roo f  of  L e m m a  3.2. In L e m m a s  
1-3 of [11] it is shown that  

(4.5) E~,y{f(2(fl(s)))} - rcc(')(f) ~ 0 as s ~ 

uniformly for ]y] __ r. By L e m m a  3.2 there exists 6 > 0 such that  

(4.6) [Es, ,{f(x(f l(s)))}  - E~,r{f(2(fl(s)))}l  

< [Es , / f ( x ( f l ( s ) ) )  - f(2(fl(s))) ,  ~ > fl(s)} [ + 2 II f[[ P,,y{r < fl(s)} 

~ 0  as  s ~  

uniformly for [Y] -< ro + 3. Hence  combining  (4.5) and (4.6) and  using L e m m a  3.1 
there exists T > 0 such that  

I E~, ,{ f (x( f l (s  + T)))} - n~(~ + r)(f)]  

= I E~,r{E~ + r,x~, + r){ f ( x ( f l ( s  + T))) - n~(' + r)(f)}} [ 

[Es, y{Es + T, x(s + T){f(x(fl(S + T))) -- n c(s + T)(f)} 1( I ~(, + r) l-< ro + ~/} [ 

+ 21l f l lP , , r { Ix ( s  + r ) l  > ro + 6} 

~ 0  as  s ~  

uniformly for [y] _< r. [ ]  
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