A note on essential spectra and norms of mixed Hankel-Toeplitz operators

G. ZAMES

Department of Electrical Engineering, McGill University, 3480 University Street, Montréal, Québec, Canada H3A 2A7

S.K. MITTER

Massachusetts Institute of Technology, Laboratory for Information and Decision Systems, Cambridge, MA 02139, U.S.A.

Received 7 September 1987

Abstract: In this brief, Hankel-Toeplitz operators which occur in feedback theory, e.g., in the minimization of mixed H^{∞} sensitivity and complementary sensitivity, will be considered. A method of computing their spectra, eigenvectors, and norms will be presented for infinite-dimensional systems subject to continuous weightings.

Keywords: H-infinity optimization, Infinite-dimensional mixed sensitivity, Essential spectra.

1. Introduction

Mixed sensitivity optimization was considered by Kwakernaak [9]. Francis et al. [5,4,6] gave various characterizations of the problem, e.g., in terms of the distance from $\begin{bmatrix} W \\ 0 \end{bmatrix}$ to $\begin{bmatrix} M \\ V \end{bmatrix}$ H^{∞} , where W, M, V, are in H^{∞} and M is inner. Jonckheere and Verma [7,12] described the problem in terms of the norm of the Hankel-Toeplitz operator displayed in (1) (below). Implicit methods of minimization, e.g. the ε -iteration [6], were introduced by these authors. Apart from the highly implicit nature of the minimization, the theory remains incomplete for irrational plants, for which a method of determining essential spectra has yet to be provided.

Here an explicit formula for the essential spectra of such operators will be derived, as well as a method of computing discrete eigenvalues in which the only implicit step involves the evaluation of the zeros of a 'characteristic determinant' function of the real variable λ , which is analytic in λ . The results extend those of Foias et al. [13,2,3] and Flamm [1] for (unmixed) sensitivity minimization. In particular, essential spectra are computed by viewing the operators in question as compact perturbations of multiplication operators, as in [13].

Recently, some results related to the present paper were obtained independently by Juang and Jonckheere [8] but are limited to rational plants.

2. Essential spectrum

Let Π_+ and Π_- denote projections from L^2 (half-plane) to H^2 and $H_-^2 := L^2 \ominus H^2$ respectively. For any $W \in H^{\infty}$, W denotes the multiplication operator in L^2 , W(x) = Wx. For any symbol $W \in L^{\infty}$, the Hankel operator $\Gamma_W : H^2 \to H_-^2$ is the operator

$$\Gamma_W \coloneqq \Pi_- W \mid H^2$$

where $|H^2|$ denotes restriction to H^2 , and the Toeplitz operator Θ_W is the operator

$$\Theta_{W} := \Pi_{+} W \mid H^{2}.$$

0167-6911/88/\$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

We wish to compute the norm of the operator $G: H^2 \to H^2$,

$$G := \Gamma_{WM^*}^* \Gamma_{WM^*} + \Theta_V^* \Theta_V \tag{1}$$

where $W \in H^{\infty}$ and $V \in H^{\infty}$ are continuous, and $M \in H^{\infty}$ is a (possibly discontinuous) inner function in H^{∞} . The superscript * denotes the adjoint of an operator or, when applied to a function $y \in L^2$, denotes the involution $y^*(s) = \bar{y}(-\bar{s})$. Expression (1) can be stated in the form

$$G = (\Pi_{+}MW^{*}\Pi_{-}WM^{*} + \Pi_{+}V^{*}V) | H^{2}.$$
(2)

Decompose H^2 , $H^2 = K \oplus MH^2$, and let Π_K , Π_M be the projection operators from L^2 to K and MH^2 respectively. Let $\sigma(X)$, $\sigma_{\rm e}(X)$ denote the spectrum and essential spectrum of any operator X. For any inner function $M \in H^{\infty}$, $\sigma_{\rm e}(M)$ is the set of imaginary points which are essential singularities of M.

Theorem 1. Essential spectrum of G.

$$\sigma_{\mathrm{e}}(G) = \left\{ |W(\mathrm{j}\omega)|^2 + |V(\mathrm{j}\omega)|^2 \colon \mathrm{j}\omega \in \sigma_{\mathrm{e}}(M) \right\} \cup \left[\inf_{\omega} |V(\mathrm{j}\omega)|^2, \sup_{\omega} |V(\mathrm{j}\omega)|^2 \right].$$

Proof. Let $Z \in H^{\infty}$ be the outer function satisfying $\overline{W}(j\omega)W(j\omega) + \overline{V}(j\omega)V(j\omega) = \overline{Z}(j)Z(j\omega)$. We will establish the following three identities:

$$\sigma_{e}(G) = \sigma_{e} \left[\Pi_{K}(W^{*}W + V^{*}V) \mid K \right] \cup \sigma_{e} \left[V^{*}V \right], \tag{2a}$$

$$\sigma_{\mathbf{e}}\left[\prod_{K}(W^{*}W+V^{*}V)\mid K\right]=\left\{\mid \overline{W}(\mathbf{j}\omega)W(\mathbf{j}\omega)+\overline{V}(\mathbf{j}\omega)V(\mathbf{j}\omega)\mid :\mathbf{j}\omega\in\sigma_{\mathbf{e}}(M)\right\}$$

$$=\sigma_{e}\left(\Gamma_{ZM^{*}}^{*}\Gamma_{ZM^{*}}\mid K\right),\tag{2b}$$

$$\sigma_{\rm e}(V^*V) = \left[\inf_{\omega} |V(j\omega)|^2, \sup_{\omega} |V(j\omega)|^2\right]. \tag{2c}$$

Theorem 1 follows from (2a, b, c).

If X, Y are any pair of operators in a Hilbert space, then $X \sim Y$ means that X - Y is compact. The symbol \sim denotes equivalence modulo the compact operators (i.e., in a Calkin Algebra). It follows from the definition of essential spectrum that if $X \sim Y$, then X and Y have identical essential spectra.

To prove (2a), observe that

$$\Pi_{+}MW^{*}\Pi_{-}WM^{*}\Pi_{+} = \Pi_{K}W^{*}M\Pi_{-}M^{*}W\Pi_{K} \quad \text{as } K \perp \ker(\Pi_{-}WM^{*}\Pi_{+})$$

$$= \Pi_{K}W^{*}W\Pi_{K} - \Pi_{K}W^{*}M\Pi_{+}WM^{*}\Pi_{K}$$

$$\sim \Pi_{K}W^{*}W\Pi_{K}. \tag{3}$$

The last equivalence is true because

$$\Pi_K W * M \Pi_+ W M * \Pi_K = \Pi_K W * M (\Pi_+ W \Pi_-) M * \Pi_K = \Pi_K W * M \Gamma_W^* * M * \Pi_K$$

which is compact because it contains the factor Γ_{W^*} , which is compact as W is continuous. Next

$$\Pi_{+}V^{*}V\Pi_{+} = \Pi_{K}V^{*}V\Pi_{K} + \Pi_{M}V^{*}V\Pi_{M} + \Pi_{K}V^{*}V\Pi_{M} + \Pi_{M}V^{*}V\Pi_{K}$$

$$\sim \Pi_{K}V^{*}V\Pi_{K} + \Pi_{M}V^{*}V\Pi_{M}$$
(4)

because

$$\Pi_{M}V^{*}V\Pi_{K} = M(\Pi_{+}M^{*}V^{*}VM\Pi_{-})M^{*}\Pi_{+} = M\Gamma_{(V^{*}V)^{*}}^{*}M^{*}\Pi_{+}$$
(5)

which is compact since $\Gamma_{(V^*V)^*}$ is. Similarly the adjoint of (5), $\Pi_K V^* V \Pi_M$, is compact. From (2), (3), (4),

$$G \sim \left[\Pi_K (W^*W + V^*V) \Pi_K + \Pi_M V^*V \Pi_M \right] | H^2 =: G_1.$$
 (6)

The adjoint $X^*: H^2_- \to H^2$ of any operator $X: H^2 \to H^2_-$ satisfies $\langle y, Xx \rangle_{H^2_-} = \langle X^*y, x \rangle_{H^2}$. In particular, $\Gamma^*_{W^*} = \Pi_+ W \Pi_-$.

Clearly the subspaces K and $H^2 \ominus MH^2$ reduce G_1 , and $\sigma_e(G)$ is therefore the union of the essential spectra of the operators $\Pi_K(W^*W + V^*V) | K$ and $\Pi_M V^*V | MH^2$. It remains only to show that

$$\sigma_{\rm e}(\Pi_M V^* V \mid MH^2) = \sigma_{\rm e}(V^* V). \tag{7}$$

Recall that any selfadjoint operator X, $\lambda \in \sigma_{\rm e}(X)$ iff there is a normalized ($||x_i|| = 1$) sequence, $x_i \to 0$ weakly, $(X - \lambda)x_i \to 0$ strongly. Therefore $\lambda \in \sigma_{\rm e}(\Pi_M V^* V \mid MH^2)$ iff there is a normalized sequence $Mx_i \in MH^2$, $Mx_i \to 0$ weakly and

$$\Pi_{M}V^{*}VMx_{i} - \lambda Mx_{i} \to 0 \tag{8}$$

strongly. Now (8) is equivalent to

$$V * VMx_i - \lambda Mx_i \to 0 \tag{9}$$

strongly, because the difference

$$V^*V\Pi_M - \Pi_M V^*V\Pi_M = \Pi_- V^*V\Pi_M + \Pi_K V^*V\Pi_M$$
 (10)

is compact by (5) and the compactness of $\Gamma_{V^*V}\Pi_M$, and therefore $Mx_i \to 0$ weakly and is bounded implies that $V^*VMx_i \to \Pi_MV^*VMx_i$ strongly. Finally, the weak (strong) convergence to 0 of x_i is equivalent to the weak (strong) convergence to 0 of Mx_i , so (9) is equivalent to $V^*Vx_i - \lambda x_i \to 0$ strongly, $x_i \to 0$ weakly, $||x_i|| = 1$, which means that $\lambda \in \sigma_c(V^*V)$. This proves (2a).

To prove (2b), observe that

$$\Pi_{K}(W^{*}W + V^{*}V) | K = (\Pi_{K}Z^{*}M\Pi_{-}M^{*}Z + \Pi_{K}Z^{*}M\Pi_{+}M^{*}Z) | K \sim \Gamma_{ZM^{*}}^{*}\Gamma_{ZM^{*}} | K$$

because

$$\Pi_{K} Z^{*} M \Pi_{+} M^{*} Z \mid K = \Pi_{K} Z^{*} M \Gamma_{Z^{*}}^{*} M^{*} \mid K$$
(11)

and Γ_{Z^*} is compact so (11) is compact.

We now employ the essential spectral mapping theorem for continuous functions of the shift, see [10, p. 125]: If F is any continuous complex-valued function on $(-\infty, \infty)$, then $\sigma_e(\Pi_K F \mid K) = F(\sigma_e(M))$. By letting $F = \overline{W}W + \overline{V}V$ we obtain the first identity of (2b); the proof of the second identity is similar to that of (3), but with Z replacing W,

$$\sigma_{\mathbf{e}}(\Gamma_{ZM^*}^*\Gamma_{ZM^*}|K) = \{|Z(j\omega)|^2 : j\omega \in \sigma_{\mathbf{e}}(M)\}.$$

(2c) is a standard result for multiplication operators in L^2 which are real valued on the imaginary axis [11, p. 55]. \Box

3. Eigenvectors and norm of G

The essential spectral radius of any operator X is $\rho_e(X) := \sup |\sigma_e(X)|$. By Theorem 1,

$$\rho_{e}(G) = \max \left[\| V \|_{\infty}^{2}, \sup \left\{ \left(|W(j\omega)|^{2} + |V(j\omega)|^{2} \right) : \omega \in \sigma_{e}(M) \right\} \right].$$

Since G is a self-adjoint bounded operator, it follows from the definition of essential spectrum [10, pp. 304, 313] that $||G|| \ge \rho_e(G)$, and the inequality is strict iff G has an eigenvalue λ^2 , $\lambda^2 > \rho_e(G)$, in which case $||G|| = \max\{\lambda^2 > \rho_e(G): Gx = \lambda^2 x, x \in H^2\}$. We seek a test for such eigenvalues, which are necessarily of finite muliplicity and isolated in $\sigma(G)$ (or they would belong to $\sigma_e(G)$).

 λ^2 is an eigenvalue of G if the equation

$$(\Gamma_{WM}^* \Gamma_{WM}^* + \Pi_+ V^* V) x = \lambda^2 x, \quad x \in H^2,$$
(12)

has a solution for x.

Henceforth suppose that W and V are rational though the inner function M may be irrational and that $\lambda > \|V\|_{\infty}$. Denote the order of any rational F by N_F , and let $N := N_W + N_V$. Let B_{λ} be the Blaschke product whose zeros are those zeros of $\lambda^2 - V^*(s)V(s)$ lying in Re(s) > 0.

Lemma 1. If λ^2 is an eigenvalue of G, then the associated eigenvector lies in $H^2 \ominus B_{\lambda}MH^2 =: K_{\lambda}$.

Proof. If λ^2 is an eigenvalue, then (12) gives

$$\Gamma_{WM}^* \Gamma_{WM}^* x - \Pi_{-} V^* V x = (\lambda^2 - V^* V) x.$$

Als $\lambda > ||V||_{\infty}$, this is equivalent to

$$B_{\lambda}^{*}M^{*}x = (\lambda^{2} - V^{*}V)^{-1}B_{\lambda}^{*}(M^{*}\Gamma_{WM}^{*}\Gamma_{WM}^{*}x - M^{*}\Pi_{-}V^{*}Vx).$$
 (13)

Note that the factors $(M * \Gamma_{WM}^* * \Gamma_{WM} * X - M * \Pi_{-} V * V x)$ and $(\lambda^2 - V * V)^{-1} B_{\lambda}^*$ on the right-hand side of (13) are in H_{-}^2 . Therefore, $x \in B_{\lambda} M H_{-}^2 \cap H^2 = H^2 \ominus B_{\lambda} M H^2$. \square

Lemma 2. $G \mid K_{\lambda}$ is a finite-rank perturbation of the multiplication operator $(W^*W + V^*V) \mid K_{\lambda}$. Indeed,

$$G\Pi_{\lambda} = (W * W + V * \bar{V})\Pi_{\lambda} - \Delta_{\lambda} \tag{14}$$

where $rank(\Delta_{\lambda}) \leq 2N$,

$$\Delta_{\lambda} = \left[\Gamma_{W^*W+V^*V} + (W^* - \Gamma_{W^*}) M \Gamma_{W^*B_{\lambda}^*}^* B_{\lambda}^* M^* \right] \Pi_{\lambda}, \tag{15}$$

and Π_{λ} denotes the projection operator form L^2 to K_{λ} .

Proof. We have

$$G\Pi_{\lambda} = \Pi_{+} W * M \Pi_{-} M * W \Pi_{\lambda} + \Pi_{+} V * V \Pi_{\lambda}$$

$$= \Pi_{+} (W * W + V * V) \Pi_{\lambda} - \Pi_{+} W * M \Pi_{+} M * W \Pi_{\lambda}$$

$$= (W * W + V * V) \Pi_{\lambda} - \Pi_{-} (W * W + V * V) \Pi_{\lambda} - \Pi_{+} W * M \Pi_{+} M * W \Pi_{\lambda}.$$

Hence (14) is true with Δ_{λ} given by

$$\Delta_{\lambda} = \Pi_{-}(W^*W + V^*V)\Pi_{\lambda} + (W^*M - \Pi_{-}W^*M)\Pi_{+}WB_{\lambda}\Pi_{-}B_{\lambda}^*M^*\Pi_{\lambda}$$
(16)

which coincides with (15), and where we have used the identity $B_{\lambda}^*M^*\Pi_{\lambda} = \Pi_{-}B_{\lambda}^*M^*\Pi_{\lambda}$. The rank bound follows from the bounds rank $(\Gamma_{W^*W^-V^*V}) \leq N_W + N_V$, rank $(\Gamma_{W^*}B_{\lambda}^*) \leq N_W + N_{B_{\lambda}}$, $N_{B_{\lambda}} \leq N_V$ applied to the expression (15) for Δ_{λ} . \square

For simplicity, we will asume the generic case in which the poles and zeros of W, W^* , V, V^* , and M are simple, distinct from each other, and the (possibly multiple) zeros of $(W^*W + V^*V - \lambda^2)(s)$, $0 \le \lambda < \infty$, are isolated from the poles of M. The more general case can be treated as in [13].

Lemma 3. The range Δ_{λ} admits a rasis of functions $\psi_i \in L^{\infty}$, i = 1, ..., 2N, which are explicitly given in the Appendix, and which are analytic at all complex points at which W, W^* , V^* , B_{λ} , and M are nonsingular.

Proof. It is shown in the Appendix that the range of Δ_{λ} is spanned by functions $\psi_{i}(s)$ which are finite forms in W(s), M(s), and $(s + \eta_{i})^{-1}$, i = 1, ..., 2N, where η_{i} are singularities of W, W^{*} , V^{*} , B_{λ} or M(s). Each $\psi_{i}(s)$ is therefore meromorphic in $Re(s) \neq 0$ and analytic except at these singularities. The set $\{\psi_{i}(s)\}$ is independent in L^{∞} and therefore forms a basis, as each ψ_{i} has a pole not present in the others under the genericity assumption. \square

By Lemmas 1-3, if λ^2 is an eigenvalue of G with eigenvector x, then the equation $Gx = \lambda^2 x$ is equivalent to

$$\left[(W^*W + V^*V - \lambda^2)x \right](s) = (\Delta_{\lambda}x)(s) = \sum_{i=1}^{2N} \zeta_i^{\lambda} \psi_i^{\lambda}(s). \tag{17}$$

Let s_i^{λ} , $i=1,\ldots,2N$, denote the 2N zeros of $(W^*W+V^*V-\lambda^2)(s)$. If λ^2 is discrete, then these zeros are isolated from $\sigma_{\rm e}(M)$, because $\lambda^2 \notin \sigma_{\rm e}(W^*W+V^*V \mid K_{\lambda})$, by Theorem 1. Therefore each s_i^{λ} is a point of analyticity of M(s) and, under the genericity assumption, a point of analyticity of each $\psi_i(s)$ and hence of (17). If s_i^{λ} lies in the half-plane ${\rm Re}(s_i^{\lambda}) \geq 0$, where $x \in H^2$ is bounded, s_i^{λ} must be a zero of (17). A similar conclusion is reached for the other half-plane by multiplying (17) by $(M^*B_{\lambda}^*)(s)$, noting that $M^*B_{\lambda}^*x \in H^2$ for $x \in K_{\lambda}$, and that s_i^{λ} is disjoint from the singularities of $(M^*B_{\lambda}^*)(s)$. Hence we get 2N equations in as many coefficients ζ_i^{λ} ,

$$\sum_{j=1}^{2N} \zeta_j^{\lambda} \psi_j^{\lambda} \left(s_i^{\lambda} \right) = 0, \quad i = 1, \dots, 2N.$$

$$(18)$$

Introduce the $2N \times 2N$ matrix $A(\lambda) := [\psi_j^{\lambda}(s_i^{\lambda})]$ and the $2N \times 1$ matrix $\zeta^{\lambda} := [\zeta_j^{\lambda}]$ to get the matrix equation

$$A(\lambda)\zeta^{\lambda} = 0. \tag{19}$$

The zeros s_i^{λ} lie on the root-locus of $(W^*W + V^*V - \lambda^2)(s)$, and are distinct except at a finite number of values of λ^2 . At any λ^2 at which s_i^{λ} is a zero of multiplicity r, (r-1) derivatives of (18) must vanish at s_i^{λ} . Write the resulting matrix equation as

$$A'(\lambda)\zeta^{\lambda} = 0. \tag{20}$$

It follows that if λ^2 is a discrete eigenvalue then det $A(\lambda) = 0$ and, if any root s_i^{λ} of $(W^*W + V^*V - \lambda^2)(s) = 0$ is multiple, then det $A'(\lambda) = 0$. Conversely, if these determinants are null then there exists ζ_i^{λ} satisfying (18), (19). In that case the roots s_i^{λ} are zeros of both sides of (17), and the ratio

$$x := \left(\sum_{j=1}^{2N} \zeta_j^{\lambda} \psi_j^{\lambda} (s_i^{\lambda})\right) (W^*W + V^*V - \lambda^2)^{-1}$$

defines a function $x \in H^2$ which satisfies $Gx = \lambda^2 x$. Therefore we get the following result.

Theorem 2. The discrete eigenvalues of G are the values of λ^2 in the complement of $\sigma_e(G)$ at which det $A(\lambda) = 0$, and at which det $A'(\lambda) = 0$ whenever s_i^{λ} is a multiple zero of $W^*(s)W(s) + V^*(s)V(s) - \lambda^2$. Moreover,

$$||G|| = \max(\rho_{e}(G), \lambda_{\max}^{2})$$

where λ_{\max}^2 is the largest eigenvalue.

Note that $\sigma_e(G)$ is determined by Theorem 1. The characteristic determinant is analytic in λ except where s_i^{λ} is a multiple zero. (Alternatively, the function $\prod_{i \neq j} (s_i^{\lambda} - s_j^{\lambda})^{-1}$ det $A(\lambda)$ is analytic in λ for all $\lambda \notin \sigma_e(G)$, and the zeros of this function are the discrete eigenvalues of G.)

Appendix. Evaluation of the basis $\psi_i^{\lambda}(s)$

For any rational $F \in L^{\infty}$, the notation η_i^F , $i = 1, ..., N_F$, will denote an ordered enumeration of the poles of F, and $R^F(\eta_i)$ the residue of F at the pole η_i . For any $x \in K_{\lambda}$, we evaluate the components of $\Delta_{\lambda} x$

appearing on the right-hand side of (16) by contour integration. We get

$$(\Pi_{-}W^{*}Wx)(s) = \sum_{i=1}^{N_{W^{*}}} R^{W^{*}}(\eta_{i}^{W^{*}})W(\eta_{i}^{W^{*}})(s-\eta_{i}^{W^{*}})^{-1}x(\eta_{i}^{W^{*}}), \tag{A1}$$

$$(\Pi_{-}V^{*}Vx)(s) = \sum_{i=1}^{N_{V^{*}}} R^{V^{*}}(\eta_{i}^{V^{*}})V(\eta_{i}^{V^{*}})(s-\eta_{i}^{V^{*}})x(\eta_{i}^{V^{*}}), \tag{A2}$$

$$-(\Pi_{-}W^{*}M\Pi_{+}WB_{\lambda}\Pi_{-}B_{\lambda}^{*}M^{*}x)(s)$$

$$= -\sum_{i=1}^{N_{W^*}} (s - \eta_i^{W^*})^{-1} R^{W^*} (\eta_i^{W^*}) M(\eta_i^{W^*})$$

$$\times \left\{ \sum_{j=1}^{N_{W}} \left(\eta_{j}^{W^{*}} + \eta_{j}^{W} \right)^{-1} M^{*} \left(\eta_{j}^{W} \right) x \left(\mu_{j}^{W} \right) + \sum_{k=1}^{N_{B_{\lambda}}} \left(\eta_{i}^{W^{*}} - \eta_{k}^{B_{\lambda}} \right)^{-1} W \left(\eta_{k}^{B_{\lambda}} \right) M^{*} \left(\eta_{k}^{B_{\lambda}} \right) R^{x} \left(\eta_{k}^{B_{\lambda}} \right) \right\}, \tag{A3}$$

$$(W^*M\Pi_+WB_{\lambda}\Pi_-B_{\lambda}^*M^*x)(s) = W^*(s)M(s) \left\{ \sum_{i=1}^{N_W} (s - \eta_i^W)^{-1} R^W(\eta_i^W) M^*(\eta_i^W) x(\eta_i^W) + \sum_{j=1}^{N_{B_{\lambda}}} (s - \eta_j^{B_{\lambda}})^{-1} W(\eta_j^{B_{\lambda}}) M^*(\eta_j^{B_{\lambda}}) R^x(\eta_j^{B_{\lambda}}) \right\}.$$
(A4)

Now let η_i^{λ} , i = 1, ..., 2N, be the ordered set of poles formed from the sets $\{\eta_i^{W^*}\}$, $\{\eta_j^{W}\}$, $\{\eta_j^{W^*}\}$, and $\{\eta_i^{B_{\lambda}}\}$ in sequence, and let ξ_i^{λ} be the coefficients

$$\zeta_i^{\lambda} = \begin{cases} x(\eta_i^{\lambda}), & i = 1, \dots, N_V + 2N_W, \\ R^x(\eta_i^{B_{\lambda}}), & i = N_V + 2N_W + 1, \dots, 2N. \end{cases}$$

(A1)-(A4) are summed to get the result that $(\Delta_{\lambda}x)(s) = \sum_{i=1}^{2N} \zeta_i^{\lambda} \psi_i^{\lambda}(s)$ where ψ_i^{λ} is the sum of all terms in (A1)-(A4) multiplying ζ_i^{λ} , namely: For $\zeta_i^{\lambda} = x(\eta_i^{W^*})$,

For
$$\zeta_i^{\Lambda} = x(\eta_i^{W^{\top}})$$
,

$$\psi_i^{\lambda}(s) = R^{W*}(\eta_i^{W*})W(\eta_i^{W*})(s-\eta_i^{W*})^{-1}.$$

For
$$\zeta_i^{\lambda} = x(\eta_i^W)$$
,

$$\psi_{i}^{\lambda}(s) = -\sum_{k=1}^{N_{W^*}} (s - \eta_{k}^{W^*})^{-1} R^{W^*} (\eta_{k}^{W^*}) M(\eta_{k}^{W^*}) (\eta_{k}^{W^*} - \eta_{j}^{W})^{-1} M^* (\eta_{j}^{W})$$

$$+ W^*(s) M(s) (s - \eta_{j}^{W})^{-1} R^{W} (\eta_{j}^{W}) M^* (\eta_{j}^{W}).$$

For
$$\zeta_i^{\lambda} = x(\eta_k^{V^*})$$
,

$$\psi_i^{\lambda}(s) = R^{V*}(\eta_k^{V*})V(\eta_k^{V*})(s-\eta_k^{V*}).$$

For
$$\zeta_i^{\lambda} = R^x(\eta_i^{B_{\lambda}})$$
,

$$\psi_{i}^{\lambda}(s) = -\sum_{j=1}^{N_{W^*}} \left(s - \eta_{j}^{W^*}\right)^{-1} R^{W^*} \left(\eta_{j}^{W^*}\right) M\left(\eta_{j}^{W^*}\right) \left(\eta_{j}^{W^*} - \eta_{l}^{B_{\lambda}}\right)^{-1} W\left(\eta_{l}^{B_{\lambda}}\right) M^* \left(\eta_{l}^{B_{\lambda}}\right) + W^*(s) M(s) \left(s - \eta_{l}^{B_{\lambda}}\right)^{-1} W\left(\eta_{l}^{B_{\lambda}}\right) M^* \left(\eta_{l}^{B_{\lambda}}\right).$$

References

- [1] D.S. Flamm. Control of delay systems for minimax sensitivity, M.I.T. Ph.D. Thesis and L.I.D.S. Report (June 1986).
- [2] C. Foias, A. Tannenbaum and G. Zames, Some explicit formulae for the singular values of certain Hankel operators with factorizable symbol, SIAM J. Math. Anal., submitted (1987).
- [3] C. Foias, A. Tannenbaum and G. Zames, On the H^{∞} -optimal sensitivity problem for systems with delays SIAM J. Control 25 (3) (1987) 686-705.
- [4] A. Feintuch and B.A. Francis, Uniformly optimal control of linear systems, Automatica 21 (5) (1985) 563-574.
- [5] B.A. Francis, Notes on H[∞]-optimal linear feedback systems, Lecture Notes Linköping University (1983).
- [6] B.A. Francis and J. Doyle. Linear control theory with an H^{∞} optimality criterion, Systems Control Group Report #8501, University of Toronto (Oct. 1985). To appear in SIAM J. Control.
- [7] E.A. Jonckheere and M. Verma, A spectral characterization of H^{∞} optimal feedback performance and its efficient computation, Systems Control Lett. 8 (1986) 13-22.
- [8] J.C. Juang and E.A. Jonckheere, On computing the spectral radius of the Hankel plus Teeplitz operator, U.S.C. Dept. of E.E. Report (March 1987).
- [9] H. Kwakernaak, Minimax frequency domain performance and robustness optimization of linear feedback systems, *IEEE Trans.* Automat. Control 30 (1985) 994-1004.
- [10] N.K. Nikolskii, Treatise on the Shift Operator (Springer, Berlin-New York, 1980).
- [11] S.C. Power, Hankel Operators on Hilbert space (Pitman, London, 1982).
- [12] M.S. Verma and E. Jonckheere, L^{∞} compensation with mixed sensitivity as a broad band matching problem, Systems Control Lett. 4 (1984) 125-129.
- [13] G. Zames, A. Tannenbaum and C. Foias, Optimal H[∞] interpolation: A new approach, *Proc. 25th Conf. Dec. Control* (1986) pp. 350-355.