
420 IEEE TRANSACTIONS OX ALTOMATIC  CONTROL, AUGUST 1969 

were formed, it. would be lower triangular 
became of the zeros on the diagonal of D. 

Rmurk: For  arbitrary 2 (  <n - 1) and 
T( <TI )  (2) reduces to 

.t = 4 2  + A41s(t - h )  + B ~ u  + B1 ~ ( t  

- h,) + . . . + B,71(t - Yh) (3) 

?J = ex + dl1 

where Y = I + 1 + r - n under t.he  con- 
vention that negative Y is taken as zero. 
Wote that if I + 1 + r 5 n is the 
zero matrix eliminat.ing delays  in t,he 
cont.ro1. 

It. can be shon-n that. for some cases it is 
possible by a change in state variables t.o 
eliminate  delays in zl (Le., make 6 = 0). 
The intere.;t.ing fact. is that.  the new stat.e 
variables are not related to the normal form 
state variables by a nonsingular matsix of 
t,ime const.ants, as in the ordinary case, 
but. by a mat.ris composed of constants and 
operators  such as DL. The quejt.ion of states 
being isomorphic under  certain types of 
transformations t.hen becomes quite in- 
t.eresting. (Pome investigation in this 
area is  currently  in  progress.) 

Again, the  important point of this 
correspondence is t.o  show t.hat. delays in 
the contxol are inherent  in many stat.e 
representations and should be considered 
in  stating meaningful control problems. 
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Synthesis of Transfer Function 
Matrices with Invariant  Zeros 

Abstract-A class of multi-input multi- 
output systems is considered in which the 
zeros of the  transfer function matrix 
remain  invariant with respect to a form of 
state variable  feedback. 
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Consider the linear cont.ro1 process 

y ( t )  = H x ( t )  

where the  state of t.he syst.em x ( t )  E X = 
Rn, and  the  output, of the system y(t) E 

= RP. The cont.ro1 functions t 4 u(t)  
are assumed to  be Lebesgue measurable 
functions which are bounded in every 
compact interval in R such t-hat. for each 
t ,u( t )  E 1: = Rm. -4 is an n x n, B is an 
n X m ,  and H is a p X n const,ant. mat.rix. 

For the system (1) the transfer  function 
T ( s )  where s is a complex variable is given 
by 

T ( s )  = H[sI  - -i]-’R. (2 1 
Let. r = { - / I  . . . rn] be  an  arbitrary set, of 
n complex numbers  with the proviso t.hat. 
each ? i  E r which is complex occurs in 
c0njugat.e pairs. It. is now  well known [I], 
[2] if (1) is completely controllable, the 
pole locations of T ( s )  may  be moved to 
t.hoae determined by r by t.he application 
of affine  state variable feedback, that is by 
the application of a  control l a a  

u( t )  = k + Kz( t )  (3 1 
where 12 is a  constant  vector and K a 
constant, matrix. 

It. is also  well knoan that if m z .  = 1, the 
zeros  of the t.ransfer function  matrix  remain 
invariant wit.h respect. t.0 affine  state 
variable feedback. For m1dt.i-inpnt systems 
this result is not. true in general. 

Assume that .4 has  distinct eigenvalues. 
In applications, t.he matrix H nil1 usually 
be fixed by t,he availability of t.ransduce1.s 
to measure the  state variables. hlore 
freedom may be available in the select.ion 
of t.he activat,ing  matrix B. Each column of 
B may  be considered as  an activat.ing  vector 
for  a different component. of cont,rol. 

Let. br; denote  the  kth column of B. Let 
{ X ( k ) }  denote t,he set of eigenvalues of -4 
which may  be inflnenced by bt.  The  clas of 
multi-input, s)-st.ems considered in this 
Paper has the folloning propert.ies: 

m 

Condition (4) guarantees that  the syst,em is 
completely controllable while condition ( 5 )  
indicates that each  act.uating  vector in- 
fluences a different set of eigenvalues. The 
class of systems sat.isfying conditions (4) 
and ( 5 )  d l  be referred t.o as systems  with 
disjoint. control. 

Since we are interested in t,he properties 
of the  transfer funct.ion matrix, we may 
consider any convenient representation of 
(1). In  terms of the canonical form for 
multi-input  systems [ l ] ,  [3],  [4], the stat.e 
equation of (1) admits  the representation’ 
of t.he following 

canonical  form representation for (1). 
1 In Khat follows we  could also use the Jordan 

1 3  

Each &(k = 1,2, . . . , m )  is  a companion 
matrix correponding  to t,he eigenvalues 
influenced by bt .  This class of sl-stems  has  a 
unique  representation except for the orde - 
ing of t,he &. A t.ypical submatrix A& of A 
is given by 

* ! 0 ; 1 : : : ;  0 1 
At = 

.. .  
k -ar;,., -at .= --I - a ~  

(7 ) 
with t,he corresponding charact,eristic equa- 
tion 

S% + ul;,lsn*-’ + . . . + Uk,ZL = 0. (S) 

Since the system  is completely control- 
lable, 

m 
nt = n. 

k = 1  

The  characteridc equat.ion of -2 is given by 
m 

det, [ S I  - d l  = det [SI - -<k] = 0. 
k = 1  

Every eigenvalue of -3 ma>- be altered by 
changing the characterist.ic equation of the 
companion matrix it is associated with. 
For_example, suppose t,hat the eigenvalues 
of A ? :  are  to be moved to new locations 
determined by  the characteristic equat.ion 

Snk d p , ~ P t - ’  + . . * -l- Ok,nk = 0. (9‘ 
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Let, the  state vector be partitione$ ac- 
cording to  the companion matrices A b  in 
-3 and  let  the  kth component of the cont,rol 
vector be 

' l l k ( t )  = [ a k . n ~ :  - f i b a t ,  ' '  ' 9 Qk+l 

- dk.11fk.  (10) 

If all the eigenvalues are changed in  this 
manner, t.he resulting  system 2 is still of 
the form (6), excepting t.hat the  last row of 
each dl; is changed due t,o t,he shifting of the 
eigenvalues 

Due  to  the block diagonal structure of (6) 

c [ST - A m ] - l  

* 
where a  typical block [SI - L I ~ ] - ~  is of the 
form 

r::: 1 
1 

[ S I  - Al;] - l  = 
! 

(12) 

The matrix  (12)  is  not completely described 
since  only the  last column proves to be of 
imporlance. The transfer funct,ion matrix 
corresponding to  the representat.ion (6) is 

T ( s )  = &[SI - A-18 
r 

! 

1 ;  
S 

0 

. . .  ; 0 

;..___ 

(13) 
Let t.he it,h row of H be given as 

ii = [ i i m , o ,  . . . , f7m,r.,n--l I ; . . . :  h ' z . 0 ,  . . . , 
(14) 

where the  partitions  are introduced to 
corresp_ond ,to the horizont,al part.it.ion of 
[SI - A ]  -1B. Then a  typical  element of the 

* 

* .  

i ' 2 , " 2 4 :  h'l.0 ' . ' i ;il.n,-*l 
, * .  

t.ransfer function matrix relat,ing the  kth 
input  to  the  ith  output is 

The zeros of this typical element of t.h? 
t,ransfer function mat,rix depend only on H 
which is fixed by  the system. Det. [SI - 
Ak] is only a  function of the  last row of 
* 

e1ement.s of L i k .  Hence feedback of the  type 
described in (10)  may  be used to create 
arbitrary pole locations of the t,ransfer 
f u n d o n  mat,ris while leaving the zeros 
invaria.nt. 
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Idenmcation of Process 
Delay Time 

Abstract-A method of identification of a 
process  delay  time is suggested  in condi- 
tions when the delay is varying slowly and 
cannot be estimated by direct measure, 
and in which also the process  input is  not 
available for  measurement. A cross correla- 
tion function is suggested as  a means of 
evaluating the process delay time so that 
the system can be adapted to the new 
conditions necessary  for acceptable per- 
formance. 
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The  type of syst,em to  be considered is 
that, generally represented in Fig. 1. Such a 
syst.em can be controlled by a classical 
threeterm cont.roller but. not in an  optimum 
manner,  although the results may  be 
reasonably satisfactory. 

In  the 1iterat.ure on t.he control of delay 
t.ime processes it has  often been assumed 
t.hat the function G(p) is of the  form 1/ 
(1 + rp). Reference [6] discusses the 
simplest condition when 7 = 0, [7] that of 
? , T I  < 1 and [8] that, of  -Y!TI > 1. The 
system shown in Fig. 1 is that proposed by 
Smith [I], [2] ; this system enables the out- 
put.  integral  error to  be minimized with- 
out  any cost being allocated t,o the manip- 
ulated  variable M ( p ) .  For  stability reasons 
it is necessary in this system to maintain 
Tn = TI. This  note is concerned with a 
possible method whereby Tz, the delay 
time of t.he simulator, can be matched t,o 
TI, the  actual process delay time  that  may 
be varying. F ( p )  represents t.he function of 
the process output.  measurement  trans- 
ducer. 

The output-dist.urbance transfer  function 
for  the system  in  Fig. 1 is 

C ( P )  - G ( p )  e 
D(p) 1 - F(p>e-*IP/(l - F(p)e-*ZP) 

- 

If F ( p )  = 1, or if F ( p )  contains  a time 
constant that is very small compared wit.h 
TI, the necessary and sufficient condition 
for stability is t.hat. T2 = TI [3]-[5]. If 
G ( p )  = lj(1 + ~ p )  and F ( p )  = 1, then the 
output,/dlsturbance transfer  function  can 
be expressed in  the form 

e-PI1 - e - w  

(1 + ap)( l  - e - @  + e-P) 

in which a = 7iT1  and CY = T2/Tl and TI 
is considered as one unit of time. Then  by 
considera.tion of t.he characteristic  equation 
it, can be shown that, if a > 0, for stability 
a = 1. If G(p)-I were replaced, more 
realist.ically, by a  function (1 + up)/ 
(1 + b p )  in which a >> 6,  then  the  same 
condition for stability holds as it does if the 
element G(p)-l is not present  in the cont.ro1 
system. 

A possible means of obtaining an indirect 
estimate of TI is by use of a cross-correla- 
t,ion function aZe(7) between z ( t )  and e( t ) ,  
t.he output of the simulator and  the act.uat- 
ing signal of the syst.em, so that. 

The evaluation of this function over a 
range of 'T provides an oscillating profile 
with clearly defined maxima. and minima 
direct.ly indicating  values of  TI and Ti 
and also the difference TI - Tz = $. The 
presence of noise in  the syst.em should 
enswe t.he existence of these  peaks even if 
the command r ( t )  remains constant.. 

For t.he class of system  in which F ( p )  = 1 
and G ( p )  = 1/(1 + aTlp), results for values 
of a = 0.15 and a = 0.3, R ( p )  = 0, and a 
unit step or sine input (period ET1)  
applied at  t = 0 as a  disturbance  enable 
certain conclusions to  be clearly drawn: 

the first. noticeable minimum of Gze(7 )  
occurs for 'T = f 


