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ABSTRACT 

An algebraic viewpoint permits the formulation of necessary and sufficient condi- 
tions for the existence of a unique solution to some linear matrix equations. The theory 
developed is then used to express the solution in a finite series form and to prove a 

stability theorem. 

1. INTRODUCTION 

Let B, A and Q be given matrices of dimension m X m, n X n, and m X n 
respectively with elements in some field F, and gii be elements of F. Our first 
purpose in this paper is to express necessary and sufficient conditions for the 
existence of a unique solution P( m X n) to linear matrix equations of the form 

s t 

2 2 g,,B’PA’=Q, 0.1) 
i=o j=() 

where s, t are positive integers. Assuming that a unique solution exists, we 
then use the theory developed to express it in a finite series form. The 
approach is algebraic in nature, and the construction procedures can easily be 
implemented on a digital computer. Particular attention is given to equations 
PA + BP = Q and P - BPA = Q. Their special subcases when B = A’ are the 
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very well-known Lyapunov equations, which have wide applications in con- 
trol theory (stability theory, optimal control, stochastic control, etc.). 

Equation (1.1) was first studied almost a century ago by Sylvester [16], 
who, recognizing that this is merely a set of mn equations in mn unknowns, 
proceeded by rewriting it in the equivalent vector form: 

GYP = q (1.2) 

where p and q are the mn X 1 column vectors 

p= [pll,p12,...,pln,...,Pzl,...,Pz,,...,~~nl’, 

q= [9,,,9,, ,... ,91n,...,921,‘..,92n,..., 9mnl’ 

with 

and where 

‘=(Pij)7 Q= (Sij)> 

G,= i i .@‘@(A’)‘. 
i=u j=O 

The symbol @ denotes the direct product [12], and G, is mn X mn. This 
approach was also used in [15], [12], [13]. It is well known that a solution of 

(1.2), [and (l.l)] exists if and only if rank[G,,q] = rank[G,] and that a unique 
solution exists if and only if G, is nonsingular. Using these ideas, one can 
write the solution as p = Gi’q, which can be constructed by computing the 
inverse of Gs. 

A different method of approach is used by Kucera [ll] for the study of the 
equation BP + PA = C, by introducing the linear transformation L : P --) BP 
+ PA on the vector space of m X n matrices. By this means he is able to 
formulate necessary and sufficient conditions for the existence of a solution. 
In contrast with the approach of Lancaster [13], who uses methods of contour 
integration, Wimmer and Ziebur [18] attack (1.1) using Taylor’s formula for 
matrix functions. 

Of particular importance, especially from a computational point of view, 
in the case when a solution exists, is the form in which the solution can be 
expressed. This concern is evidenced in an extensive literature. The solution 
of equations of the form (1.1) can be expressed in an infinite series form [13]. 
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According to Lancaster [13] and Brockett [3], the solution can be written in 
an integral form. For example if Ai, pi are the eigenvalues of A and B 
respectively and Re Ai < 0, Repi < 0 for all i, j, then the unique solution to 
BP+PA=Qisgivenby 

p=- 
/ 
meBtQeAt dt. 

0 

Hartwig [4] uses the theory of resultants to obtain a finite series solution to 
BP - PA = - Q when the solution is unique, and clarifies earlier techniques 
used by Jameson [6]. Another method of approach is to use decomposition 
methods to transform the given equation to an equivalent one for which the 
solution is easier to construct. Bartells and Stewart [l] use the Schur decom- 
position to obtain a computationally attractive algorithm for the solution of 
BP+PA=Q. 

The way in which we will proceed is to introduce a module structure on 
the space of m X n matrices F,,. This will allow us to write Equation (1.1) in 
the form 

yP=Q, 0.3) 

where (Ye is an element of the underlying ring, and * indicates multiplication 
of ring elements and m X n matrices. We then show that (1.3) has a unique 
solution if and only if (Ye has an inverse. This will very naturally lead to a finite 
series expression for the solution P of (1.1) as 

The approach has been inspired by an important paper by Kalman [9], who 
was concerned with the characterization of polynomials whose zeros lie in 
certain algebraic domains. 

The paper is divided into six sections. In Section 2 we define an action 

f BA, using which we impose the module structure on F,,. In Section 3 we 
express necessary and sufficient conditions for the existence of a unique 
solution to (1.1). In Sections 4 and 5 we give special attention to equations 
PA + BP = Q and P - BPA = Q respectively. In Section 6 we look at Equa- 
tion (1.1) over an arbitrary integral domain. In Section 7 we use the explicit 
form of the solution to prove a stability theorem and give a new proof to a 
theorem of Krein [13, Theorem 41. 
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2. THE ACTION faA 

Let A be an n X n matrix and B an m X m matrix over E, some integral 
domain. Let E [ x, y] be the ring of polynomials in two variables x and y over 
E. Let \k = ($a( x), $a( y)) be the ideal in E[x, y] generated by I&(X), $a(,,(~), 
the characteristic polynomials of A and B respectively. Elements of the. 
quotient ring E[x, y]/\k are cosets (equivalence classes) denoted by q + 
a(x, y). The Cayley-Hamilton theorem holds [14]; therefore c+~(A) = 0, &i/z(B) 
= 0. Since @a(x), &(y) are manic polynomials, division by &z(x), &/z(y) is 
possible, and as a consequence we can state: 

LEMMA 2.1. Let g(x, y) be an element of E[x, y]. Then g(x, y) can be 
written uniquely as 

g(x, y) = t(x,y)~,(x>~~(Y>+ PC& Y>hk4+ 4(x, Y>hL(d+ 4x, Y)T 

where: 

(a) the degree of p(x, y) in y is less than m (or p(x, y) = O), 
(b) the degree of q(x, y) in x is less than n (or q(x, y) = O), 
(c) the degree of r(x, y) in y is less than m, in x less than n (or r(x, y) = 0) 

Proof. Division in x is possible; therefore 

g(x, y) = a(x, Y)@dx)+b(x~ Y)> 

where the degree of b(x, y) in x is less than n or b(x, y) is zero. Division in y 
is possible; therefore 

where the degree of p(x, y) in y is less than m or p(x, y) is zero. Also 

where the degree of r(x, y) in y is less than m and the degree of r(x, y) in x is 
less than n, or r(x, y) is zero. Now then 
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This representation is unique, since if 

with both representations satisfying (2.1) then 

5(w--r(x,Y)= (tl-t)~2b)&,(Y)+ (Pl--Pb#&)+ (91-9)+2/2(Y). - 
a T Y- Y 

(2.1) 
Suppose that cx # 0. Then there exists a term on the r.h.s. of (2.1) of the form 
ax”yi, i 2 n, i 2 m. This term cannot be canceled by any other term on the 
r.h.s. of (2.1); therefore cx = 0. Suppose that /3 # 0. Then there exists a term 
on the r.h.s. of (2.1) of the form bx’y’, i 2 12. This is impossible, and /I = 0. It 
then follows that y = 0 as well. H 

A direct consequence of this lemma is: 

COROLLARY 2.2. Let gl = +h(x)4dy)+ P,&(X)+ 91h,(~)+ rl ~2nd g, 
= tz~z(x)+~(y)+ p,+,(x)+ 9,~2(y)+ rz, written in the form of Lemma 2.1 
(a)-(c), be the same coset \k + u(x, y). Then rl = r,. 

The above results allow us to pick a unique representative from each coset 
\k + g(x, y). If g is any element in \k + g(x, y) and g = t+z(x)$z(y)+ pan 
+ 91/4Jy)+ r as in Lemma 2.1 (a)-(c), then r = g(x, y) mod 9 is this unique 
representative. 

Let E,, be the set of all m X n matrices over E. Define the action 

fsA: E[~>YIX%, - E,, in the following manner: 

where h(x, y) = Bikhikykk is an element in E[x, y] and M an elernent in E,,. 
It can be shown that fBA has the following properties: 

(i) fBA(u, M) = uM, where u is an element in E, 

(4 fBk(X, Y)+ h(x, Y), M) = &&(X. Y). W+ f,,(Wx, Y), M), 

(4 h&(X, y)h(x, Y), M)=&(g(x, Y), fi,.dh(X, Y), W) 

=&,44X, Y)), f&&(X, Y), M), 
(iv) fB,dg(~, Y), W = fBA(g(X, Y) mod *, M)), 

(v) fBA(g(X,y),M+N)=fBA(g(X,y)~M)+fBA(g(X,y),N), 
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where g(x, y), h(x, y) are any elements in E[x, y] and M, N any matrices in 
E . All these properties follow directly from the definition. It is important to 
nrti that the Cayley-Hamilton theorem is crucial in proving (iv). The 
definition of fa, allows for the interpretation of E,, as an E[x, y]/\k-module. 

PROPOSITION 2.3. The set E,, of m X n matrices with elements in E is a 
module over the quotient ring E[x, y]/q. 

Proof. The set of m X n matrices under addition is an abelian group. 
Define multiplication ( * ) of cosets 9 + h(x, y) and m X n matrices M, in the 
following manner: 

The multiplication is well defined, and the properties of fBA ensure that: 

(1) [‘k+h(x,y)]*(M+N)=[\k+h(x,y)l*M+[\k+h(x,y)l*N, 

(2) [‘k + 4x, Y)I* {I* + g(x, y)l *Ml 
= {[* + h(x, Y)I[* + g(v Y)I] *My 

(3) {[~+h(x,y)l+[\k+g(x,y)l}*M 
=[‘k+h(x,y)l*M+[\k+g(x,y)l*M, 

(4) (\k+l)*M= M 

for all M, N in E,, and all \E+h(x,y), *+g(x,y) in E[x,y]/\E, with 
\k + 1 being the multiplicative identity in E [ x, y ] / \k. 

3. THE GENERAL EQUATION 

We have already mentioned that Equation (1.1) can be written in the 
equivalent vector form (1.2) and that a unique solution exists if and only if Gs 
is invertible. We now show that Proposition 2.3 can be used to formulate an 
equivalent algebraic condition. For this and the next two sections we restrict 
our analysis to the case where E is actually some field F, and postpone the 
analysis over an arbitrary integral domain to Section 6. 

Let F be some field, and let K be an algebraically closed extension of F. If 
f(x,y) is an element of F[x,b], we denote by V(f(x,y)) the variety of 
f(x, y) in A: (the affine space of dimension 2 over K). Let Xi, A,,.. .,X, be 
the eigenvalues of A, and pi, pa, . . . , pm be the eigenvalues of B, and g(x, y) a 
polynomial in F [ x, y]. We have already expressed Equation (1.1) in the 
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equivalent form (1.2): 

131 

Ggp = q. 

We can now state: 

THEOREM 3.1. The following statements are equivalent: 

(1) Equation (1.1) has a unique solution for all Q. 
(2) Gg is invertible. 
(3) g(X,,~Li)ZOfoTall~Li,Xi. 
(4) v(g(~~~))nv(~mnv(~~(y))=~. 
(5) The coset \k + g(x, y) is a unit in F[x, y]/\k. 

In particular if e(x, y) is a polynomial for which [‘k + e(x, y)][\k + 
g(x, y)] = \E + 1 holds, then p = fBA(e(x, y) mod q, Q) is the unique solution 
of (1.1). 

Proof We will show the equivalences in the order 

(1) -(2> -(3) -(4) -(5) +W. 

(1) + (2): Clear. 
(2) + (3): Suppose that g(A, p) = 0 for an eigenvalue h of A and an 

eigenvalue p of B. Let a’ and b be eigenvectors of A, B, (a’A = ha’, Bb = pb). 
Then b@a’# 0, G;(b@a’) = Bgii$X’(b@a’) = 0, and Gp is singular. 

(3) - (4): Since g(h,, pi) # 0 for all Ai, pi, it follows that 
g(x, y), +s(x), *s(y) have no common zero in A:. 

(4) + (5): The coset \k + g(x, y) is a unit if there exists a q + e(x, y) such 
that 

Equivalently, \k + g(x, y) is a unit if there exist e(x, y), a,(x, y), a,(x, y) 
such that 

Assuming that (4) holds [which also says that the polynomial h(z, y) = 1 

vanishes at every common zero of g(x, y), @s(x), #s(y)], by the Hilbert- 
NuZZsteZZensatn [19] there exist polynomials e(x, y), a,(x, y), a,(x, y) such that 
(3.1) holds, which implies that + + e(x, y) is a unit. 
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(5) + (1): Assume that \k + g(x, y) is a unit in F[x, y]/\k. Let \k + e(x, y) 
be such that [\k+e(x,y)][‘k+g(x,y)]=\Ir+l. We show that P= 
fBA(e(x, y) mod 9, Q) is the unique solution of (1.1) by substitution: 

The solution is unique, since &(g( x, y), P) = Q implies 

p=f,A(e(n:,y),f,A(g(~,Y)~P))=~A(e(X~Y)~Q)’ n 

REMARK. In the above proof we give an explicit expression for the 
solution in finite series form. A general method for constructing such an 
e(x, y) is through a constructive proof of the Hilbert Nullstellensatn or by 
using resultant theory [17]. In the next two sections we will show that for the 
equations BP + PA = Q and P - BPA = Q this generality is unnecessary and 
easier methods do exist. 

REMARK. It is interesting to note that Hartwig [5], while studying the 
equation BP - PA = - Q using X-matrices, obtains a similar finite series 
expression for the solution, in which the resultant of &(x) and #a(y) appears. 
The approach we suggest applies equally well to the more general equation 
(1.1). 

REMARK. In our approach we have been u_sing th_e ideal * = ($a(~), 
&(y)). Other ideals can be used, such as * = (@a(x), &/z(y)), where @s(r), 
&(y) are the minimal polynomials of A and B respectively. This could be 
used advantageously in order to reduce the amount of computation needed to 
construct the solution. 
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4. THE EQUATION BP + PA = Q 

We have already shown that the solution to BP + PA = Q (assuming a 
unique solution exists) can be expressed as 

where e(x, y) is such that [‘k + e(x, y)][\k +(x + y)] = \k + 1. We now pre- 
sent two methods for the construction of such an e(x, y). 

Let ~$i(x)=(pa(-x), $,(x)=&-x). It can be shown that x+y divides 

ENEMY>- ~,(YM~)~ and so let 

This is a Bezoutian form [8]. Since Xi + pi # 0, this means that @a(x), #i(x) 
are coprime and therefore there exist polynomials a(x), b(x), a’(x), b’(x) 
such that 

Let e(x, y)= - u(x)b’(y)p(x, y). We then have 

e(x, y>(x + Y> = - u(~)b’(y)[~~,(x)~,(Y)--~(Y)~,(x)l 

= -u(x)b’(Y)~,(x)~~(Y)--a(x)~,(x)b’(Y)~,(Y) 

= -u(~)b’(Y)~,(r)~~/,(Y)+[1--b(x)~~,(x)l[1-a’(Y)~,(Y)l 

= -[b(x)a’(Y)--a(x)b’(Y)l~,(x)~~/,(Y) 

Therefore [‘k + e(x, y)] [‘k +(x + y)] = \E +l. 
A different method for obtaining an C(x, y) such that E(x, y)(x + y)+ 

k,( r, ~)+a( x) + k,(x, y)&(y) = 1 is the following. Divide +s( x) by x + y in X: 
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Clearly &,( - y) = +,(y) = q(y). Since &(x), &(x) are coprime, there exist 
A(Y), P(Y) such that 

~(Yh(Y)+PL(YNl(Y) =l 

+ h(Y)[~,(x)-h(x,Y)(x+Y)l+EL(Y)~~(Y)=I 

-+ -A(Y)h(x,Y)(x+Y)+A(Y)~,(x)+p(Y)~~(Y)=I. 

Therefore let f?(x, y)= - X(y)h(x, y). 

REMARK. The Lyapunov equation A’P + PA = Q is dealt with in the 
same manner bearing in mind that $a( x) = +a( x). Numerical examples can be 
found in [4]. 

5. THE EQUATION P - BPA = Q 

The objective is to again construct an e(x, y) such that 

[*++(x,y)][~+(l-xy)] =\I’+l. 

Let 

@a(r) = det(xZ - A) =u,r” + u,_~x”-~ + . . . + a,, 

~~(x)=det(xZ-B)=b,r”+b,_,x”-‘+ ... +b,, 

@s(X) = a& + aiXn-i+ . * * + a,, 

I//~(X) = b,,xm + bldnpl + . . . + b,,,. 

If Ai is a root of @a(x) which is nonzero, then l/Xi is a root of @s(x). Since we 
assume that a unique solution to P - BPA = Q (1 - Aipi # 0), we must have 
that @a(x), $a(~) are coprime. We also have that: 

(a) if n am, then l--y divides y”-“~~(x)~~(~)-cP,(~)lc/,(~), 
(b) if n<m, then l-xy divides x”-“~2(~)~~(~)-~3(~)~~(~). 
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We comment on the validity of (a). Let 

PI= Y”-*+2(~)1c/z(Y) 

= Yn-,( u,xn + an_lXn-l + . . . + a,)( b*y" + . . . b,). 

pz=(P3(y)IC/3(x)=(u,y"+a,y"-'+ ... +a,)(b,x”+ -b*). 

In forming p, - p,, combine terms from p, and p, which have the 
same coefficients (i.e., u,,b,,, with u,b,,,xnymynpm, un_lbmy with 
a _ b n lm x*-‘ymyn-*, and in general u,bly npk~m-’ with ukblxky’yn-m, 
where 0 G k G R, 0 G I G m). Clearly 

ukbl(xky’ynpm - y n-kxm-l) = k(x, y)(l- x’y’) 

for some i, and consequently l- xy divides Ukbl(XkylynAm - yn-‘xm-‘). 
We are now in a position to construct e(x, y). Since @s(x), &Jr) are 

coprime, there exist u(x), b(x), u’(x), b’(x) such that 

Now then if n > m, let 

if n<m, let 

Let e(x, y) = - u(x)b’(y)p(x, y). It immediately follows (assume n 2 m) 
that 

e(x,y)(l--Y)= -a(x)b’(y)[y”~m~,(x)~~(y)-_~(y)~,(x)l 

= -a(x)b’(y)y”~~“~,(x)~~,,(y) + 4x)b’(y)+,(y)#s(x) 

= [b(+‘(y)- a(x)b’(y)yn~ml~2(x)~~(y) 

-a’(y)~~,,(y)--b(x)~,(x)+I. 

It follows that the solution can be written as P = &,(e(x, y) mod ‘k, 0). 
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REMARK. The discrete Lyapunov equation is the special case when 
B = A’, which introduces the simplification &c/z(x) = +a( x), n = m. 

6. OVER INTEGRAL DOMAINS 

We now turn our attention to the case when Equation (1.1) [or its 
equivalent vector form (1.2)] is a linear equation over E, some integral 
domain. It is known that a unique solution exists if and only if det Gg is a unit 
in E (i.e. an element which has an inverse). Clearly det Gg is a unit iff Gg is 
invertible. We will now show that as in the case of a field the algebraic 
condition we have formulated remains valid. Let a(u) = det(Z,,U- G,) and 
II = (a(u)) the ideal generated by 7r( u). We will need the following result. 

LEMMA 6.1. Let h: E[u]/II + E[x, y]/\k be the function defined by 

Then h is a ring homomorphism. 

Proof. We first show that h is well defined. Let II + a(u) = II + b(u) 
[i.e., a(u)= b(u) = k(u)m(u)]. Show that 9 + a(g(x, y))=\k + b(g(x, y)). 
We claim that r(g(x, ~))=k(x, ~)~~(~)J/z(r)+ ki(x, Y)&(X)+ Z&(x, Y)&(Y) 
in the unique form of Lemma 2.1(a)-(c). 

Clearly 

T<“>=II [“-g(xi,Pj)] 

ii 

-+ 77(g(X, Y)) = n [g(,, Y)p6(xi~Pj)]' 
ii 

Now if g(x, y)=g,x’ + . . . + g, with g, in E[y], divide g(x, y) by x - Xi in 
X. Then we have 

+(g,_z + g,_1h, + g,x;)x”-3 + . . . 
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but since h(y) = g(X,, y), we have that 

It is also clear that y -pi divides g(X,, y)- g(X,, pi). Therefore 

?r(g(x,Y))=n[kij(r,Y)(x-Xi)+zii(x,Y)(Y-~j)]’ 
ii 

In expanding this product we see that every term in the sum will be of one of 
the two forms a(x, y)+s(x) or b(x, y)&(y). This means that over K[x, y] 
(where K is an algebraically closed extension of E) r(g(x, y)) can be written 
in the form of Lemma 2.1(a)-(c) as 

n(g(x, y)) =t,(x, Y)&(+b2(Y)+ P,b, Yhcd+ 41(x, Y>h.(Y)~ 

Since by Lemma 2.1 this is a unique expression, we must have that t,, pi, qi 
are elements of E[x, y]. This means that 

and that h is well defined. 
It is immediate from the definition that 

h([rI++(u)]+[II+b(u)])=h(n++(u))+h(rl++(u)) 

and 

h([II+u(u)][II+b(u)])=h(Il+u(u))h(II+b(u)). n 

We are now in a position to state: 

THEOREM 6.2. Equation (1.1) has a unique solution over E if and only if 
\k + g(x, y) is a unit in E[r, y]/\k. 

Proof. If \k + g(x, y) is a unit, then P = fBA(e(x, y) mod ‘k, Q) is the 
unique solution, where e(x, y) is such that [\Ir + e(x, y)][\k + g(x, y)] = \k + 1. 
If (1.1) does have a unique solution for each Q, it means that det G, is a unit 
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in E. This means that if r(u) = 4~~ + . . . + ro, r. = det Gp is a unit. Let 

k@) = - z$-l- ?y” _ . . . - 2. 

Then k(u)u +(l/r+,)n(u) = 1. S ince [II + k(u)](II + u) = II + 1, from 
Lemma 6.1 we have 

h(n+k(u))h(n+u)=h(~+-t), 

+ [‘k+k(g(x,y))][~+-t(x,y)l =*+I* 

REMARK. In particular E can be a polynomial ring, which means that 
matrices A and B can contain parameters. Using the techniques suggested 
previously, the solution can be expressed in terms of these parameters, the 
expression being valid for all parameter values for which a unique solution 
exists. For an example see [4]. This has a potential application in optimal 
control. 

7. APPLICATIONS 

A very important issue in stability theory is to be able to characterize a 
polynomial (i.e., determine in what region of the complex plane its roots lie) 
without having to compute the roots. This is done by devising methods which 
depend only on polynomial coefficients. It has been demonstrated [7, 9, 10, 21 
that Lyapunov type equations play an important role in this investigation. 
What we propose to do is show that the explicit solution given in this paper 
can be used to prove stability theorems. 

Following [9], we associate with any polynomial p(x, y) in Q=[x, y] (C 
denoting the complex numbers) a unique square matrix C, in the following 
manner: if p(x, y) = Bikcikykk, cik in Q:, then C, = (cik), which is a matrix of 
dimension one plus the largest exponent in p(x, y) of either x or y. Then 
p(~, y) is called positive iff C, is hermitian symmetric positive definite matrix. 
If p(x, y) is a polynomial of degree n - 1, it can be shown that p(x, y) is 
positive iff p(x, y) =2~=‘=,ni(x)ff(y), where {ri( x)} is a basis for the vector 
space of polynomials of degree less than 12 over C. This is a direct conse- 
quence of the fact that a matrix T is positive definite iff T = V*V for some V, 
det V # 0. It is also true [9] that if p(x, y) is of degree n - 1 and positive, with 
X(X) mod + a unit, then X(x)x(y)p(x, y) mod Q is also positive. Q is the ideal 
Cp = (~p( x), +( y )), where G(X) is a polynomial of degree n. 
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Suppose now that k(x) is a polynomial with real coefficients, and let I: be 
the region in the complex plane defined by 

If k(x) = X, then Z is the left half plane. If k(x) = x2, then Z is a region in the 
complex plane contained within two straight lines which pass through the 
origin. If k(x) = x2 -2, then X is a region defined by a hyperbola. We can 
now state: 

THEOREM 7.1. Let A, C be real n X n matrices and (A, C) an observable 
pair (i.e., L’=(C’,(CA)‘, . . . (CA”- ’ )‘) is full rank). A has all its eigenvalues 
in Z if and only if there exits a unique symmetric positive definition solution 
to the equation 

k( A’)P + Pk( A) = - C’C. (74 

Proof. Let P be the unique symmetric positive definite solution to (7.1). 
Let z # 0 be an eigenvector corresponding to an eigenvalue A of A. This 
means that 

k( A’)P + Pk( A) = - C’C, 

A’k( A’)PA + A’Pk( A)A = - A’CCA, 

Multiplying by Z’ on the left, x on the right, and adding, we have 

(1+Xx+ ... +Wp-+‘[k(A’)P+Pk(A)]z= -Z’L’Lz<O, 

where q > 0. Now k( A)z = k( A)z and therefore 

q[k(r;)ZPz+x’Pzk(X)] (0 

-+ q[k(X)+k(h)]x’Px<O. 

Since q > 0 and P is positive definite, k(x)+ k(A) < 0, which means that X is 
in Z. 
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Assume that A does have its eigenvalues in Z. Show that (7.1) has a 
unique symmetric positive definite solution. If we let B = k(A), then for any 
eigenvalue X of A we have that k(X) + k(i) < 0, which means that B is a 

stable matrix. If +a( x) = det(xZ - B), $i( x) = +s( - x), Q = (@a(x), +a( Y)), 
then 

p(x y) = +2(4+2(Y)- G+h(Y> 
X-tY 

(7.2) 

is positive [since B is positive and (7.2) is a Bezoutian form]. Let r( r ), r(x) be 
such that r(x)&(x)+ r(x)&(x) = 1 and 

e(x, y)’ - T(x>T(Y)P(x, Y> mOd @a 

Since T(X) mod (pa is a unit, it follows that e(x, y) is negative, and C, = (eii) 
negative definite. 

A unique symmetric solution clearly exists and is given by 

= - [cI,(cA>‘,...,(cA~~~)‘] (c,@z) . 

’ = L’ 

= ‘L 

Since C, is negative definite, so is C,@Z, and since L is full rank, P is 
positive definite. n 

REMARK. For further results on how controllability and inertia theory are 
used to prove stability theorems, see [2]. 

One can also use the explicit form of the solution to give a new proof of an 
earlier result due to Krein [ 13, Theorem 41. 

THEOREM 7.2 (M. G. Krein). Let B (m X m), A (n X n), and Q (m X n) 
be matrices over C, and let g(A,,pi)#O for all Xi,pi, l<i<n, l<j<m. 
Then the unique solution P of (1.1) is 

p= -1 
/.i 4n2 ri r, 

(YZ--)-‘V(~Z-AA)-‘~~~~ 

g(x, Y) 
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where rl, IT, are contours containing and sufficiently close to {p 1,. . . p”,}, 

P 1, . . . X *} respectively. 

Proof. Since a unique solution to (1.1) exists, let e(x, y) = Bikejkykk such 
that 

g(x,y)e(n:,~)=l+(y,(X,y)~Z(X)+(YZ(X,Y)\k2(Y). (7.3) 

The unique solution is then given by 

P = f,,(e(x, y),Q) = ~ejkBiQAk. 
ik 

(7.4) 

From Equation (19) of [ 12, p. 5511 we have 

@=&j yyyz-z3-‘dy, 
r, 

Ak=& j ~~(xZ-A)-~dx. 
5 

Substituting in (7.4), we have 

P = - -L 2 eik 

49 ik 

=_- 4~2~r~re(~,~)(~~-~)~1Q(xZ-A)~1d*dy. 
I 2 

Using (7.3), we can write 

p-Lj j 
4?r2 l-, r, 

(~z-B)-'Q(xl--li)-'~~~~ 

g(x, Y) 

*Y)(Yz-B)-‘dy Q(xZ-A)-‘$,(x)dr 

-$~1$2(~)(~Z-~)-1Q[~ ;;;‘y”: (xZ- A)-‘dx] &I. 
2 ’ 
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Since g(hi,pj)#O, we can choose r,,lY, so close to {~.l,...~,},{hl,...X.} 
that the functions in round and square brackets exist and are regular functions 
of x on I?, and y on l?1 respectively. The result follows from [13, Lemma, p. 
5511. 

The authors wish to thank Bernard Levy and the reviewer for their 
comments. 
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