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The  Conjugate  Gradient Method 
for Optimal  Control Problems 

Absfract-This paper  extends  the  conjugate  gradient minimiza- 
tion method of Fletcher  and  Reeves  to optimal  control  problems. The 
technique  is directly  applicable only to  unconstrained  problems; if 
terminal conditions and  inequality  constraints  are  present,  the prob- 
lem  must  be  converted  to an unconstrained  form; e.g., by  penalty 
functions. Only the  gradient  trajectory,  its norm, and  one  additional 
trajectory,  the  actual  direction of search,  need  be  stored.  These 
search  directions  are  generated  from  past  and  present  values of the 
objective  and  its  gradient.  Successive points are  determined by linear 
minimization down these  directions, which are  always  directions of 
descent.  Thus,  the  method  tends  to converge, even from poor approxi- 
mations  to  the minimum. 

Since,  near  its minimum, a general  nonlinear problem can  be 
approximated  by one with a  linear  system  and  quadratic  objective,  the 
rate of convergence is  studied by  considering this case. Here,  the 
directions of search  are  conjugate  and  hence  the  objective is mini- 
mized over an expanding  sequence of sets. Also, the  distance  from 
the  current point to  the miminum is reduced  at  each  step. 

Three  examples  are  presented  to compare the  method with the 
method of steepest  descent. Convergence of the proposed method is 
much  more rapid in all  cases. A comparison  with a  second variational 
technique is also given in Example 3. 

I. INTRODL-CTIOS 

T HIS P-APER presents  an  iterative  procedure for 
solving  unconstrained  optimal  control  problems. 
Of  course, a general  formulation of the  optimal 

control  problem  involves  both  terminal  constraints  on 
the  state  variables  and inequalit!. constraints  on  the 
state  and  control  variables enforced along  the  entire 
trajectory.  Penalty  functions  have  often been used to 
convert  such  problems  to  a  sequence of “unconstrained” 
problems,  i.e.,  problems  with  no  terminal or in- 
equality  constraints [1]-[4]. I t  is evident  that  the 
efficiencl- of these  methods  depends  greatll-  on  the  tech- 
nique used to solve the  unconstrained  optimal  control 
problem.  Presently  available  techniques all have  short- 
comings. The convergence of steepest  descent  methods 
is often slon- [l ] n-hereas  second-variational  and  Sen-- 
ton  methods  may  not  converge at all. Thus  there is 
strong  motivation  for  developing  more efficient means 
for  solving  unconstrained  optimal  control  problems. 
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Similar difficulties existed,  until recent1)-, in the field 
of finite  dimensional  optimization, Le., mathematical 
programming.  Hou-ever, in the  past fen- years  several 
rapid1)- convergent  finite  dimensional  unconstrained 
minimization  techniques  have  been  developed.  Among 
these are  the  method of Fletcher  and Pori-ell [ 5 ]  and 
the Fletcher-Reeves [6] adaptation of the  conjugate 
gradient  method of Hestenes  and  Stiefel [5]. Both  these 
procedures  generate  conjugate  directions of search  and 
therefore  minimize a positive  definite  quadratic  func- 
tion of t z  variables in n steps.  In  addition,  the  directions 
generated  are  aln-ays  directions of descent  and  thus, for 
relatively  smooth  functions,  the  function  value is de- 
creased at each  step. 

The  combination of these  properties  implies that  the 
methods  converge  rapidly  to  the  nearest local minimum 
for a general  function of n variables.  Experience  has 
shown that  both  techniques  converge  much  more 
rapidly, in general,  than  the  method of steepest  descent 
while requiring  onll-  function  and  gradient  evaluations. 
JIoreover,  their  stability  properties  are  superior  to 
those of second-order Selvton  methods,  and  second- 
order  derivatives  are  not  required. 

Function  space  analogs of the  steepest  descent  and 
second-order Sewton  techniques  have been  developed 
and  applied  to  problems of optimal  control.  In  particu- 
lar,  Kelly  and  Bryson [8], [ 9 ] ,  RIitter [lo], and  others 
have  developed  steepest  descent  and  second-order 
methods.  However,  the  analogs of the  conjugate  direc- 
tion techniques  have  not );et  been forthcoming.  Since 
these  methods are considered by  some  authors [SI, [ l l ]  
to be the  most powerful presently  available for  finite 
dimensional  minimization  problems, it  seems  appropri- 
ate  to consider  their  generalization  to  optimal  control. 

This paper  describes  an  extension of the Fletcher- 
Reeves [ 6 ]  conjugate  gradient  method  to  function 
space  problems. The  computational  simplicity of this 
algorithm led to  its selection. As in the  steepest  descent 
method,  the  gradient  trajectory  must  be  computed  and 
stored.  In  addition,  the  conjugate  gradient  technique 
requires the  computation of the  norm of the  gradient 
and  the  storage of one  other  trajectory,  the  actual 
direction of search. 

Despite  its  simplicity,  computational  results  illustrate 
its  marked  superiorit>-  to  the  tnethod of steepest  de- 
scent.  These  results  are  substantiated  by  theoretical 
developments. 
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I t  is shown  here that  the  directions in function  space 
generated  by  the  conjugate  gradient  method  are  such 
t h a t  the  objective  function is decreased a t  each step. 
This  leads  to  the  results  shon-n in Section I11 concerning 
convergence  from arbitrary  starting  points as the  num- 
ber of iterations  approaches  infinity. The  rate of con- 
vergence is best  investigated  by  considering  the  per- 
formance of the  algorithm  on a problem  with a linear 
system  and  quadratic  objective  (Section 11:). Here  the 
results of Xntosiewicz and  Rheinboldt  [12]  appll;,  show- 
ing that  the  directions of  search  are  conjugate  and  hence 
the function is minimized over  an  expanding  sequence 
of sets.  In  addition,  the  distance  from  the  current  esti- 
mate of the solution to  the  optimal  point  decreases 
monotonically. 

Further results in the  linear-quadratic  case  have been 
obtained.  For  linear-quadratic  problems in one  state 
variable,  the  conjugate  gradient  method achieves a 
value of the  objective a t  least as low as that  obtained 
by  the  method of steepest  descent at each  iteration 
(assuming  the  same  starting  point for both). 4 1 ~ 0 ,  a 
class of quadratic  problems is exhibited  for  n-hich the 
conjugate  gradient  method  finds  the  optimal  solution in 
a finite  number of steps. 

Xone of the  above  properties is shared  by  the  method 
of steepest  descent,  and  this  accounts for the  rapid  con- 
vergence of the  conjugate  gradient  method for quadratic 
problems. This implies that  for  those  general  nonlinear 
problems xvhich may  be  approximated  by  linear-quad- 
ratic  problems  near  the  optimum,  the  convergence is 
rapid. 

Like  most  other  iterative  procedures, th i s  method 
cannot  distinguish  between local and  global  minima.  In 
general,  the  best  that  can be  expected  is eficient con- 
vergence to  the  bottom of whatever  valley  it  starts in [6]. 
The usual  procedure for  problems  \vith  local  minima is 
to  rerun  the  method  with  different  starting  points. 

11. CONJUGATE GRADIEKT ALGORITHM 

9 .  Problem Formulation 
Consider  the following  problem : 

minimize J = +(x(tfj) (1) 
subject t o  x = f(x, u, t )  ( 2 )  

x ( t 0 )  = c (3) 

where x is an rt vector, u is an v z .  vector,  and to, t f  are 
fixed. I t  is assumed  that given a control u, (2) and ( 3 )  
can  be solved for a unique x = x ( u ) ,  and  thus J = J ( u )  
is a  function  of u alone. Furthermore,  the existence of 
the  gradient af J ( u ) ,  V J ( u )  = g ( u )  is assumed.  The  ob- 
jective  function (1) may include  penalty  function  terms 
to  account for constraints. 

For  the  remainder of the  paper  only  the  case of a 
single  control  function u(t)  (m = 1) n-ill be  considered. 

133 

The extension to  the  multicontrol  case is straightfor- 
ward. 

B.  -4 lgor i thna  

The  conjugate  gradient  algorithm  requires  the  com- 
putation of the  gradient  trajectory.  Let 

where 

Then  the  gradient is 

Let u i ( t )  be  the i t h  approximation  to  the  optimal 
control uo( t ) .  The  corresponding  gradient g ( z l i )  is com- 
puted  by  solving  the  state  equations (2)  and  (3) for- 
n-ards  with ZL = u i t  solving  the  adjoint  equations ( 5 )  and 
(6) backn-ards  and  then  computing g ( u i )  from ( 7 ) .  

The  algorithm proceeds as follows: 

z~~ = arbitrary (8) 

go = g ( 4  (9) 
so = - go. (10) 

Choose 

a = ai to minimize J(ui + a s i )  (1 1) 

and  then 

Ui+l = 21; + a;si (1 2) 

gi+l = g(21i+l) (13) 

Bi = ( g i + l ,  g i - J i ( g i ,  g i )  (14) 

S ~ + I  = - gi+l + Bisi  ( 1 3  

xhere 

(g;, gi) = J ' ' g i ( t ) g j ( l ) d [ .  (1 6) 
10 

ro t e   t ha t   t he  new direction of search si+l is not  the 
negative  gradient  direction -gi+l ,  but  is computed  via 
(15). The  distance  traveled in this  direction is deter- 
mined by  the one-dimensional  minimization in (11). 
Subsequent  proofs  assume  that  this  minimization is 
carried out  exactly.  In  practice,  this is not possible. 
Sumerical experience  has shon-n that  stepping down 
the  search  direction  until  the  objective  starts  to increase 
in value  and  then using  cubic interpolation  gives  reason- 
able  results. 
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I I I. COKVERGENCE 2) J (u )  and g(u.) are  continuous 

Let  the  control ZL be  an  element of a  Hilbert  space H 3, D2J(21* k I t )  exists and 
and J ( u )  a Frechet  differentiable  mapping  from H to I D2J(u7 ?z7 h )  I 5 tltll J z l I j ~ ,  h E Z3, and 1% > 0 
the real numbers.  The  conjugate  gradient  method when 
applied  to J ( u )  generates  directions si which are  always 4, (uli 1 has a ‘luster point* “* 
directions of descent, Le., then  the  sequence {up 1 formed  with  arbitrary u 0  by  the 

conjugate  gradient  method  has  the following properties: 
(17) 1) lim J(uI;) = J ( u * ) ;  

t-+ 0)  

and  this  assures  that J ( z L )  is decreased a t  each  step. 2) lim g(uJ = g(u*) = 0. 
These  statements  are proved below. 

Theorem 1 

If g ( u i )  = g i Z O  then 

(Si, g i d  = 0 

and 

d 

da 
- J ( U ~  + asi) = (si, gi) = - jigill?. 

Proof: Let a=ai minimize J(ui+cusi). Then 

d 

da 
- J ( U i  + asi) = ( S i ,  gi+J = 0. 

From (15) 

( g i ,  si) = (gi, - g i  + Bi-1si-d 
= - + p .  I-1 ( g,, . s .  I-1 ) = - \ l g . 1 ’ 2 .  

I ’ I ,  

Th.eorem 2 

If gi#O then J(ui+d <J(ui) .  
Proof: Assume  there  exists  no a> 0 such  that 

J(ZCi + as;) < J(Z4i). 

Thus for  all a > 0 

J ( U i  + as<) - J ( U i )  
2 0. 

a 

In the  limit  as a approaches zero this  gives 

(g i ,  Si) = - J(gill2 2 o 

k+ 0)  

1 
a* = - 
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which contradicts  the  original  assumption  and 
there  exists a>O such  that J(ui+asi) <J(ui) .  Since ai 
is chosen to minimize J(ui+asi), the  theorem  is  proved. 

The  sequence of real numbers [ J ( z L ~ )  1 is thus mono- 
tone  decreasing  and  therefore  has a limit J ,  in the ex- 
tended real numbers. 

Also of interest is the  limiting  behavior of the se- 
quences (uk} and (g,:}. Results  similar  to  those  that 
have  been  obtained  for  the  method of steepest  descent 
[Is], [I41 are given below. 

Theorem 3 
If the following assumptions  are  made 

1) J(zL)  is bounded below 

m i  

lim J(z&) 4 J ( z r 0 )  - - lig(zdi)i12. (30) 
t- 0)  i-1 2m 

I .  

Since J ( z L )  is bounded below, 

I ; 1  
lim - Trzi/g(ztt)iJ2 (3 1) 
t-.= j=l 2 

exists and is finite, hence 

lim j l g ( z r k ) \ j z  = 0. (32) 

B>- assumption 4, { Z L ~  ] contains a convergent  sub- 
sequence { ,&}, with  limit  point zt* .  Then  continuity  of 
g(u) implies that  g(u* )  = O .  From  Theorem 2, J ( U ~ + ~ )  

t- m 
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< J(uk)  and hence  b>- the convergence of ZL!: and con- 
tinuitp of J(u),  property 1 follows. 

Computational  experience  has  shown  that  methods 
n-hich decrease the function J a t  each step \vi11 generally 
converge  to  the  nearest local minimum.  Since  the  func- 
tion is generally  convex in some  neighborhood of a local 
minimum,  this  statement is supported  by  the following 
result. 

135 

Theorem 4 

If the  assumptions of Theorem 3 hold and if the fol- 
Ion-ing assumption  is  made: 

then 

J(zL*) = Min J(2.j). 
ue H 

Proof:  

J(24* + a p j  

= J(ZL*) + a(g(u*), p )  + ;a?D?J(t(a)) p ,  p )  (33) 

for  all p E H and all a. 
By Theorem 3 and  the  assumption  above 

or 

Since the si are linearly  independent, Bj-lCBj 
j = 1 , .  . . , n and  hence J ( u )  is minimized  over  an ex- 
panding  sequence  of  sets. 

step, i.e., ‘ ! u * - - u ; l l  <I]u*-ui-1’1 if g(ui-l)#O. 
3) The  error  vectors y ;  = u* -ui  are decreased a t  each 

4) If the  sequence of sets { B , )  covers W ,  that  is 

U B , = H  
m 

%SI 

then 

u i  + zt* as i + =. 
a l l  the  above  properties,  with  the  exception  of 3, 

hold true for any  method which generates  conjugate 
directions  when  applied  to a quadratic  function.  Sone 
of  these  properties is shared by the  method  of  steepest 
descent. 

In  the (finite)  n-dimensional  case,  property 2 implies 
that the  quadratic  function \vi11 be minimized by  any 
conjugate  direction  method  in a t  most n steps. This is 
in contrast  to  the  method of steepest  descent,  for which 
it  has recently been shown that  finite  convergence is not 
obtained unless it is obtained  on  the  first  step [ I S ] .  

A .  Further Results 

The  question of relative  performance of the  steepest 
descent  and  conjugate  gradient  methods  on  linear- 
quadratic  problems is of much  interest. A number of 
results follow from the  fact  that  the  conjugate  gradient 
method minimizes  J(zt) over  an  expanding  sequence of 

I[,’. LISEAK QUADRATIC CASE 
sets Bi. 

Let  barred  and  unbarred  quantities  be  those  achieved 
In  order for a minimization  technique to  perform  bl-  the  conjugate  gradient  and  steepest  descent  methods, 

efficientl!. on a general  function, i t  is necessary, as  has respectively. By (15) the  sets Bi of property 3 of th i s  
been  emphasized  previously [ S I ?  [ 6 ] ,  that  i t  efficiently  section are also given by 
minimize a quadratic  function.  This follon-s since,  near 
t h e  minimum,  the  quadratic  terms in the  Taylor series 
expansion  predominate.  For  the  problem of ( l ) ,  (2 ) ,  and j=O 

i- 1 

B ;  = (. 1 24 = 90 f a&} . (3 7) 

(3), this  corresponds  to  the  linearization of (2) about 
the  minimum  and  the  approximation of (1) by a posi- 
tive  definite  quadratic  form.  The  Hilbert  space  problem 
becomes the minimization of the  quadratic  function 

J ( u )  = +(24  - ,u*, A (24 - .*)) (3 6) 

where -4 is a  positive  definite  self-adjoint  linear  operator. 
I t  is shown by -4ntosiewicz and  Rheinboldt in Todd [ 6 ]  
that  there exists a unique zl =zl* which  minimizes J ( u )  
on Hand   fo r  n.hich g ( u * )  = O .  

In  addition, i t  is shon-n that  the  conjugate  gradient 
method,  n-hen  applied  to  this  function,  has  the follow- 
ing  properties: 

1) The  set ( s i ]  satisfies (si, Asjj = O  i P j .  This implies 
that  I s i f  is a  linearly  independent  set. 

2 )  -At the lzth iteration, J(u)  is minimized over  the  set 

Since z t o  = z~~ and u1= 72.1 then  gl= gl and both 26.7 and z& 
are of the form zto+a~go+algl .  Since the  conjugate 
gradient  method  chooses  the ai to minimize J ( u ) ,  then 

J(2Q I J(u.7). (38)  

Similar  reasoning  applies  to  the  situation  where, at step 
i of the  conjugate  gradient  method,  the  method of 
steepest  descent is used by  setting pipl = 0 in (15). The 
value of Jobtained  at  the  next  step is never  smaller  than 
the  value  obtained if the  conjugate  gradient  algorithm 
had  been continued. 

A\ more  difficult question is whether  one  method al- 
n-ays  does  better  than  the  other a t  every  iteration, 
given the  same  starting  point for  both.  This  can  be re- 
solved  for the  problem  with  one state  variable  and in- 
finite final time.  Consider: 
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subject  to f = ax  + bu, x(0) = 6 (40) 

where all quantities  are  scalar  functions of time. 

become 
The  relations defining the  gradient, (S), (6 ) ,  and (7), 

.i- = ax  + bu x(0) = 6 ,  a < 0 (41) 

X = - a h - x  h ( m )  = O  (42) 

and 

Assume zto=O. [If not, a shift of origin  reproduces  (41), 
(42), and (43).] Equations (41) and (42) then  both 
have  solutions of the form cOeaf, since the  conditions 
X (  m )  = O  and a < O  allow no term in e-"' in the solution 
of (42). Thus  both g(zl,) and 241 are of th i s  form.  Using 
this u l  in (41) yields a solution of the form @(ro+rlt) 
for (41) and (42) and g(ul), U Z ,  and ti2 have  this  form 
also. A simple  inductive  argument  shows  that g,, En, ZL,, 
and 21, are all of the form 

@'Pn-l(t) 

where Pn-l is a polynomial of degree IZ - 1 in t .  Thus 
both u, and Gn are  elements of the  set B,  in (37) and, 
since 4, minimizes J ( u )  over B, 

J(27,) 5 J ( & ) ,  n = 0, 1, . . . . ( 4 4  

B. Finite  Convergence 
I t  has  recently been  sholvn that  the  steepest  descent 

method  applied  to a positive  semidefinite quadratic 
function in Hilbert  space  reaches  the  optimunl in a 
finite  number of steps if and only if it does so on the 
first  step  [IS].  Hon-ever,  this  is  not  true  for  the  conju- 
gate  gradient  method, for as the following  example 
shows,  finite  convergence  can  be attained in more than 
one  step. 

Example:  JIinimize 

+ yj + g + y)dt 
0 

n-ith y (0 )  =+. The  optimal  solution is a quadratic 
polynomial in t. This can  be  reformulated as 

min y?(l) 
u 

with 

j,, = zc y d 0 )  = + 
j 2  = qu2 + uy1+ .2c + y1 y*(O) = 0 

and  optimal  solution 21 =t  -$. 

Applying  the  conjugate  gradient  method  and  assum- 
ing u o  = 0 leads  to 

3 
s o =  - - + r  

2 

CY0 = 49/97 

and  then 

-96 44 
g 1 = - - t + -  

191  194 

18816 9016 

194 X 194 194 X 194 
s1 = t -  

The  directions so and SI are linearl!; independent  and 
span  the  space  containing  the  optimal u. Since  the 
conjugate  gradient  method minimizes ye(l) over  this 
space, 212 = ~ O S O + C Y ~ S ~  is optimal  as is easi1)- verified. 

1,'. COMPVTATIOSIL RESVLTS 
A .  Introduction 

In  order  to  compare  the  performance of this  method 
with  that of steepest  descent,  three  numerical  examples 
are given. The  steepest  descent  technique used is ob- 
tained  from the  conjugate  gradient  algorithm  by  setting 
Bi=O i.n (15). The  linear  search \vas performed  using a 
cubic  lnterpolation  technique  [6]  and is the  same  for 
both  methods. Thus  both  methods  require  about the 
same  computational  effort  per  iteration.  Comparison 
with a second  variational  method is also given in Ex- 
ample .?. 

B. Examples  

Example  1. This first  example  considers  the  linear 
s>-stem 

n-ith  initial  conditions 

Xl(0) = 0 

x2(0) = - 1 

and  quadratic functional 

This is the problem  considered b_v Hsieh  [16]. 
Figure 1 s h o w  the  variation of the  function (49) with 

number of iterations  for  the  steepest  descent  and  the 
conjugate  gradient  methods.  The  conjugate  gradient 
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Fig. 1. Behavior of objective--esample one. Fig. 3. Behavior of objective--example  two. 
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0 
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0 

- 
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Fig. 2. Gradient  trajectories-esample one. Fig. 4. Optimal control--example two. 

technique  has effectively  converged to  the  optimum  in 
four  iterations,  whereas  the  steepest  descent  scheme 
shou-s slou- convergence  near  the  optimum,  requiring 
fifteen iterations  to achieve  similar  results.  Figure 2 
illustrates  the  convergence of the  gradient  trajectories. 
Obviousl>-, the  conjugate  gradient  method gives  supe- 
rior  results. 

Esanzple 2. This  example  is  the  rocket  launch  problem 
described by Drel-fus [l;]. 

kl = x2 (50) 

kz = 64 sin u - 32 (5 1) 

k3 = 64 COS u (52) 
X i ( 0 )  = 0 2: = 1, 2, 3 (53) 

n-ith  the  objective  function 

max ~ ~ ( 1 0 0 )  (54) 

subject  to 

Xl(100) = 100000 (55) 
Q(100) = 0. (56) 

Using a penalty  function,  this  problem was converted 
to a problem  with  no  end-point  constraints; 

min - x3(100) + o . o o ~ ( ~ ~ ( 1 o o )  - lo5)' 
+ 0 . 0 5 ( ~ ~ ( 1 0 0 ) ) ~  (55) 

subject to (50), (51), (52), and (53). 
Figure 3 shows the convergence of the  objective  func- 

tion (57)  and Fig. 4 the  control  function  obtained  by 
the  conjugate  gradient  method.  Gradient  trajectories 
produced  are  not  compared  since  neither  sequence  con- 
verged,  showing  instead  an  oscillatory  behavior.  This 
seems to  be  due  to  the  penalty  function  terms in (57) 
which create a steep-sided  valley in the  control  space. 

Example 3. 4 s  a final example,  and  one which is 
nonlinear in the  state  variables, consider the problem 
suggested  by 3,Ierria.m [18]. 
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min ~ ~ ( 1 0 ) .  (64) 

Figure 5 compares  the  convergence of the  steepest 
descent,  conjugate  gradients,  and  the  second  varia- 
tional  method used by  IIerriam. -1s in the previous 
examples  the  conjugate  gradient  method is markedly 
superior  to  steepest  descents.  The  second  variational 
technique is faster  than  both  but  requires  considerably 
more  computation  per  iteration.  Figure 6 compares  the 
gradient  trajectories  for  steepest  descent  and  conjugate 
gradients. 

1'1. COKCLL-SIOS 

The  conjugate  gradient  method  presented here  ap- 
pears  to  have  significant  advantages  over  existing 
methods.  Its convergence rate is evidently  superior to 
that  of steepest  descents  n-ith ver?. little  additionaI 
computation  per  iteration.  Since  the  method always 
generates  directions of descent,  its  stability  properties 
are  superior to  those of second variational  techniques, 
11-hich may not converge  from a poor  approximation to 
the  minimum.  Second  variational  methods n-ill prob- 
ably  have  superior local  convergence, but   a t   greater  
computational  cost.  Thus  the  conjugate  gradient  method 
seems  to  be  an efiective  compromise  betu-een  existing 
techniques. 

I t  is apparent  that man>- of the  other existing  finite 
dimensional  minimization  techniques  can  be  similarly 
extended.  For  problems  with inequalit!- constraints, an 
extension of the S'LTAIT procedure of Fiacco and 
IIcCormick [19] appears promising. In  particular,  com- 
bining SI->IT n-ith  conjugate  gradients  should yield a 
computationally useful algorithm.  Such an extension is 
currently  being  investigated. 

REFEREKCES 
[l] R. E. Kopp  and R. LicGill, "Sek-era1 trajectory  optimization 

techniques,"  in Compzding X e f l ~ o d s  in Opti?,tization  Problenzs, 

.Academic,  1964, pp. 65-89. 
A. 1.. Balakrishnan  and L. \V. Seustadt,  Eds. Kew  York: 

[2] H. J. Kelley, "1lethods of gradients,- in 0ptin1i;ation  Tech- 

[3] 1i.. F. Denham and A. E. Bryson,  "Optimal  progratnming prob- 
niques, G. Leitmann,  Ed. Ne\\- York: -Academic, 1962, ch. 6. 

lems \\-ith inequalit!. constraints-11: Solution by steepest 
ascent," -41.43 J., vol. 2, pp. 25-34, January 1964. 

[4] R.  lIcGill,  "Optimal  control,  inequality  state  constraints,  and 
the generalized Sewton-Raphson  algorithm," J .  SI.-lJI ox Con- 
trol. ser. A ,  vol. 3 ,  no. 2 ,  pp. 291-?9S,  1965. 

[5] R. Fletcher  and 11. J.  D. Powell, "X rapid]!- con\-ergent  descent 

June 1963. 
method  for nlinimization,' Brit ish Conrplcter J . ,  pp. 163-168, 

[6] R. Fletcher  and C. k1. Reeves. "Function  minimization by con- 
jugate  gradients," British Computer J., pp. 149-154. July 1964. 

[7] 11. R. Hestenes  and E. Stiefel,  "1Iethods of conjugate  gradients 
for solving linear  s>-sterns,* J .  Researrh. :\-BS, vol. 49, p. 109, 

[8] H. J. IielleJ-, "Gradient  theor>- of optimal flight paths," -4m. 
1952. 

Rocket SOL. J., ~-01. 30, pp. 947-953, October 1960. 
[9] S. R. IIcRevnolds  and A. E. Brvson, Tr., "*A successive sweep 

method  for- solving optimal progranqming problems,' Pro;. 
J-4 CC, 1965. 
S. AIitter, "Successive approzitnation  methods for the  solution 
of optimal  control  problems, Azdomatica, vol. 3,  pp. 133-149, 
1966. 
XI.  J. Box, "rl comparison of several  current  optimization 
methods  and  the use of transformations  in  constrained  prob- 
lems," The Computer J . ,  vol. 9,  pp. 67-78, LIay 1966. 
J.  Todd,  Ed., Szwcev of Sumerical  -4nalgsis. Sew York: 
SIcGra\v-Hill, 1962. 
J. R. Rice, The dpprosiaration of Functions. Reading,  1Iass.: 
Addison-\Yesley, 1964, vol. 1. 
H. B. Curry.  "The  method of steepest  descent for nonlinear 
minimization  problems," Qzrart. d p p l .  Math., vol. 2 ,  pp. 258- 
261, October 1941. 
\V. E. Langlois. "Conditions  for  termination of the  method of 
steepest  descent  after  a finite number of iterations," I B X  J .  
Research and Der., pp. 98-99, January 1966. 

.Academic,  1964-1966, vol. 2. 
C. T. Leondes, Ed., -4dtnnces in Control  Sxstems. \-en- York: 

S. E. Dre!.fus, "Variational  problems  with  state  variable in- 
equalit!- constraints," R.ISD Rept. P-2605-1,  .August  1963. 
C. \I-. LIerriam, 111, "Direct  computational  methods for feed- 
back  control  optimization," I~rjorn~atron a n d  Control. vol. 8,  pp. 
215-232,  =Spril  1965. 
.A. 1.. Fiacco  and G. P. lIcCormick.  "The  sequential uncon- 
strained  minilnization  technique for nonlinear  programming, a 
primal-dual  method," Xuulrugement Srienre, vol. 10,  pp. 360-366, 
Jnnuan-  1964. 


