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Consider an observed stochastic process consisting of a signal with additive noise. Assume 
that the signal has finite energy and that the signal and noise are independent. In this paper 
we show that under the above assumptions the innovations and observations o-algebra are 
equal, thereby proving a long-standing conjecture of Kailath. 

INTRODUCTION 

Let (QF, 9) be a complete probability space, F =.(8,), 0 5  ts 1, a non- 
decreasing family of sub-a-algebras and W = ( w ,  e), 0 t 5 1, a Wiener 
process. With a signal process, P = (P,, %), and 

as observation:;, the innovations problem is to determine whether 
y= (y , ,%)  is adapted to the innovations process, ( v , F r ) .  This process, 
whenever it exis,is (see for example, [I]), is a Wiener process defined by the 

?Research suppor.ed by the Air Force Office of Scientific Research under Grants AFOSR 
77-3281 and 77-3281B. 
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D. F. ALLINGER AND S. K. MITTER 

where J ,=E(P,J~ , ,  O_ls_lt). The innovations problem, first posed by 
Kailath in 1967 and subsequently considered by Frost in his thesis [2] can 
be posed in probabilistic terms; namely, are the a-algebras generated by 
these processes the same modulo null sets; i.e. is 

o{y,:s 5 t) = ojv,, s 5 t) (mod P)? 

In this paper, we show that in the form conjectured by Kailath [3], 
namely, if the signal and noibe are independent and the signal has finite 
energy this problem has a positive solution. 

Our results generalise all known results on the innovations problem 
([4], [3]). In [4] the signal process is assumed to be uniformly bounded. 
The proof given In [2] is incorrect (see [3]) .  This problem has also been 
considered by BeneS [5] and Kallianpur [ 6 ]  under slightly weaker 
hypotheses than ours. Their proofs, however, appear to be incorrect. 
Results similar to ours have been independently obtained by J. M. C. Clark 
and M. P. Ershov (private communication to S. K.  Mitter, late April 
1979). The case where the signal and noise are independent and the signal 
lies in a bounded set in L2 was proved independently by M. P. Ershov 
(unpublished) and S. K. Mitter (unpublished). This result was improved 
by Allinger and Mitter [7] to the case where the signal and noise are 
independent and the signal satisfies the condition 3cr>0, such 
that E exp (a{; j3: d s ) <  Y,, and a proof was sketched by Clark (un- 
published) for the case: 

which appears to be incomplete. The proof given in this paper bears 
similarities to that of Clark, but the martingale techniques introduced are 
new. 

The problem considered here is a subclass of the more general 
irllovations problem for stochastic differential equations (1181, page 260). In 
this more general form, the innovations problem does not have (in 
general) a positive solution. A counter example was given by Cirelson 
([8], page 150). In Cirelson's example no "filtering" takes place and thus it 
cannot be considered to be a counter example to the innovations problem 
for non-linear filtering. Cirelson's example, however, can be modified to 
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THE INNOVATIONS PROBLEM 341 

obtain examples where filtering does occur (cf. BeneS 193). The proof 
presented in this paper utilizes the independence of the signal and noise 
processes in an essential way. Nevertheless, we feel that the assumption of 
independence can be removed for a wide class of signal processes. Indeed, 
using partial differential equation techniques Krylov has recently obtained 
results in this direction (cf. also earlier work of BeneS [lo]). 

2. THE INNOVATIONS RESULT 

Our main result is the following: 

THEOREM 1 Consider the observation model gioen by ( 1 ) .  Let the signal 
b = (P,. 8) satisfy 

i) 8 = (/&, S";) and W = (Ct;, @) are independent 

ii) ~ ( i A P ; d s ) < x .  

Then a{y,lO 5 s t }  = ~ { v ,  ( 0  5 s 5 t }  mod 9, where a(y, (0 5 s 5 t }  (resp. 
a { v , / O ~ s ~  r)  denotes the o-field generated by  { y , j ~  5 s  5 t )  (resp. {v,lO 5 s 
r t )  ). 

The proof we give is based on the idea of pathwise uniqueness and uses 
a result and a remark of Yamada and Watanabe [ll]. Since this does not 
seem to be well known (see, however, the recent book of Stroock and 
Varadhan [12]), we summarize these results in the Appendix for the 
reader's convenience. 

Proof of Theorem 1 The proof consists of two parts: analyzing the 
Kallianpur-Striebel functional and then with its aid proving pathwise 
uniqueness. It is a consequence of the work of Yamada and Watanabe 
that a uniqu~: strong solution of (2) exists. Referring to Eq. (2) we first 
define ' ~ ( t ,  x )  iis 

for t E [O,l], X G  C[O, 11. This functional is finite on a set of Wiener 
measure one; in fact, under (i), (ii), the results of Kallianpur and Striebel 
[13, Thm. 3 and its corollary] apply to show that y(t,x) is a jointly, 
measurable, non-anticipative fimction-!. Furthermore, when y ( t ,  x )  is 
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342 D. F. ALLINGER AND S. K. MITTER 

evaluated at the observations, x = y, we have 

(1, denotes Lebesgue measure on [0, 11). 
Secondly, our hypotheses (i), (ii) guarantee that the innovations can be 

constructed [I], and so Eq. (2) is satisfied by the observations. To show 
that any weak solution to (2) is pathwise unique, we need the following 
lemmas. 

LEMMA 1 Let 

and 

Then 

a )  

and 

p, x: sup g ( t , x ) < x  =1 i O S t S l  I 

where ,uw is Wiener measure on C[O, 11. 

Proof Essentially, Lemma 1 is demonstrated by P. A .  Meyer in his 
paper, "Sur un probleme de filtration," Springer-Verlag Notes 321. The 
main idea is that {g(t, W(w)), By} is a Brownian martingale which has a 
right continuous modification [Corollary to Thm. 3.1, 81. Thus, we obtain 
(a) since 

for ,i > 0; (b) is obtained analogously. 
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THE INNOVATIONS PROBLEM 

LEMMA 2 Let 

Then 

pw x:  sup ~ ( ( t , x ) < x  = l .  i O Z t S l  i 
Proof The p::ocess {a ( t ,  W(w)), F,W) is a right continuous martingale 

and for 0 st 5 1, E, ( ~ ( t ,  W))= l, (i; 8; (w) ds) dY(o). 

Then 

Proof Observe that 

We return to the problem of comparing two weak solutions lo, {, of (2) 
assuming that to, 5, are both defined on the space (Q,F,P). 

Moreover, we may assume that 

for i = O ,  1, by restricting attention to the class of all such solutions. Thus, 
we conclude from Lemmas 1-3 that 
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344 D. F. ALLINGER AND S. K. MITTER 

and 

Completion of,the proof of Theorem 1. To complete the proof of the  
theorem we show that if to, 4 ,  are weak solutions of (2), then 

sup Ito(t, W )  - t l  ( t ,  a ) /  = 0 9 - a s .  
ozr51 

Proof O n  [O? l] x R define 

wheref ( t , x ) =  J n B f ( w ) p ( t , x , w ) d Y ( o )  
Then 

where K ( o )  is a constant greater than 

For 0 2  u g 1, we write 
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THE INNOVATIONS PROBLEM 345 

Since (8 -&' I  &(ex + e ~ ) l x  - for any values x, y it follows for all &, t  that 

l p ( ! , t o ,G) -p ( t551 ,6 ) (  

Applying Holder's inequality to the last integral term in (4), and bringing 
out (Jb (Z(S ,  0))' ds)'", yields 

where 

By showing that $ ( t , o )  is an integrable function of t, w a s . ,  one may then 
iterate (5) and conclude that for 0 2 u 5 1, 

Hence 

1 

sup l t o ( t , o ) - t l ( t , w ) l ~ J ( Z ( t , o ) ) 2 d t = 0  o-as .  
O S t j l  0 

and we have established path-wise uniqueness for weak solutions of (2). 
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346 D. F. ALLINGER AND S. K. MlTTER 

To see that $( t ,  w )  is integrable in t ,  was . ,  apply Holder's inequality to 
the first term to obtain, 

Integrating this product over t gives 

by Lemmas 2 and 3. 
The second term of $ ( t ,  o) is handled analogously using Lemmas 1, 2 

and 3. This completes the proof. 

Thus, the observations process {y,) ,  0 s t s 1 ,  is the (unique) strong 
solution satisfying (2) under the restriction that 

FINAL R E M A R K S  

Let us rewrite Eq. (2) as 
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THE INNOVATIONS PROBLEM 347 

where Af is a non-linear operator from C[O, I ;  y] into CEO, l;p,]. Under 
assumptions (a) and (b) we have shown that an inverse operator (I + &) 
exists such that :P-as. 

Moreover, if n,: CEO, 11 4 C[O, 11 denotes the truncation operator defined 
by 

x,, ozsst 
(x,x)(s)= 0, otherwise, 

then 

that is, the operator (I + 2)  is causal. 
Our results in this paper suggest the investigation of causal-invertibility 

of non-linear causal operators on abstract Wiener Spaces (in the sense of 
Gross) using mcthods of stochastic integration and martingales. Such an 
investigation would also be of importance in the theory of stochastic 
stability of feedback systems. 
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Appendix 

Consider the stochastic differential equation on 0 5  t 5 1 

where w,  is a Wiener process and y( ., . )  is a jointly measurable functional 
on [O,1] x V(0,I ; p , )  and we assume the equation has a weak solution. 

We use the definition of weak and strong solutions in the sense of 
Liptser-Shiryayev (cf. [S], Defns. 8> 9, 10, 11, pp. 127-128). 

Then according to Remark 2 and Corollary 1 of Yamada-Watanabe 
[l 11 we have : 

If any two weak solutions given on the same probability space coincide 
pathwise, then a unique non-anticipating functional +(t, x), t E [O,l], 
x E V(0,l ;  p,) exists such that for any solution 5 the representation 
5(.,= 4(. ,  V) holds a s .  Moreover, this result holds when the class of solutions 
is restricted to some subset CV cW(0, l ;  p,). 

Note added in proof 

Additional Reference: N. V. Krylov; On  the equivalence of V-algebras in 
the filtering problem of diffusion processes, Theory of Probability and its 
Applications, Vol. XXIV, NO. 4 (1979), 772-781. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
s
s
a
c
h
u
s
e
t
t
s
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
,
 
M
I
T
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
8
:
0
7
 
2
6
 
O
c
t
o
b
e
r
 
2
0
1
0




