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ABSTRACT 
A functional of a trial matrix and suitable correlation matrix 

is constructed which is an absolute maximum when the trial matrix 
satisfies the Wiener-Hopf equation for the filter matrix. 
mum value of the functional is essentially the sum of the squares 
of the minimum errors of the observations and is thus of interest in 

its own right. 
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164 KANAL, MOSES, AND MITTER 

The filter equation (i-e., Wiener-Hopf equation) bears a close 
resemblance to the Gelfand-Levitan equation and, in fact, this re- 
semblance led to the variational principle of the present paper from 
that for the Gelfand-Levitan equation. 
1. Inner Products for Matrices. Positive-Definite Operators. Abstract 

Form of the Variational Principle. 
Let us consider matrices H(s,t,) = {H . ( s , t ) ]  such that i,j = 

iJ 
1,2,..p and the continuous variables s and t have the range a<s, t<b. 

The henuitian adjoint of H(s,t) will be denoted by a prime 

H’(s,t) = {H?. (s,t)?. (1) 

A(s,t)B(s’,t’) = {C Aik(s,t)B (s*,t.)} (2) 

13- 

We use the usual notation for product of two matrices: 

k kj 
We use column vectors y(t) = Iyi(t)} where the components y (t) are 
complex. The corresponding complex conjugate row vector is denoted 
by y’(t). The inner product of the vector z(t) and y(t) is given by 

i 

(z,Y) = tz’(t)y(t)dt. (3) 

where the integrand uses the form Eq. (2) for the matrix product of 
a row vector by a column vector. A matrix A(s,t) is said to be 
positive-definite in the vector sense, if A(s,t) is hermitian, i.e. 
A (s,t) = A..(t,s) and if 

* 
ij J 1  

(YJY) L 0, ( 4 )  
for all y(t), in which the equality holds only for y(t)iiO. In Eq. ( 4 )  
the vector 

Ay(t) = {X j,bAij(t,s)y. (slds). 
J j 

We now want to introduce the notion of inner products o f  matrices of 
one variable B(t)l = {B 

and where the prime continues to mean hermitian adjoint as in Eq. (l), 
where, however, only one continuous variable appears. The inner pro- 
duct of B(t) and C(t) is defined by 

b (B,C) = tr B’(t)C(t)dt, 

(t)) where the range of i,j and t are as before ij 

(5) 

where the usual matrix product is meant in the integrand. It is seen 
that this matrix inner product has the usual inner product properties. 
We can define the matrix (AB)t, using the matrix A(t,s) as the kernel 
of an integral operator, by 
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MAXIMUM VALUE OF THE FUNCTIONAL 165 

( 6 )  m(t) = ii kAik(t,s,)\.(s)dsl b : LA(t,s,)B(s)ds. b 

The operator A with kernel A(t,s) is said to hermitian in the matrix 
sense if for all matrices B(t), C(t) 

J 

(B,AC) = (C,AB)*. (7) 
The following theorem is easily shown t o  hold: 

An operator A is hermitian in the matrix sense if and only if 

it is hermitian in the earlier (vector) sense. 
An operator A is said to be positive-definite in the matrix sense 

if it is hermitian and if 

(B,ABkO ( 8) 
for all matrices B(t), where the equality holds only if B(t) = 0. 

following theorem holds: 
The 

An operator A is positive-definite in the matrix sense if and only 
if it is positive-definite in the usual vector sense. 

We can now state the fundamental variational principle which i s  

proved abstractly in Ref. 1 and given again in Ref. 2. Let B(t) be 
the solution of the integral equation 

AB(t) = C(t), (9) 

where the matrix B(t) is the unknown matrix, the matrix C(t) is given 
and A represents a positive-definite integral operator with the matrix 
kernel A(t,s). 

Then the following theorem holds. Let N(t) be any p x p matrix 
function of t. The functional F(N) defined by 

F(N) = @,C) + (C,N) - (N,M) (10) 
is an absolute maximuin if and only if N(t) is the solution B(t) of 

Eq. (9).  

2 .  Application to the Filter Equation (Wiener-Hopf Equation). 

For the sake of brevity, we shall refer to equations in Kailath's 
excellent monograph (Ref. 3) as we need them. The equations from Ref. 3, 

when used in the present paper will be prefixed by the letter K. 
The equation for the filtering matrix is 

h(t,s) + I (11) t h(t,T)K(r,s)dr = K(t,s) 
t0 

{Eq. (11) is the same as !Iq. (K101.1 The kernel K(t,s) is given and 
is defined in Eq. (K5) and (K6). Of particular interest is the fact 

the integral operator with the kernel R (t,s) = I 6(t-s) + K(t,s) 
(Eq. (K6)) is positive-definite in both the vector and matrix senses. 

Y P 
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166 KANAL, MOSES, AND MITTER 

We note that Eq. (11) is a matrix generalization of the Gelfand- 
Levitan equation for which the operator corresponding to R (t,s) is 
also positive-definite (see Ref. 2 ) .  It was our ability to obtain 
a variational principle for the Gelfand-Levitan equation which led 
us to the variational principle of the present paper. 

Y 

Eq. (11) may be written as 

In obtaining Eq. ( 1 2 )  from Eq. (11) we have used the fact that the 
operator with the kernel R (t,s) is hermitian. Eq. (12) is precisely 
of the form Eq. ((9) where t in Eq. (9) is replaced by s and A is the 
operator whose kernel A(s,+)IR ( s , ~ ) .  In Eq. (12) the variable t is 
simply a parameter i n  the Freholm equation for the filter matrix. 

Y 

Y 

Now, according to Section 1, the functional 

F(N,t) = tr {lto N(t,s)K’(t,s)ds i It K(t,s)N’(t,s)ds t 
t0 

where N(t,s) is a trial matrix for h(t,s). 
of the previous ,section, the functional F(N,t) reaches its maximum 
value when N(t,s) = h(t,s). 

According to the theorem 

It is of grNeat interest to find the maximum value of the func- 
tional, i.e. to evaluate F(,t). It is readily seen from Eq. (12) that 

F(h,t) = tr{K(t,t) - h(t,t)). (14) 
Hence 

tr h(t,t) = tr K(t,t) - F(h,t). (15) 
In the next section we shall show that tr h(t,t) gives the minimum 
least square error for the observations. 
that tr h(t,t) plays the role of K(x,x) of the Gelfand-Levitan 
equation. In the Gelfand-Levitan equation K(x,x) is the integral of 
the scattering potential which is the quantity to be found, whereas 

tr h(t,t) gives a quantity of great interest in filter theory. 
should not confuse K(s,t) of the present paper with the Gelfand-Levitan 
kernel K(x,y) of Ref. 2 .1  
3 .  Significance of tr h(t,t). 

It is interesting to note 

[One 

TO find the significance of tr h(t,t) we turn to the Kalman filter, 
as described in Ref. 3. From Eq. (K22)-(K24) 
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MAXIMUM VALUE OF THE FUNCTIONAL 167 

-i d;r(t) {F(t) - K(t)H(t) &(t) + K(t)y(t). dt 

where W(t,s) is the fundamental matrix solution of Eq. (16) when 
y(t)?O. 

As is well known 
W(t,t) = I, (18) 

where I is the identity matrix with dimension corresponding to that 
of x(t). 

From Eq. (K22) 

i(t) = It H(t)W(t,s)K(s)y(s)ds. 
to 

However, by definition of the filter matrix 

Hence, from Eq. (18), (K26), (K19a). together with Eq. (K25), 

tr h(t,t) = tr E{z(t) - i(t)}{z(t) - i(t))- + tr H(t)G(t)C(t). 
(21) 

Since G(t), H(t)C(t) are known quantities, we have the result that 
tr h(t,t) gives the square of the error of observation. However, the 
filter equation was obtained by minimizing this error with the use of 
Eq. (20). Hence tr h(t,t) gives the minimum error for the Kalman 
filter. 
upper bound for tr h(t,t) and hence the minimum error for the filter. 

Hence the use of  a good trial function N(t,s) leads to a good 

Before leaving the topic, it should be noted that the variational 

principle can be extended to more general kernels than h(t,s), for 
example to the kernel H(t,s) of Eq. (K9). 

In Ref. 4 another variational principlie is derived for the filter 
matrix using a different approach. 
essentially the integral over t of our functional. 

The functional used in Ref. 4 is 
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