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In this paper we (i) specialize some of the results of Delfour and Mitter 
(J. Dzxeerential Equations 12, 1972, 213-235) to a class of representable affine 
hereditary differential systems, (ii) introduce the hereditary adjoint system, 
and (iii) give an integral representation of solutions. 

1. INTRODUCTION 

The object of this paper is to specialize the results of Part I (cf. Delfour 
and Mitter [6]) to affie hereditary differential systems. In Section 2 we define 
the class of representable affine hereditary differential systems which we 
shall exclusively study in this paper. In Section 3 we specialize the results of 
Theorem 3.3 in Delfour and Mitter [6]. In Section 4 we introduce the here- 
ditary adjoint system and in Section 5 we exhibit an integral representation 
of solutions. Some of the results in this paper have been announced in Delfour 
and Alitter [8]. For earlier results on the theory of afEne functional differential 
equations in the framework of continuous functions, the reader is referred to 
J. K. Hale [ll, 121, A. Halanay [lo], and H. T. Banks [2] and the biblio- 
graphy cited therein. For work on partial differential equations with delay, see 
Artola [I]. All proofs will be omitted since they are straightforward. 
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Additional Notation 

9(X, Y) denotes the Banach space of all continuous linear maps from a real 
Banach space X into another Banach space Y when endowed with the natural 
norm 

/[ A ij = ,;up, 1 Ax Ipfl, A E 2(X, I’). 

When X = Y, 9(X, X) is written 9(X) and the identity in 9(X) is denoted 
by I. The transpose of the linear map L4 in 9(X, Y) is denoted by 4* (in 
$e( Y”, X”)). 

Given an integer 11 3 1 and F a closed or open subset of IF (R, the real 
numbers), C(F, X) will denote the Banach space of all bounded continuous 
maps F + X endowed with the usual sup norm // I/c . C,(F; X) is the vector 
space of all continuous maps F ---f X with compact support in F, P(F, X) 
is the vector space of all m-measurable (I~z, the Lebesgue measure on Rn) 
maps F + X which are p-integrable, 1 < p < so, or essentially bounded, 
p = co; the natural Banach space associated with 2P(F; X) is denoted by 
LP(F; X) and the corresponding L”-norm by 11 IjD . We shall very often use 
for F the sets 

P(to , tJ = {(t, s) E R” j t, < s < t < t1> 

fort,ERand t,E]t,, co] or 

c!?‘(t, , T) = ((t, s) E R” j to < s < t < T) U-2) 

for t, < T < co. When F is equal to I(a, b) = [a, b] n R for a < b in 
[-co, 001, we shall write C(a, b; X), CJa, b; X), LP’(a, b; X) or IP(a, b; X). 

Let X be a real Banach space, let 52 be an open subset of R”, let 1 < $ < ~3 
and let m >, 0 be an integer. We denote by FP,p(Q; X) the Sobolev space of 
all (equivalence classes) of functions f in Lp(Q; X) such that 

DjfEL”(@ X), I j I < w 

where j is some tuple of integers > 0 

j = ( jl t..., jn), lj I =jx + --- +jn f 

and Dif is a derivative in the distribution sense. With the notm 

lif II Wm.n = ;I D’flE)? (1.4) 
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Wm,“(Q; X) is a Banach space; it is reflexive when 1 <p < CXI and X is 
reflexive. Let g(t, , T)O denote the interior of g(t, , ZJ. Exceptionally we 
shall write HFrrls~(&tO , 2’); X) instead of Wm*P(g(to, T)O; X). We shall also 
use the notation Tvz;P (9(to , tl); X) for th e F i-Cc et space of all (equivalence h 
classes of) functions f in L&,,(Y(to , tJ; X) such that 

0j.f EGX (9&l , tl); X) Vlil <mm. 

Similarly we shall use the notation W&r’(to , t, ; X) for the FrCchet space of 
all f in L&, (to , tr ; X) such that 

Djf E Lf&(to , tl ; X). 

Let 1 < p < co, let 0 < b ,( co and let E be a finite-dimensional Banach 
space. Consider the following seminorm defined on .5’(4,0; E): 

4.f) = (IJ(0>l” + llfl131’“- (1.5) 

MP(-6, 0; E) will d enote the quotient space of YP(-6, 0: E) by its linear 
subspace S = {f E 2.?P 1 a(f) = 01. It is a Banach space with norm a(f). It 
is isomorphic to E x Lp(--b, 0; E). We shall also use the notation 

BP(-6, 0; E) = EN x W(-b, 0; E) 

for some integer N > 1. For additional details regarding these spaces and 
their use in hereditary differential system, see Delfour and Mitter [6]. 

2. REPRESENTABLE AFFINE HEREDITARY DIFFERENTIAL SYSTEMS 

Given p, 1 <p < co, a hereditary differential system is said to be affine 
when the map f : [to, tl[ x Bp(--6,O; E) --f E satisfies the hypotheses 
(CAR-l), (LIP) and (BC) of Theorem 3.3 in Delfour and Mitter [6] and the 
map z Hf(t, 2) is affine for all t E [to, i t [. When f characterizes an affine 
differential system the hypotheses (CAR-l), (LIP) and (BC) of Theorem 3.3 
in Delfour and Mitter [6] reduce to 

HYPOTHESES 2.1. (A@ne Hereditary Dz$femntial Systems). 
There exist two maps g and 1 

g:[to,tl[+E,Z:[to,tl[xB~(--b,O;E)+E (2-l) 

for which 

f (t, 4 = Q, 4 + g(t), t E [to , tJ, .z E W-4 0; E); (2-2) 
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the ma? g Zs in L1 10c (t ,, , t, : E) and the map 1 has the following properties: 

(i) the map x ++ l(t, z) : BP(-b, 0; E) -+ E is linear for all t E [tr) , tJ, 

(ii) the map t F+ E(t, 2) : [t, , tI[ + E is m-measurable for all 
u” E Bp(-b, 0; E), 

(iii) and there exists a map n ELB&~~ , t, ; R), q-l + p-l = 1, su& 
that for almost all t E [to , tl[ 

I &t, x)1 < n(t) II x ILP , z E BP(-b, 0; E). # (2.3) 

In this paper we shall only deal with a subfamily of the set of affine here- 
ditary differential systems. 

DEFINITION 2.2 Let 1 <p < co, let X be a finite dimensional real 
Hilbert space and let E = X in Hypotheses 2.1. The members of the 
Representable class g are affine hereditary differential systems for which the 
map E satisfies Hypotheses 2.1 and is of the form 

where 

and (W 

Definition 2.2 is an implicit one and it is more convenient to start with 
sufficient conditions for the A’s rather than Hypotheses 2.1 for the map I, 
The following gives a set of sufficient conditions on the A’s for which the 
map 1 satisfies Hypotheses 2.1. Assume that A,, , A, ,..., A, are strongly 
m-measurable and bounded on all intervals of the form [t, , t] for all t in 

[to , tl[ and A, : PO , tl[ x 1(--b, 0) *8(X) is strongly m-measurable and 
bounded on all sets of the form [to , t] x K(t) for all t in [to , t,[, where 
{K(t)1 t E [to , tJ> is a family of subsets of 1(-b, 0) with the following proper- 
ties : 

(i) K(t,) C K(t,) for all t, < t, ; 

(ii) (0 EI(-b, O)l ,4&t, 0) # 0} C K(t); 

(iii) K(t) has finite measure for all t. 
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3. FUNDAMENTAL THEOREM 

In this section we specialize the results of Theorem 3.3 in Delfour and 
R/litter [6] under the hypotheses at the end of section 2. In the remainder 
of this paper we shall consider representable systems for which the sufficient 
conditions given in the previous paragraph are verified and we shall identify an 
element h of Ad+--b, 0; X) with the pair (ho, 19) = ~-l(h) in X x Lp(---b, 0; X). 
We shall also use the more standard Sobolev space lVr*P as space of solutions 
rather than the space 40’. y 

THEOREM 3.1. Let the sujkient conditions on the A’s be veri$ed. For some 

s, to < s < t1 , consider the system 

a.e. in [s, tJ, (3.1) 

x(s) = ho, h = (ho, K) in ilP(-b, 0; X), 

where f is in Lf,,,(t, , t, ; X). 

(i) Given the initial datum h in Mp(--6, 0; X) at time s, there exists a 
unique solution 4(.; s, h, f) in lJV~,$(s, t, ; X) to Eq. (3.1). 

(ii) The map 

(h, f) t-+4(.; s, h, f): M”(-b, 0; X) x L&(s, tl ; X)+ W@, tl ; X) (3.2) 

is lifzear and continuous and for all T > s there exists a constant c(T) > 0 such 
that 

II 57x.; s, 12, f )lln$$ (S,r:X) G 4") [II h llw + llf II~~~s,T:d (3.3) 

(iii) Given E > 0, there exists S(T) > 0 such that 

I T-s] <S(T) * c,$i I W s, h, f) - ho I + II W(.; s, k f )Ihs,r;x~ < 6, 
(3.4) 

where D, indicates the distributional derivative with respect to t. 

(iv) The map 

is continuous. 

(t> 4 - M; s, h, f >: P(t,, , tJ - X (35) 
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4. HEREDITARY ADJOINT SYSTEM 

In this section we introduce the hereditary adjoint system and the here- 
ditary product and characterize solutions of the adjoint system. 

DEFINITION 4.1. Given T > t, and k” in X, the Hereditary adjoint 
system defined in [to , T] with final datum /CO at time T is defined as follows: 

f 1 
:4, i?(t - 8, e)*p(t - d), t - 8 < T( 

7 otherwise ) ” +‘(‘) 

= 0, a.e. in [t,, , T], (4.1) 

p(T) = k” 

where g E Lp(t, , T; X). 1 

Remark 1. System (4.1) is similar to system (3.1) up to a change in the 
direction of time. As a result we have the equivalent of Theorem 3.1. Notice 
also that the maps t ++ A,,(t)*, t t+ A,(t)* (i = I,..., N) and 

(4 4 * A,,(4 4* 

are strongly measurable (cf. Hille and Phillips, [13, Theorem 3.53, p. 72, 
Theorem 2.9.2, p. 36, and a remark, p. 731) an d verify the same hypotheses as 
A, ) A,@ = 1 ,..., N) and A,, at the end of section 2. 

Remark 2. (i) For all ko in X and Tin Ito , i t [ there exists a unique solu- 

tion #(*; T, k”, g) in I/l,p(t, , T; X) to Eq. (4.1). 

(ii) The map 

(k”, g) i+ i,G(.; T, k”, g) : X x L”(to , T; X) -+ TP’(to , T; X) 

is linear and continuous and there exists d(T) > 0 such that 

4 4t-i T, ho, g%w~to,~,x~ < d(T) [I k” lx + II g llr~~t,,r,x~l (4.2) 

(iii) The map 

(T, t) I-+ #~(t; T, k”, g) : p(to , h> - X 

is continuous. 
The next definition and the next proposition establish in what sense 

system (4.1) is “adjoint” to system (3.1). 
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DEFINITION 4.2. Given T > t, , h in IVP(----b, 0; X) and p in 
FPp(t,, , T; X), the Hereditary product at time t of h and p is a function 
defined in the following manner: 

z(t; T, h, P) 

= (P(t), ho) + j-:b (J-;ani-b u+t-TIAol(t + a - 8, e)*p(t + cx - e>, hi(a)) dol 

hi(a)) da. 1 (4.3) 

Remark. When p = 2, we can use a simpler definition. Given T > to , h 
and k in M”(--b, 0; X), the Hereditary product at time t of h and k can be 
defined as follows: 

+ a - Bi)*kl(Bi - a), 01 + t - T < Bi < (Y‘ 
otherwise I 

, K(a)) dci. 

(4.4) 

PROPOSITION 4.3. Fix to 6 s < T. Let x andp belong to W*“(s, T; X) and 
h to lW’(-b, 0; X). Assume that x(s) = ho. Then 

S(t; T, W, P) - *(s; T, h, P) 
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where Z(t) = (Z(t)O, 2(t)‘) is de@ed f rom x and its initial datum h at time s by 

COROLLARY. Let x and p be the solutions in l;P”(s, T; X) of systems (3.1) and 
(4.1) with f = 0 and g = 0, respectively. Then 

Af(t; T, S?(t),p) = constant, s < t < T, 

where the constant solely depends on h, k” and T. i 

THEOREM 4.4. Fix ho and k” in X. For each (t, s) in 9(to , tI) define 

x(t, 4 = C(t; s, (ho, O), O), P(S, t) = #(s; t, k”, 0). (4.6) 

ThfXl 

(PCS, t), ho) = (k’, x(t, 4). (4.7) 

5. INTEGRAL REPRESENTATION OF SOLUTIONS 

In this section we introduce the operator @“(t, s) and show that given an 
initial datum h (resp. ko) and a function f (resp. g) the solution $(t; s, h,f) of 
(3.1) (resp. $(t; T, k”, g) of system (4.1)) can be expressed in terms of @O, h, f 
(resp. k”, g) and the operators A,, and di (i = l,..., N). 

Given (t, s) in g(to , tl) the continuous linear map ho t+ $(t; s, (ho, 01, 0) 
defines an element @O(t, s) of L?(X) in an obvious manner: 

@‘“(t, s) ho = C(t; s, (ho, 0), 0). (5.1) 

PROPOSITION 5.1. For all ho in X 

(i) (t, s) k- @“(t, s) lz” is continuous, 

(ii) t ++ @O(t, s) ho is the solution in IV:;: (sI tI ; X) of 

; @O(t, s)h” = Aoo(t) @“(t, s)h” + c” A,(t)/;@ + ‘; ’ S)hoy 
i=l 9 

t’t;er:!iz ‘1 

@“(t+Q,s), t+@>si othe,.wise j do> a-e. in I$ t1C* 
(5.2) 

(iii) (t, s) F+ D,@(t, s) ho is m-measurable and bounded on every compact 
subsets of P(to , tl), 
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(iv) s ++ @O(t, s)* ho is the solution in ?P,p(t, , t; X) of 

g @O(t, s>* ho + A,,(s)* qt, s)* ho 

N A& - %,)* @O(t, s - %,)* ha, 
+ g1 lo, 

s - tJi < t 
otherwise 

+ J:b gods - 6 4* @“@I s - 4* ho, 
, 

S,t;er;ztj d(j = 0 

a.e. in [to , t], (5.3) 

(v) (t, s) F+ Dpyt, s)” ho and (t, s) E+ D,@O(t, s) ho are m-measurable 
and bounded on every compact subsets of P(tO , tl). 

THEOREM 5.2. (i) For all h in IlP(-b, 0; X) and f in LfO, (s, t, ; X) 

$(t; s, h, f) = @O(t, s)h” + c @‘(t, s, u)hl(ol) dol + s,’ @O(t, r>f(r> dr, (5.4) 

where 

@“(t, s + a - e$.4i(s + 01 - e,), cd + s - t < e< < cy 
otherwise 

+ LxCs..+s-ti @‘(t, S + o1 - e) Aol(S f a - 8, e) d%. (5.5) 

(ii) For al2 ho in X and g in L”(to , T; X) 

t,b(t; T, ho, g) = @O(T, t)* ho + s,’ @O(r, t)*g(r> dr. (5.6) 

COROLLARY. (i) For all h in A@(-b, 0; X) the map 

(4 s) - Dt#G; s, k f) (5-7) 

is inL&, (S(t, , t,); X). 

(ii) For all h in 9 = {(h(O), h)l h E IVJ’(-b, 0; X)) 

(4 s) F+ D,W s, h, f> (5-X) 

is in. L&, kWo , tl); x> and 

&(t; s, kf) = - @O(t, s) [Aoots) h(O) + 5 A,(s) W’J 
i=l 
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Remurk 1. It will be convenient to introduce the operator @(t, s) in 
Z(BP(--6,O; X), X) defined as 

(5.10) 

6. FINAL REMARKS 

In part III of this paper we shall present a theory for hereditary differential 
systems in “state” form systematically using Sobolev spaces. This theory is 
very similar to the theory of linear evolution equations as developed by 
J. L. Lions (cf. Lions [15]). We shall also present a state adjoint theory. This 
adjoint theory is useful in optimal control problems. 

Note added in proof. By choosing b = + ic in (3.1 j it can easily be shown that 
alline Volterra integro-differential equations can be put in the form of equation (3.1). 
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