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A necessary condition for decoupling multivariable systems']

MICHAEL E. WARRENt and SANJOY K. MITTER§

The decoupling of linear. time-invariant. rnult.ivar-iable systems into aingle-Input.,
multiple-output subsystems is considered and a theorem by Falb and wolovich
completely solving a special case of this problem is extended to provide a strong
necessary condition for decoupling. Unlike other results establishing necessary and
sufficient conditions for this problem, the test, developed herein is easily applied
nnd does not require extensive conat.r-uct.ions. Finally it is shown that this result
extends easily to the more gcnornl case of t1ecoupling u linear system into mult.i
variable subsystems.

I. Introduction
The problem of decoupling linear, time-invariant, multivariable systems

of the form
x(t) = Ax(t) + Blt(t), y(t) = Cx(t)

into smaller order subsystems by memoryless feedback control laws

u(t) = Fx(t) +Gv(t)

( I )

(2)

where x(t)ERn, u(t), v(t)ERm, and y(t)ERQ with A, B, C, F, and G appropriately
dimensioned real matrices, has been considered in the control literature for
nearly a decade. Morgan (1964), generally credited for .putting the problem
in a state variable framework, developed a sufficient condition for decoupling
when m = q and the desired subsystems are all single input, single output.
Three years later Falb and Wolovich (1967) completely solved this
question, showing that decoupling was possible if and only if an easily con
structed matrix, dependent upon A, B, and C, was non-singular. For ease
of notation we will refer to this issue as Morgan's Problem.

Beginning in early 1970, Wonham and Morse (1970, 19i I) promoted a
new and more general theory of decoupling. Using geometric methods they
were able to formulate the problem of decoupling a system (I) into other than
simply single-input, single-output subsystems; and obtained complete solu
tions for several special cases, including Morgan's Problem.

Although the Wenham and Morse results are more powerful than, and
subsume all earlier results, their geometric conditions require involved sub
space constructions and are not as easily applied to a given linear system as
those of Falb and Wolovich. It would therefore be useful if the method of
Falb and Wolovich could be extended to a more general class of decoupling
problems, even those already solvable by geometric methods. By considering
a theorem of Morse and Wonham regarding the decoupling of linear systems

Received 12 August 19i4.
t This research was conducted at the Decision and Control Sciences Group of

the M. LT. Electronic Systems Laboratory, with support provided b.\· the National
Science Foundation under Grant GK-25i81.

t Department of Electrical Engineering, University of Florida.
§ Electronic Systems Laboratory, M.LT.

CON. 2A

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
s
s
a
c
h
u
s
e
t
t
s
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
,
 
M
I
T
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
7
:
5
9
 
2
1
 
O
c
t
o
b
e
r
 
2
0
1
0



178 M. E. Warren and S. K. Mitter

into single-input, multiple-output subsystems, we are able to derive a strong
necessary condition in the form of the Falb and Wolovich result for this
morc general problem. In addition, by example we show that no further
information pertaining to decoupling may be extracted by such a formulation.
Finally, we show that this necessary condition easily extends to the case of
decoupling a linear system into general multivariable subsystems.

Our attempt is not to duplicate, albeit in a different manner, previously
established results. Wenham and Morse (1970), Sato and 'Lof'reeti (1971)
and Silverman and Payne (1971) have all examined and solved this problem.
However, the conditions of Sato and LoPresti, as well as those of Silverman
and Payne, involve complicated algorithms which are not easily applied. By
exploiting a geometric result we obtain a strong, yet readily implemented
necessary condition for decoupling, and hence achieve a significant reduction
in complcxity for an important partial solution to this problem.

2. Problem formulation
For "any positive integer k, let k denote the set of integers {I, 2, ... , k}.

Suppose that for a linear system of the form (I), the output y(t) consists of k
subvectors, Yj(t) =Ojx(t), where OJ is qi x nand 0 = (01'; ... ; Ok')" (The
superscript prime denotes matrix transpose.) Such a system may be de
coupled if there exists a feedback control law

u(t) =Fx(t) + L GiVi(t)
iek

(3)

such that input Vi(t) controls suboutput Yj(t) and affects no other suboutputs
Yi(t), j i'i, iek.

For Morgan's Problem we have q=k=m, whence the inputs Vi(t) and
outputs Yi(t) are all scalars, and the matrices OJ represent the columns of G
from (2). Morgan's Problem is then solved if we can find an (F, G) pair
such that H(}") =O(M - A - BF)-1BG is diagonal and non-singular (Gilbert
1969).

The method proposed by Falb and Wolovich is relatively straightforward.
]<'01' each iem define the non-negative integer d t and row vector D, as follows:

di=minUfOiAiBi'O, j=O, I, ...,n-I}

di=n-l ifOiAiB=O for all j e O

Di=OiAdiB

(4)

(5)

The system (I), denoted by the matrix triple (A, B, 0), may be decoupled if
and only if the vectors D:, iem are linearly independent. If this is true,
then letting D be the m x m matrix whose ith row is Ds, i.e. D = [D ,'; ... ; DmT
and A * the m x n matrix whose ith row is given by 0iAd,+l for iem, the
control law

u(t)= -D-1A*x(t) + D-1V(t)

will decouple (A, B, 0) into a particularly simple form. (For proofs see Falb
and Wolovich (1967) or Gilbert (1969).)
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A necessary condition tor decoupling rnultivariable systems 179

The geometric methods of Wenham and Morse depend heavily on the
concept of a controllability subspace (c.s.). A subspace fJ.£ is said to be a c.s.
if for some feedback map F

fJ.£ = I (A + BF)i-l(PJ(lfJ.£)
ien

where PJ denotes the image of the map B (Wenham and Morse 1970). It is
immediate that a c.s. is invariant under the action of A + BF and is a com
pletely reachable subspace.

Among the decoupling problems for which Wenham and Morse have
developed complete answers is the case where rank B =k, e.g. the desired
subsystems are all single input but possibly multiple output. If we let fJ.£i
denote the maximal c.s. contained in the common kernel of the suboutput
maps 01> ... , 0i-l' 0H1> ... , Ok

fJ.£i C n .A';, iek
jof;i
jEk

where oAr; = Ker 0;, then it may be shown (Morse and Wonham 197\, Theorem
8) that (A, B, 0) is decoupleable if and only if

(6)

Although (6) represents a compact and complete test for the decouple
ability of a system (A, B, 0) with suitably partioned output, the calculation
of the maximal c.s. fJ.£i' iek requires significant computational effort. In
addition the computations may be highly sensitive to parameter variations
in the elements of A, B or 0. For these reasons we attempt to develop
extensions of the basic Falb-Wolovich results in the succeeding sections of
this paper.

3. Decoupling witb an excess of inputs

We first consider a relatively easy and direct generalization of Morgan's
Problem to the case where rank B =111?- q. Since the suboutputs are still
assumed scalar, it follows that several inputs may control a given output, or
some inputs may affect more than one output. In the latter case, by
inactivating such inputs, it may still be possible to effect complete non
interaction. Alternatively, one may consider feedback laws of the form (2)
with G possibly singular as admissible candidates for decoupling.

We define the integers d i and row vectors D, as before by (4) and (5).
Now constructing the q x 111 matrix D whose ith row is given by D, for ieq
we have the following result.

Proposition 1

The system (A, B, 0) may be deeoupled if and only if D contains a q x q
non-singular submatrix.

The proof is straightforward and may be found in Warren (1974 a).
We note that if the system is decoupleable, a feedback law which leaves

the decoupled system in particularly simple form may be synthesized from
the matrix D. Indeed let R denote the non-singular q x q submatrix of D

2A2
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180 M. E. Warren and S. K. Mitter

consisting of columns i" ... , i q , and define A * as before. If we let 8j represent
the jth row of - R-I A *, and I" the pth row of F, then choose t., = 8 j for jeq,
and zero otherwise. Similarly if we let r j represent the jth row of R-I and
g" the pth row of G, then choose gj; = (r j 0) for jeq, zero otherwise. Note
that if D = [R: Ql, then F and G are simply

(

R-I i 0 )
·--·--······--l-------~·

o i 0

respectively.

4. Decoupling into single-input, multiple-output subsystems

Wc now move on to our main result, establishing an extension of the Falb
and Wolovich theorem to the case of decoupling into single-input, multiple
output (Sl1\10) subsystems. To simplify the statement of our condition, it
is helpful to first settle upon precise notation.

Our attention is focused upon a controllable linear system of the form (I)
with output .'1(/.) consisting of nt subvectors !/j(l) = Cjx(l), where Cj is a qi x n
matrix

with au a linear form (row vector) on R». (Note that we implicitly assume
B is of full rank -m.) For each row CjR; of C, 8 j eqj ' jem, we may define ·the
feedback invariant dj s; as in (4), and then construct the augmented matrix D
as follows.

For each iem, <Iefine the qi x m matrix D j given by

Then we may synthesize D, a q x m matrix wholly dependent upon A, Band
C from the D,.'s,

Further, for each iem, construct the (q-qj) xm submatrix D i* of D by

D.*~•
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A necessary condition for decouJlliny muliioariable systems 181

and finally for each set of m integers (Sl' ... , s".) with SjEqj' jEm, we define
the m x m submatrix Dc". p •• ",,) of D :

D(s,. '~"8"')=[ CIH,~d"'B ]
CI1l8...Adm'mB

With this notation behind us, we may state our main result.

Theorem I

A linear system may be decoupled into SIMO subsystems only if :

(i) for every set (SI' ... , s",) with SjEqj, jEm the submatrix Dc" ..... ""')
has rank m;

(ii) for every iEm, the submatrix D i * has rank m- I.

Proof

The proof of this theorem is rather lengthy and is relegated to the Appendix.
Theorem I provides us with a readily implernentable yet strong test which

must be satisfied before a linear system may be. decoupled into SIMO sub
systems. Condition (i) says that every m-imput, m-output subsystem of the
original system, consistent with the desired' partition of the outputs (i.e. one
output per output block) must be decouploable into m single-input, single
output subsystems itself. Indeed the transfer function of a system decoupled
into SIlVIO subsystems would necessarily be of the form

H(A; P, G) = block diagonal [hiP; P, G), ... , h",(A; F, G)]

with hi(A; F, G) qi X I, for iEm. Control of the outputs requires that for
each iEm, every component of hi(A, F, G) is non-zero. Thus for every m
element subset of the q outputs, (YIs" ... , Y",.,",), where siEqi, iEm, the corres
ponding rows of H(A; F, G) form an m x m diagonal non-singular matrix.
As the rows of D may be determined from the rows of H, this last fact implies
that the submatrix D C8" ••• ,8",1 has rank m.

It is easily shown that the rows of the matrix D are feedback invariants
(see Gilbert (1967) for a proof). Thus if condition (ii) of the theorem is
violated, i.e. if D i* has rank m for any iEm it follows that all m inputs affect
the m- I output subvectors (Y., ... , Yi-I' Yi+l' ... , YI1l) in a non-trivial manner.
Since this interaction cannot be eliminated by feedback, the system may not
be decoupled.

From the results on the generic solvability of decoupling problems by
Fabian and Wonham (1973) and Warren (1974 b), we recognize that linear
systems are not generically decoupleable into SIMO subsystems, unless qi = I
for all iEm. Thus, given a system (A, B, C) of the form considered in this
section, the requirements of the theorem are less likely to hold as the number
of outputs, and hence the number of components per suboutput vector, qi'
iEm increases.

Unlike the geometric condition (6) on Wonham and Morse, Theorem I
states only a necessary condition for decoupling. Indeed there is not sufficient
information inherent in the augmented D matrix to develop a complete solu
tion based only upon this matrix. For Morgan's Problem it is easy to show
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182 M. E, Warren and S. K. Mitter

that D non-singular guarantees the existence of a feedback law (F, 0) such
that the effects of all inputs other than input i could be localized to Ker 0i'
for iEm, This could be accomplished as the subspaces Ker 0i were all of
dimension n - I. In the more general problem at hand, since dimension
Ker Of may be less than n-I, the number of inputs may not be sufficient to
afford the freedom required to simultaneously localize the effect of each
input.

At this point let us examine several examples to help clarify the results
presented here, Consider the system represented by the matrix triple

(
I ° 0) (1 0) (1 0)' (0)'

A= ~ ~ ~ , B= : ~ , 0
1=

: ~ , Oz= ~

We may readily construct the augmented D matrix as dll =dZ1 =°and du = I,

However, as the submatrix
. (1
D z* = 1 ~) has rank 2, this system cannot be

deeoupled. Indeed, using the constructions of Won ham and Morse, we find
[J£z, the maximal c.s, contained within Ker 0 1 is the zero subspace.

As a second example let us now consider the system represented by

all au a l3 a l• ° ° 1
,

° °
,

a 21 a'Z2 a Z3 a 2• 1 ° ° °A= B= 0 1= O2=

a 3l a 3Z a 33 a 3• ° ° ° 1 °
a'41 a.2 a.3 a •• ° ° 1

where the a;/s are temporarily unspecified. We may readily construct the
augmented D matrix as it is independent of A (all the di/s are zero),

and notc that both requirements of Thcorem I arc satisfied.
expect, the existence of a decoupling feedback law will hinge
given to the elements of A.

As we might
on the values
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A necessary condition lor decoupling multivariable systems 183

From the form of D, it follows if the control law (F, G) decouples (A, B, C)
G must be diagonal. Letting /Jd; denote the subspace spanned by the ith
column of B, iE2, we need only find a feedback map F such that

L(A+BF)k-1/JdicKerCj , j1'i, i,jE2
ken

Assume a most general feedback map

Then it is immediately established that no F exists such that

L (A + BF)k-1/Jd
1 cKer C2

ken

for all possible A as

and hence in particular this system cannot be decoupled if aa2 # O.
Now fix a 12 = au = a 2l = a 2• = aa4 = a•• = 1, and set all the other elements of

A to zero. It follows that (A, B) is controllable. Now set 11 = 12' I. = - 2,
13=/5=/6=0. Then

Clearly then the system (A + BF, B, C) is decoupled.
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184 M . .E. JYarren and S. K. Mitter

As It final example consider the fifth-order, three-input, four-output linear
system represented by the matrix triple (A, B, 0) :

0 0 -2 0 0 0 1 r

0 0 a 0 0 0 1 0

A= 2 0 0 -I B= 0 -I 0 0 1 =

0 0 -2 1 0 0 0 0

-:3 0 0 2 a 0

0
,

0 o'r

2 0

O2= -I 03= 0 0

0 2

o o

It may be verified that this system is controllable, and that the augmented
D matrix is

1 -1 0

o 1 2
D=

o 2

with dn=d21=d32=O, d31=1.· We note that the submatrices D,", iel are
all of rank 2, hence oondition (ii) of Theorem I is satisfied. However,
])(1, I, I) is singular as is ])(1. I. 2) and thus this system may not be decoupled.

5. A more general decoupling problem

We are now in a position to combine the results of the previous't wo sections
and extend them to the problem of deeoupling a linear system into multiple
input, multiple-output (MIMO) subsystems. Specifically we assume a system
of the form (I) with k output subvectors, y;(t) = O;x(t), iek, but now we allow
the number of inputs, m to exceed k, m ~ k, For this more general problem
to be solvable, conditions similar to those of Theorem 1 must hold.

Indeed, for such a system we may readily construct an augmented q x m
matrix D 'with submatriees D;* for iem" and ])(., .......), with 8;eq;, iek
defined as in the preceding section. Then if the system is deeoupleable, it
follows that the 'feedback invariant portion of the responses of any set of lc
suboutputs (YIS, ...... Yk.,J where 8ieq;, iek must be determined by k inde
pendent inputs. In other words, the subrnatrix ])i.Rl .......) must be of
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A necessary condition for decoupling rnultivariable systerns 185

rank k. (This is most easily seen if we consider a discrete system formulation

x(s + 1)= Ax(s) + Bu(s), y(s) =Ox(s)

in which case the first non-zero response at suboutput Yij due to input u(s) is
given by Diju(s).) C

In the light of Proposition I this is quite reasonable. Condition (i) of
Theorem 1 states that every problem of Morgan's type embedded in the
original problem must be solvable. For the case rn?: k, this becomes every
rn-input, k-output subproblem consistently embedded must be solvable. By
Proposition 1 it follows that every submatrix D(H, • .. . , ",) must have rank k.

Further, if for any iEk, the matrix D,* has rank rn, then all rn inputs affect
the k-l suboutput vectors (Yl' ... , Yi-l, Yi+i' ... , 1/k) in a manner which can
not be remedied by feedback. Of course if this happens, the system in
equation cannot be decoupled.

corollarn 1

A lineal' system with rn?: k, s.> I, iEk may be decoupled into k MIMO
subsystems only if:

(i) for every set (SI' ... , Sk) with 8 iEQi' iEk, the subrnatrix D(HI • . .. . H. \ has
rank k;

(ii) for every iEk, the submatrix D i* has rank not exceeding rn-l.

The proof of Corollary J follows directly from Theorem I and the preceding
discussion.

As an illustration of the corollary, let us consider an exam pic provided by
Morse and Wonham (1971). The system matrices arc given by

0 1 0 0 0 0 0 0 o ' 0 o '

0 0 0 0 0 0 0 0

A= 0 0 0 B= 0 0 01= 0 O2= 0

0 0 0 0 1 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0

The augmented D matrix is seen immediately to be

and hence satisfies the conditions of the corollary. This system may indeed
be decoupled, although the geometric constructions of maximal c.s. arc not
of themselves useful in reaching this conclusion.
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186 M. E. IVa,rren and S, K. Mitler

6. Conclusions

The theorem of Falb and Wolovich concerning the solution of Morgan's
Problem is extended to provide a strong necessary condition for the decoupling
of a linear system into single-input, multiple-output subsystems. Our start
ing point is a theorem by Wenham and Morse which completely solves this
problem, but which nevertheless is not easily applied to arbitrary systems.
The derived condition, however is easily tested, eliminating this computa
tional difficulty.

It is shown by example that a condition such as the one derived, formulated
along the lines of the original Falb-Wolovich result, cannot provide a suffici
ency result for this type of problem. However, the necessary condition easily
generalizes to the case of decoupling into arbitrary multivariable subsystems.

Appendix

Proof of Theorem

The proof of 'I'heorern I is accomplished via four lemmas which yield a
series of necessary conditious culminating in the desired result. Lemmas
A 2, A 3, and A 4, as given in this Appendix establish both necessary and
sufficient conditions and are thus stronger than required to alone prove the
theorem; indeed only the necessity of these results is essential for our stated
goal. Nevertheless, the sufficiency arguments in these three lemmas provide
additional insight into the structure-of the problem and are included primarily
for this reason.

Before proceeding to the development of the proof, it is necessary to
establish some notation which will ultimately simplify our task. We are
concerned with a system of the form (1) where the output consists of k sub
vectors, k=rn, the number of independent columns in B. Each output
subvector is given by y,(t)=Cix(t) with C,=[Cit'; ... ; CioJ'.

Define f;s=Ker Cis for ssq., and iEm, with fi=Ker C i , for iEm. Then
,;Vi = n fi~' We let .:t'"i = n f j , and denote the maximal (A, B) invariant

,eq, . i*i
jem

subspace (i.s.) contained in ofi by "Y;, for iem. (A subspace "Y is said to be
(A, B) invariant if A "Yc fJ6 + "Y. This condition is equivalent to the exist
ence of a map F such that (A + BF)"Y c "Y,) Finally, let "Y is be the maximal
(A, B) i.s. contained in f is for SEq;, and iEm. Then since f is is always of
co-dimension 1, it follows from Morse and Wonham (1971) that

where dis is the least non-negative integer such that CisAd,.B # 0 for SEqi,
and iEm, and 9'isf!,{O} if dis=O. Letting f=Ker B', we note that 9'iscf
and "isllf = 0 for SEqi' and iE m.

Let us 'now prove the first step.
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A necessary condition for decouplinq multivariahle systems 187

Lemma A 1

The geometric condition $= ~ ($n9£;), where 9£i IS the maximal c.s,
iem

contained in ::f l , iEm implies

.x= n (A/'+ ~ (~-"jsl)
iEm i*i sEq}

jem

Proof

From the relation between &fi and i/'I for iEm the condition

is equivalent to

$= ~ ($nf;)
iem

(A 1)

(A 2)

It is not difficult to show (Warren 1974 a, § 4.3) that given the definitions
of .Jf'i and ,Ai'i' iEm

'f/i e n (n i';s), iEm
j-:¢:i sEq,
jem

whence (A 2) becomes

$= L ($n( n (n f;s)))
iem i-t=i 8Eql

jem

(A 3)

where equality holds as one inclusion is obvious. Taking complements of
(A 3) yields

A/' = n (.X + L ( ~ "1';/))
iem i-t=i sEq!

jem

(A 4)

But since "1';/ = [1';.,+ '"j8 for SEql and jEm, (A 1) follows immediately from
(A 4). (q.e.d.)

At this point we wish to emphasize that the converse of Lemma A 1 is
not generally true. That is, (A :J) need not imply (A 2). Of course, if
i'i = n ( n f;s) for all iE m, then the converse would hold, as would be

;;ri:i SEq I
jem

the case if the suboutputs were all scalars, i.e. we were considering Morgan's
Problem.

To simplify notation in (A 4) let us define

:!l'; = ~ !tjs' jEm
SEqj

:!l'i* = ~ e; iEm
j =Pi
jem

whence (A 1) becomes
JV= n (,Ai' +:!l'i*)

iErn
(A 5)

Then the next step in our development is a technical, but relatively straight
forward lemma which reduces (A 5) to a series of simpler subspace inclusions.
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Lemma A 2

Condition (A 5) is true if and only if

.2',fl(% +.2'i*)c,#", iEm (A 6)

Proof

(Necossity.) Assume to the contrary that there .exists an xE.2', such that
:CE.tV· + .2',,*, and x¢.tV·. But since .2'"c.2'/ for j # i, with i, jEm

:CE(.X+.2',,*)fI( n (%+.2'/)=%
il-i

by (A .~), It contradiction.
(Sufficiency.) Assuming (A 6) is true, choose x such that

XE n (..IV+ .2',*)
iem

Therefore
X=W j + L Zjj' iEm

i1·i
jem

where W;E,tV' and Zil E.2'I' i, [em. In partieular

Thus it follows that Z12E(';V + .2'2*)fI.2'2' implying that Z12E.tV· by (A 6).
Similarly, we mlty show Zl.,E.X for 8# I, 8Em, which implies XE.X, proving
the result. (q .e.d.)

The next step in our development consists of showing that (A 6) may be
reduced to a series of statements about the one-dimensional subspace -"Is for
8Eql' and jEm. Indeed we will show that (A 6) is equivalent to

-"lsfl(.tV' + .2'/) = 0 for 8Eql' and jEm (A 7)

We note that (A 7) does not follow immediately from (A H) for arbitrary
subspaoes ; it will be necessary to exploit the particular strueture of the '"Is

to arri ve at the desired eonelusion.

Lemma A a
Condition (A H) is true if and only if (A 7) holds,

-"1.,fI(% +.2'/)=0, for sEql' jEm

Proof

(Necossity.) By the definition of 'Cls>

-"lsfl%=O for 8Eql' jEm

Assuming (A 6) holds we have by the previous lemma

%= n (% +.2',*)
iem

whence

,CI,fI,A1" = ,cI.,fI( n (./V + .2'i*))fI(./V +::t'/) = 0, for 8Eql' iEm
j~j

iem
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A necessary condition for decouplinq multivariable systems 189

But since '~j"c ?l'i* for j 'Ii, i, jEm, it follows that

%jSn(JV + ?l';*) = 0, for sEqj, jEm

(Sufficiency.) Consider the subspaces A' + ?l'i*' iEm. Since rank B =m
we have dim JV =n - m. Furthermore, it follows from (A 7) that ?l'i*' for
each iEm, contains at least m. - 1 independent vectors which are also inde
pendent of JV, and hence dim (JV + ?l';*) ~ n - I, iEm.

To demonstrate this fact let us fix i = I, and choose the set of m - 1 vectors
in ?l',*,

%jl = (A')dilGj,'E?l'j, for j # I, jEm

We note that %i' = Span {zit}, jEm. Choose a basis WI' ... , wn_ Ul of .;I'.
Since %2,n.;l' =0, it follows that the vectors {Z2" w" ... , w n _ u, } are inde
pendent. Then by (A7), "'3,n(JII'+ ?l'3*) =0, implying %3,n(A'+?l'2)=O
whence the vectors {zw Z3" WI' ... , Wn _ ".} are independent. Continuing (A 7)
implies '~41n(.A'+?l'2 + ?l'3) = 0 and hence the vectors {Z2" Z3" '"4" WI' ... ,
w"_,,.}. By repeated application of (A 7) we achieve an independent set of
n- 1 vectors in ,/V + e2"'1*' {Z21' ... , ZlIIll lei: ... , wlI-nJ. Using a similar con
struction we may show an identical result for any iEm, i.e. dim (.A' + .2';*) ~
n - I. Appealing once more to (A 7), we see that we must have strict equality
in the result above, hence

dim (JV+?l';*)=n-l, iEm (A8)

Now

dim (?l'in(JV + ?l'i*)) =dim ?l'i + dim (./1' + ?l'i*) - dim (.A' + L .?l'j), iEm
jem

From (A 7) and (A 8) it follows that

dim (JV+ L ?l'j)=n
jem

whence

(A 9)

Consider now the subspaces JV + ?l'i' iEm. Since ':·i1E?l'i' and %i1nJV = 0,
it follows that

dim (JV+?l'i)~n-m+l, iEm (A 10)

For concreteness, choose i = I .. Then by (A 7) there exists ':'2,E.?l'2 such that
'~2,n(vV+ ?l',) = 0 and thus

dim (JV + ?l', + ?l' 2) - dim (./1' + .?l',) ~ 1

Continuing it follows that

dim (JV +?l', +!Z2 + .2'3) - dim (vI' +.2', + .2'2) ~ 1
whence

dim (JV +.2', +.2'2+.2'3)-dim (JV +.?l',)~ 2

Applying (A 7) repeatedly, we may readily establish

dim(JV+ L !Zi)-dim(JV+.2',)~m-1
jem

(A 11)
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190 M. E. Warren and S. K. Mitter

Comparing (A 10) for i = 1, and (A II) it is immediately clear that strict
equality must hold in each. Since the construction yielding (A 11) is valid
for ii'l, iErn, it follows that

dim (JV.+.2'i)=n-m+ I, iErn

Therefore, from (A 12) we have

(A 12)

dim (.2';!"'\AI") = dim .2'i +dim AI" - dim (.2'; +AI") = dim .2'i - 1, iErn (A 13)

Comparing (A 9) with (A 1:3) and noting

it is immediate that

.2';1"'\ (AI" +.2'i*)=.2'iIlJVCJV

which was to be proved. (q.e.d.)
Now we are ready to demonstrate the final step in our development.

First we define the augmented D matrix for this type of system as in § 4
and then show that (A 7) is equivalent to statements about the ranks of
submatrices of this matrix.

Lemma A 4

The condition (A 7),

-"jsll(JV + .2'/) = 0, for 8Eqj' and ,jErn

is true if and only if :

(i) for every set (81) ... ,8",) with SjEqj' ,jErn, the submatrix D(s, . .. . . Sm)

has rank ?n;

(ii) for every iErn, the submatrix D i* has rank m-l.

Proof

(Necessity.) For any set (SI' ... ,8",) with SjEqj' ,jErn, choose the set of ?n

vectors {ZI.", ... , z"",J, Zj.,} = (A')dj'jC js/ ' From (A 7) we have

-"j.,}Il(JV + .2'/) = 0 for SjEqj' ,jErn

where of course Xj.,} = Span {zj.<J. Hence by a construction similar to that
used to show dim (AI" + .2';*) =n - 1, (A 8), we may show

(A 14)

Indeed

dim ('~1" + ...+ X""'m +AI") = dim -"1." +dim (x28'+ ...+ X""'m +JV)

- dim (XIS, 11(X2.', + ...+ X"'8m+ JV))

but the last term is zero by (A 7). Continuing in a like manner (A 14) IS

established.
Now from (A 14) and the fact AI" = Ker B',

dim!!d' =dim (B'(xISJ + ...+ x",s.,)) =m
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A necessary condition tor decoupling multivariable systems 191

which of course is equivalent to

(A 15)

But B'[zl.',; ... , zms~] = D' (s, . .... s~)' and thus (A 15) implies i).
From (AS) we have dim (%+.2"i*)=n-l, iEm, whence

dim B'(%+.2"i*)=dim B'.2";*=rank (Di*)',;;;;m-l, iEm

But from (A 15)

rank(B'[zl.<rt; ... ; Zi-1,81_'; 2 i +1 , 8 1+ 1 ; ... ; zms,J)=rn-l,iEm (A 16)

Since the matrix in (A 16) is a submatrix of (D j*)', the desired result,

rank (Di*)' = rank Di* =m-l, iEm

follows.
(Sufficiency. )

sjEqj' jEm, then
If Dc" . .... s~) is of full rank for all scts (S1' ... , SOl) with

(A 14) holds, i.e.

dim (-"1." + ... + -"01.....+%) =n

For D' <''11, ...• 8m) = B'[z}.<;,,; ... ; ZmRnJ, hence the vectors B'ZlRI'" 0' B'zms rn
must be independent. But this implies Z1.'" ••• , zm., ... are independent of
% = Ker B', and thus (A 14) holds. Also

rank Di*=rank (D;*)'=dim (B'.2"j*)=m-l, iEm

Now from (A 14) we have

dim (%+.2";*);>n-l, iEm

But since
dim (B'(% + .2"i*))=dim (B' .2"j*)< dim .oJJ', iEm

it follows that % + .2"i*""R», and thus

dim (% + .2"i*)=n-l, iEm

As

-"is,+ L %jSj+%c%jS/+.2"i*+%' iEm
i*i .
jem

(A 14) implies

Then we have

dim (%i."I1(% + .2"i*))= dim -''is/ + dim (% + .2"i*)- dim (-"is, + % + .2"i*)

=1+n-l-n=O forsiEqj>iEm

which establishes (A 7) and the proposition. (q.e.d.)
Theorem 1 now follows directly from the \Vonham-Morse result (6) and

the preceding four lemmas.
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