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This paper presents a discussion of the structurc of hereditary differential
systems defined on a Banach space with initial data 1 the space of p-integrable
maps. Both finite and infinite time histories are allowed. A unified approach to
Global and Local Cauchy problems on finite or infinite time intervals is
presented. An existence theorem for Carathéodory systems and an existence
and uniqueness theorem for Lipschitz systems are derrved. In both cases
continunty of a solution with respect to the initial data is established.

1. INTRODUCTION

This work is concerned with the study of hereditary differential systems
with initial data which are not necessarily continuous. It also introduces
appropriate function spaces which constitute the basic framework for the
study of these systems. Fundamental results on existence, uniqueness and
the continuity of the solution with respect to the initial datum are presented.
Although hereditary differential systems with an initial datum in the space
of continuous functions have been extensively treated in the literature, a
study on the lines of this paper has apparently not been made.

Let N =1 be an integer, let R be the set of real numbers, let ¢ > 0 and
—a =0y < <t <0, =0 be elements of R, let E be a Banach space
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and let F(—b,0; E) be a vector space of maps I(—b&,0)-—> E, where
I(, B) = [, 8] N R for « < B in [—c0, 00]. We denote by m the (compiete)
Lebesgue measure on R and by f an arbitrary map

[t &] X EN®1 X F(—b, 0; E)— E,

where £, € R and #, € [#; + a, +oo]. The global Cauchy problem with initial
datum ke F(—b, 0; E) consists of finding a map x: [t,, ;] — E for which
#(t,) = A(0) and the map

h(s — ty) for I(t, — b, t,)

s> &(s) = x(s) for Tt , 4]

Ity — bty U ke, Hh{— E  (1.1)

satisfies the equation
©) (dFJdE)(t) = F(t, &t + O)err & + B1), E(2), ) (1.2)

almost everywhere in [#,, #,[, where for each t€[t,, [, & € F(—b,0; E)
is defined by

8> &,0) = &(t + 6): I(—b, 0)— E. (1.3)

(More precise definitions and statements will be given in Section 3.) The
local and global aspects of the Cauchy problem will be unified by a slight
modification of the concept of local solution in Section 3.1. The Cauchy
problem corresponding to (S) and for F(—b,0; E) = C(—b, 0; E) (the
space of bounded continuous maps I(—b, 0) — E) has been extensively
studied in the literature. An account of this can be found in R. Bellman and
K. L. Cooke [1], C. Corduneanu [6, 7] and J. K. Hale and C. Imaz [14].
To compile a complete and meaningful bibiliography is in itself a formidable
task. For this reason we shall limit ourselves to a list of references, It is
interesting to note that when #(—b, 0; E) is C(—5, 0; E), (S) is a special
case [15, 17] of the differential system

(dx|de)(t) = f(t, &), ae. [fy, &, (1.4)

associated with the map f: [t,, ;[ X C(—b, 0; E) — E and the initial datum
h e C(—b, 0; E), since the map

Tt (h(By), .., B(64)): C(—b, 03 E) — ENH1 (1.5)

is linear and continuous.

If t € [ty , ;] is interpreted as Zime, the right side of the differential equa-
tion (S) depends on the time ¢ and the past Aistory of x corresponding to the
time interval I(t — &, t). We shall use the terminology ““hereditary differential
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systems with constant delays” for such differential equations. These systems
have “finite (resp., infinite) history” when b = a (resp., b = 4-0).

Our objective is twofold. First the space of initial data will be enlarged
from C(~b,0; E) to the space of p-integrable maps, £%(—b,0; E),
1 <p < o (not to be confused with the space of equivalence classes of
such maps). In doing this it is no longer obvious that the Cauchy problem
for system (S) is a particular case of the corresponding Cauchy problem
for system (1.4). Secondly, the hypothesis which requires that f be continuous
in its arguments will be relaxed in favor of hypotheses of the Carathéodory
type, namely, measurability with respect to £ and continuity with respect
to the other arguments. In order to obtain global existence (and uniqueness)
theorems as well as the continuity of the solution with respect to its initial
datum (Theorems 3.3, 3.5 and 3.7) we use two function spaces: one,
M?(—b, 0; E), in which the initial datum will be picked and another,
AC?(t, , t; E), in which solutions will be sought. The spaces M¥(—5, 0; E)
are obtained when one considers a partition of the spaces F7(—b,0; E)
which is different from the one leading to the quotient space L?. Notice
that the pointwise character of the initial datum % is only used to obtain 4{0)
which fixes the value of x at time #, . The remaining part of & can be treated
as an element of the space L?(—b, 0; E) since f need only be defined almost
everywhere for integration with respect to ¢. This very naturally leads us to
introduce the seminorm

1/p

1l = {1z + [ 14e)z a0) (16)

on the space £?(—b, 0; E) and to construct the quotient of £?(—b, 0; E)
by its linear subspace consisting of all elements with zero seminorm. This
space is denoted by M#(—b, 0; E).

It is felt that the basic contribution of this paper is the fact
that if we look at the right-band side of Eq. (B) as a map defined on
[25, £ % EN X M?(—b, 0; E) then we can make sense of Eq. (85) and we
can also obtain the appropriate existence, uniqueness and well-posedness
results with the enlarged space of initial data. The main results have been
announced in [8].

The particular framework adopted here is not arbitrary. It represents an
attempt to regularize the theory of hereditary differential systems with
specific applications to optimal control and stability theories in mind. In
particular, when E is a Hilbert space the spaces M?*(—b,0; E) and
AC¥(, , t; E} are also Hilbert spaces. Then the theory of optimal control
for partial differential equations as developed by J. L. Lions [19] can be
effectively used for the study of linear optimal control problems for hereditary
differential systems. This will be done in a forthcoming series of papers[10,11].
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Notations and Terminology

Let B be a Banach space and let B* denote its topological dual space.
We define the symbol {x, ¥*>; by <{x, #*>5 = x*(x), where the right-hand
side is the value of the linear form x* at the point x. The map
(%, x*) > {x, #*>p is a bilinear form on B X B*.

Let f: E— F be a map between two real topological vector spaces E and F.
The map f is an isomorphism if it is bijective, linear and bicontinuous.

2. FUNCTION SPACES FOR THE STUDY
oF HEREDITARY DIFFERENTIAL SYSTEMS

"This section contains the basic material relevant to the study of hereditary
differential systems. We shall use integration theory and L? spaces with
values in a Banach space E as developed by S. Lang [18, Chapters X and XT].
We shall also use his terminology and definitions. C{a, 8; E) is the Banach
space of all bounded continuous maps I(«, 8) — E endowed with the usual
supnorm || [l¢c. Cya, B8; E) is the vector space of all continuous maps
I(x, By — E with compact support in I(w, B); F?(a, §; E) is the vector space
of all m-measurable (m, the complete Lebesgue measure on R) maps
I(a, B) — E which are p integrable, 1 <{p <C o0, or essentially bounded,
p = oo; the natural Banach space associated with #?(a, B; E) is denoted
by L?(c, 8; E) and the L? norm by || |, .

Let b £]0, co]. Consider the following seminorm defined on £%(—b, 0; E):

(£ O + 1715} for 1 < p < o0)

) =1 maxf] FO)), | fllo} for p = o0 @1

Let M?(—5, 0; E) denote the quotient space of #?(—b, 0; E) by its linear
subspace S? ={fe £?|a,(f) =0} It is a Banach space with norm «,
and the following facts are easily verified.

PropositionN 2.1. (i) The map
Fw(f) = (f(0), [f]y0) : M*(—b, 0; B) > E x L¥—5, 0; E)

s a norm preserving isomorphism when the product space is endowed with the
norm

U= LI, I<p <
06 Mexer = Ymax(( 21,1 f 1)y~ 2 = oo

(iiy For all fe M?(—b,0; E), 1 < p < 0, there exists an o, sequence
{f} of maps in C—b,0; E) converging to f and such that f,(0) = f(0) for
all n.

2.2)
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(ili) For 1 < p < oo the linear subspace {(f(0), [fDr» | f€ Co(—b, 0; E}}
of E X L?(—b, 0; E) is dense.

(iv) If E is a reflexive Banach space and 1 < p << o0, the topological dual
M?(—b, 0; EY* of M?(—b, O; E) is isometrically isomorphic to MY—b, 0; E*),
gt + pt = 1. Each continuous linear functional 4 on M®(—b,0; E) has
the following representation in terms of a unique element g in M%—b, 0; E*):

A = FOg s+ [ OOz, Npedr |

Remarks. The use of the spaces M? is not without precedent in the
literature of functional differential equations. Indeed motivated by problems
in continuum mechanics Coleman and Mizel [4, 5] have introduced spaces
analogous to M?. More specifically they considered a Banach space # of
maps ¢: ]—c0, 0] — E with norm

1$ls = 140+ | KO 140)s 0,

where k(8) > 0, [*,, k(6) 48 < o, dk|d§ > 0.

For problems of stability where we would like to consider equilibrium
solutions other than the zero solution only, it is clearly advantageous to use
the norm | |l [the nonzero constant functions do not belong to
M#(— o0, 0; E)]. Most of the results presented in this paper can be carried
through when we use the space & as defined above instead of 32

On the other hand we were motivated by problems of optimal control
and with this in mind we have developed our theory using M? as the space
of initial data.

Let a € R. Let AC?(«x, B, E) be the vector space of all maps f: I(x, f) > E
which are differentiable almost everywhere in I(x, 8) with derivative in
L, B; E) and such that

10 =1+ [ Lwda  relwp) 23

The properties of the spaces AC? are summarized in the following proposi-
tion,

ProrosiTioN 2.2. (1) The functional

()2 + 1 dfjae ], 1<p<oc

") = \max{l ), | dfJdt [}y p = oo @4

is a norm on AC?(a, B; E).
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(i) ACo,B; E) is a Banack space isometrically isomorphic to
E x L¥(a, B; E).

(i) If E is a Banach space and 1 < p << oo, the topological dual
AC¥(a, B; EY* of AC%(a, B; E) is isometrically isomorphic to ACYw, B; E*),
gt p7 = 1. Each continuous linear functional A on AC?(x, B; E) has the
Jollowing representation in terms of a unique element g in AC%a, B; E*):

Af = {f(o), g + f <df ®,% (t)> d, fedce. |

We shall also need certain Fréchet spaces to study the global Cauchy
problem. A systematic study of such spaces can be found in [9]. Let £, be
an element of R and ¢, an element of [#,, o©]. Denote by m;(f) the restriction
of a map f: [#, , ;[ — E to the interval [t,, 2], € 1ty , #,[. Let LY (4 , 2 5 E),
ACE(ty , 8y 3 E) and Cyoe(ty , £, ; E) be the vector spaces of all maps
x: [ty , 4, — E such that for all £in )¢, , #[, 7y(x) is an element of L?(%, , ¢, ; E),
AC?(ty, t; ; E) and C(y, t; ; E), respectively. They are Fréchet spaces
when their topology is defined by the saturated family of seminorms
gi(x) = || m{x)|lp, t in ]ty , £,[, where F is L?, AC? or C, respectively. It is
easily seen that the spaces Clyq , L{,, and ACF, all have the same structure.
In particular the topology generated by the family of seminorms {¢;} is
equivalent to the initial topology generated by the family of maps {m}.

3. ForMULATION OF THE CAUCHY PROBLEM AND MAIN THEOREMS

Let E, N, a, b, I(—5,0), £,, , , {0,}Y, be as defined in Section 1. In this
section we formulate the Cauchy problem in appropriate function spaces.
This leads to a theorem on global existence and uniqueness for Lipschitz
systems and to a theorem on global existence for Carathéodory systems.
We also establish the continuity of a solution with respect to its initial datum.

Our first objective is to give a precise formulation of the Cauchy problem
in appropriate function spaces. We start with #?(—5, 0; E) as the space
of initial data and with an arbitrary map

Filty, & X BN X #%(—b, 0; E)— E. (3.1
DeriNtrioN 3.1. (i) The global Cauchy problem on [t,, t,[ associated
with the map f: [t,, &, X EN*? X £?(—b, 0; E)— E and with the initial

datum ke #?(—b,0; E) at time #, consists of finding an element
x € ACTyo(ty , t; 5 E) for which

#(te) = H(0) (3:2)
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and the map

s — s —- b,
sy o by

)] ?g = f(8, &E + Oy),.... &t + 6y), &(t), &), ae.infiy, u, (34)

where 81— &(6) = &(t + 0): I(—b, 0)— E. The map x will be termed a global
solution to the Cauchy problem in [#,, %] with initial datum % at time ;.

(i) The local Cauchy problem on [z, , t;[ associated with the map f
[Eq. (3.1)] and with initial datum ke £?(—b, 0; E) at time £, consists of
finding a real number «, 0 < a < # — #,, for which the global Cauchy
problem on [#,, t, -+ «] has a global solution in ACV(t,, £, -+~ o; E). This
global solution on [#, , #, -+ o] is called a local solution to the Cauchy problem
on [ty , & with initial datum £ at time £,. §

We shall now transform our differential equation in a form which has
advantages from a technical point of view. For this purpose we introduce
the product spaces B?(—b5, 0; E) = EN x M?(—b, 0; E) endowed with the

norm

N i/p
Yoy Pyl | (3.5)

=1

HJ’ HB? =

where ¥ = (Yy soey ¥1, Vo) € B¥(—5, 0; E). It is a Banach space isomorphic
to the product EN*L x L?(—b, 0; E) when it is endowed with the norm (3.5)
since M?(—5, 0; E) is isomorphic to E x L#(—b, 0; E). The special form
of the differential equation (3.4) makes it possible to start with a map
filte, il X BY—b,0; E) — E.

It is also technically advantageous to introduce the concept of a memory
map. We abbreviate the spaces M®(—b, 0; E) and Cioc(ty, £ 3 E) with the
symbols M? and Cioc, respectively. Consider the closed linear subspace of
all (&, ) in M? X Cio for which x(¢;) == k(0) and denote it J? o Cyge

Dermvtion 3.2, The map

s> (hox)s: [ty , ] — M2, (3.6)
where
M40, —(s— 1) <O <0

(B o %):(0) = h(s — &4 + 0), otherwise ’ (3.7)

is called the memory map of (k, x) in M? o Cioe and denoted Eox. §
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With this last definition the global Cauchy problem of Definition 3.1 can be
slightly reformulated: given f: [#,, ;[ X B#—5,0; E)find x € AC},o(ty, % ; E)
for which the memory map % o x associated with (%, x) € M? o Cio¢ satisfies
the differential equation

(dx/dt)(t) = f(t, o(h, x)(&)) ae.in [f,, 1], (3.8)
where the map
o : M? o Cioo — Lipe(ty , ty; B?(—b, 0; E)) (3.9)
is defined by

o(h, £)(2) = ((h o %); O)s---, (b o x); (B1), ( ° x),). (3-10)

(This makes sense by Proposition 4.3.) Section 4 will be devoted to the last
delicate technical details associated with the maps

tr>(hox),(6,): [ty, [ — E, (3.11)
i =20,.., N, and
ti> (how):[ty, {y[ — M?(—b, 0; E) (3.12)
used in the construction of o(%, x).

We now state our main results, the proofs of which will be presented
later in Section 5.

ToeoreM 3.3. Let the map f:[t,, ;[ X B¥—b,0; E)—E have the
Jollowing properties:

(CAR-1) The map t+> (2, 2): [ty , {[ — E is m measurable for all
z € B?(—b, 0; E).
(LIP) There exists a nonnegative function n in Li (% ,% ; R),
P+ ¢t =1, such that for all 2, and z, in B¥(—b, 0; E)
| f (8 20) — (& 2)l < m(t) ]| 210 — 22llpe, a6 [y, 4.
(BC)  Themapti f(2, 0): [ty , t,[ — Eis an element of L} o(ty , 1, 5 E).

Then there exists a unique global solution ¢(h) in ACL,o(t, , ¢, ; E) to the Cauchy
problem on [ty, t,[ with initial datum he MP(—b,0; E) at time t, for the
hereditary differential system (3.8). Moreover the map

h > $(h) : M?(—b, 0; E) — ACloc(t, , t1; E) (3.13)
is continuous and for all t €1ty , ]
| 7p(h) — SN 42 < Ayt — 1) | B — Ky (3.14)

Jor some constant d(p, t — ty) > 0.
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CoroLLarY 3.4. In Theorem 3.3 if nelty,t,; R) and the map
te>f(8,0): [t , 4] = E is in LY¢,, t; ; E), then $(h)c ACYiy, 1, ; E) and
the map b — ¢(h): M?(—b, 0; E}— ACY iy, 1, ; E) is continuous.

Remark. Let f:[t,, 4] X B?(—b,0; E)— E satisfy the hypotheses of
Theorem 3.3. Denote by ¢(z; s, /) the solution at time ¢ of the differential
system (3.8) with initial datum ke M?(—b, 0; E) at time s, £, << s <K <4y
This solution exists and is unique by Theorem 3.3. Denote by ¢(; s, #)
the element of M*(—5, 0; E) defined by

it +0;s,h), —(—s5)<O<L0

T(s _ I
Pt s, 1)(0) = g h(t + 6) otherwise |’ (3-13)

&(2; s, ) is the memory map of & and ¢(-; s, ) at time ¢ with respect to time s.
The following semigroup properties are easily verified:

(1) $(t’ L h) :Sg(t’ Sr(}’i;(s; ¥, h))r t() < ¥ < § < << tl 3
() Gtth)=ht<t<t,
(i) (B0t 5 k) — Bt 5, Rl < ey 8 — ) | o — Ellpgo

for some positive constant ¢(p, o) which is monotonically increasing with

a>0. |

TueoREM 3.5. Let he M*(—b, 0; E) and let the map
Jilty, i X BH(—b,0; E)— E
satisfy the following properties:

(CAR-1) The map i+ f(8, 2): [Ly, {{— E is m measurable for all
z e BY—b, 0; E).

(CAR-2) The map =+ f(t, ): BY(—b,0; E) — E is continuous for
almost all t in [ty , t,[.

(CAR-3)  Let V be a nonempty closed convex subset in Cioc(ty , 5 E),

and assume there exists a nonnegative map m (possibly dependent on hy in
Li oty , ty ; R) such that

(a) the set
V, = 1% € Croelty 123 E) | #(ts) = h(0),
max | a(5) — KO)| < | " m(s) ds, Ve e Tty , 1] (3.16)
[25,11 ty S

is a subset of V,
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(b) andforallxcVy={xeV|x(t) = h0)},

| £t o, )| < m(@),  aein [, 1], (3.17)

Then there exists at least one global solution in AC},u(t, , ¢, ; E) to the Cauchy
problem with initial datum h € M?(—b, 0; E) at time 1, .

CoroLLARY 3.6. IfmeLliy,t, ; R), the global solution is in ACY(t, , t, ; E).

Remarks. (1) The set V' can be defined pointwise. Let {V(#)}cs,,,1 be
a family of closed convex subsets of E. When it is not empty, the set
V = {x & Croe(ty , t, ; E) | 2(2) € V(2)} is closed and convex in Cioce(?y , #; ; E).
The converse is not true since the image of an arbitrary closed convex set V'
in Cioce(ty, %1 3 E) under the map x> x(t): Cioe(ty , t; ; E)— E is convex
but not necessarily closed. This alternative method of defining I was
originally introduced by Carathéodory [3] in the context of ordinary differen-
tial equations. He chose V() ={ze€ R*|| 2 — x,| < b} for some positive
nonzero constant b and x, € R".

(2) The local Cauchy problem arises when the set V,, ¢ V. In such
circumstances we seek an «, &; — , > a > 0, for which m; (V2s) C o 1o(V)
where the map m; 4o : Croclty , 1y 5 E)—> C(ty, to + o; E) is the restriction
of the elements of Cigelly , ¢ ; E) to the interval [4,, £, + o]

(3) The introduction of the set ¥, is due to C. Corduneanu [7].

The hypotheses (CAR-1), (CAR-2) and (CAR-3) are the classical
Carathéodory hypotheses [3]; (LIP) is the Lipschitz hypothesis for unique-
ness; and (BC) is the hypothesis first introduced by A. Bielecki [2] and
C. Corduneanu [7] in the context of global differential systems for continuous

maps f.

THEOREM 3.7. Let themap: [t,, t,[ X B?(—b, 0; E) — E satisfy hypothe-
ses (CAR-1) and (CAR-2). Let N(k) be a neighborhood of h in M?®(—b, 0; E).
As in Theorem 3.5 we assume that there exist a nonempty closed convex subset V
of Cioclty » ty 3 E) and a nonnegative map min L} (t, , t; ; R) such that hypothe-
ses (a) and (b) be satisfied for all k € N(k). Finally assume that for h the solution
(k) is unique in ACL (2, , 2, ; E). Then for all sequences {k,} in N(h) converging
to h there exists a subsequence of solutions {¢(k, )} which converges to $(h) in
Aclloc(to s 15 E).

CoroLLARY 3.8. Let the hypotheses of Theorem 3.7 hold. If m e L} %, , t; ; R),
the subsequence {¢(k,, )} converges to ¢(h) in ACY(%y , 1, ; E).

Remark. Theorem 3.7 was first proved by Carathéodory [3] for ordinary
differential equations.



HEREDITARY DIFFERENTIAL SYSTEMS. I 223

Remark. The results of Theorem 3.3 up to Corollary 3.8 remain true
with the space C(—a,0; E) in place of the spaces B?(—a, 0; E) and
M?(—a, 0; E). This involves minor technical changes in the proofs.

The proofs of the theorems (Section 5) will proceed via several lemmas
and propositions (Section 4).

4. PROPERTIES OF THE MEMORY Map AND THE Mar ¢

In the remainder of this paper the spaces M?(—¥b, 0; E), B¥—5,0; E),
Lo(—b, 0; E) and Cioe(ty , 2 ; E) will be abbreviated M?, B?, L? and Cioc ,
respectively. Whatever be the local function space, m(f) will denote
the restriction of the map f defined on [fy, [ to the interval [£,, 2],
t in Jty, #;[. We shall also use the concept of a memory map for the
product space C(—b, 0; E) X C(ty, t; E), C(—b, 0; E) X Cioc(ty , t; ; E) and
M?(—b,0; E) X Cioc(ty,? ; E). In each instance we shall consider the
closed linear subspace of all pairs (A, x) for which x(z,) = A(0).

ProrositioN 4.1. Let 1 << p << c0.
(1) For all tin [ty , t,]
Sg[lt;)”g] (o x)g |l < 2y 4 e(P) £ — t)ll mdXNicy e > 4.1)

where ¢(p, t — L)) = max{l, (£ — 2,)/*}, and

max{|| 2], , | ﬂ't(x)“C(to,t;E)} < sief[lt?’f% [I(7 © %) HMp . 4.2)
(it) The map
(B, %) >k o 22 M? o Cioe — Croc(ty , ;3 M?) (4.3)

is an isomorphism (cf. Definition 3.2).

Proof. (i) By definition of the memory map.

(1) If we can prove that the map ¢+ (%o %), is continuous, then the
map (4.3) is an isomorphism by inequalities (4.1) and (4.2). Firstly it is
easy to show that for (&, x) in C,(—b, 0; E) o Cioc the map &t (ko x), is
continuous. Then we use the density of C,(—b,0; E) in M?(—b,0; E)
[ef. Proposition 2.1(i1)].

Pick any (A, x) in M?(—b, 0; E) o Cioc(ty , & 3 E). There exists a sequence
{h,} in Cy—>,0; E) for which #,(0) = #(0) and A, —h in L?(—b,0; E)
[Proposition 2.1(ii)]. Notice that %, o x is in Cioc(ty , £; 3 C(—5, 0; E)) for
all #. By definition

10 0 %) — (rn © %)z o = [ BO) — BaO)? [} 7 — b I5”
=k —hullp-
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The continuity of the map ¢+ (& o x), is now a consequence of the following
sequence of inequalities: for any ¢ and ¢’ in [Z;, ]

(B0 %); — (B o X)y llpgw
<o %)y — (B o %) lypo + 1By © %) — (B 0 %) 10
11 2 )5 — (B © 2 llpo
<2k —kally
+ [ () — %) + (b © %)s — (bu o )¢ [[]]V7
< 2|k — byl + max{l, | 2 — &' [Y7}{|(hy 0 %) — (Bn° *)¢ llc -
This and inequality (4.1) establish that % o x € Cioc(ty , £, 5 M?). 'The map
(4.3) is clearly linear and it is easy to verify that it is bijective. ||
ProposrrioN 4.2. 1 < p << o0, and 0 €1(—5b, 0).

(i) Given (k, x)eM?o Cio, the map ti>(hox), (6):[ty, t[ — E is
an element of LY, (2, , t; ; E) that we shall denote by (h o x)(0).
(i) Foralltelty, 4]

[ iten@pa] " <inl, +@— w2 mex w0 @4

(iii) The map
(R, x) > (B o x)(0) : M? o Croe — Lioe(ty , 15 E) 4.5)
is linear, injective and continuous.

Proof. By definition of the memory map (% o x)(f) is clearly m measurable.
Moreover it is easy to show that

[ 10 mp@rds] ™ < hly + (¢ = 02 mi@letan -

Hence (% o x)(0) is in LE,.(ty , ¢, ; £). This establishes the proposition since
the linearity and the injectivity of the map (4.5) are obvious. [

Counterexample to Proposition 4.1 for M®

For completeness we construct an example of a pair (&, x) € M* o Cioe
for which the map ¢ +> (ko x); : [Z, , #[ — M is not continuous. Let #, =0,
t; =2,x=0and
—2<L0<—1

e’
h(o) = 0, —1<6<0,
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where e € E has norm equal to 1. Then

e —2 <0< —(1+1)
(’”’“)f(")“go, —(1+8 <0<

Hence (Ao x); =0 and

I, 0<e<1
(7 0w — (B )l = I 0 %)i llpgeo =}y [;t<2_ i

Propositions 4.1 and 4.2 are now combined to obtain the precise results
necessary in the proofs of Theorems 3.3 and 3.5.

PROPOSITION 4.3. Let p be an integer, 1 < p < 0.
(i) The map
o : M?—b,0; E) o Croe(ty , t1; EY — Livelty , ty; BP), (4.6)
defined as
t> ok, 2)(2) = ((h o ), (By),--., (B o %), (8), (o x),): [£5, 1] — B?, (4.7)

is linear and continuous.
(i) Foralltelty,t,]

[ 1eth )0l &) < Kot = I Bl + | mlctind @8)

where k(p, t — to) = [1 + (¢ — t)Y?]IN + 1 4 (£ — £,)/7] > 0.
(i) Let w: M?— E X L? be the isomorphism of Proposition 2.1. For
(%, g) € Croe X LP let
8o = K7 %(to), 8)- 4.9)

Fix gin L? and t in [t,, i,[. Then for all x, y in Cioc

Il o(gs , )(t) — o(gy — ¥))gs < €' (B, 1 — L) | 7% — Wetgtim » (4:10)

where ¢'(p, ¢ — t) = (N + 1+ c(p, t — 1)?)L/2.

Proof. (i) o(h, x) is an element of L{ (%, , £, ; BP?) by Propositions 4.1(ii)
and 4.2(iii) and the fact that Ciee(ty , #; ; M?) is a subspace of L{,(, , 1, ; M?).
The map o is linear by its very construction. It is continuous by continuity
of the maps (4.3) and (4.5).

(ii) From Egs. (4.1) and (4.4) and the definition of o(k, x)(t), we obtain
inequality (4.8).
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(i) Again by definition

0, tg < E <tg— 0,
X

[(20 © %)el6;) — (g4 0 ¥)i(0)] = (£) — »(t), fh— 0, <t <ty

4.11)
and

(e © %)e — (8y ° ¥)illps = (8z — &0) © (® — YDs
< go — 8ol + ¢(p, £ — to) | 7d* — Pllctey. 0
< o(p, t — to) | 72 — Yty 60 4.12)

[by linearity of (% o x), in (%, ) and the inequality (4.1)]. Inequalities (4.11)
and (4.12) establish inequality (4.10). |

To summarize the situation we have constructed a map
o+ M? o Croe — Lioe(ty » 113 BY) 4.13)

with the following two properties for all £ € Jt,, ,[:

[ oth, o) as] < ket = 1Al e - (414

(h, x) & J.”ﬂp [+ C].OC 5 and

| o(ga » %)(2) — o(gu» YO)go < (25t — L) | 7l — D)lc  (4.15)

for all %,y e Cioe and geL®. All structural properties of the system are
contained in the couple (B?, ¢). The map o bears a certain similarity to the
lag function introduced by G. S. Jones [16], but there is a fundamental
difference. Jone’s lag function « is defined on the time variable to generate
a hereditary time set:

o« R—Q, (4.16)

where 2 denotes the set of all closed subsets of R which are bounded above.
Here o would be deﬁned as

o) = {t + Oy ..., t + 0, , 8, I(t — b, £)}. 4.17)

The map o acts on the “information (% o x); stored in a memory at time £
and samples what the system needs at time #, precisely o(k, x)(£). It is felt
that it is technically advantageous to work with the map ¢ as defined here
rather than working with set-valued maps in the lag-function approach.
In fact the o-map approach allows us to handle existence, uniqueness and
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continuity questions for variable time delays in a natural manner, once
certain measurability questions are taken care of.

LremMa 4.4. (Carathéodory). Assume the map f: [ty , &, X B? — E saiisfies
the first two Carathéodory hypotheses:

(CAR-1) ti— f(t, 2) is m-measurable for fixed z;

(CAR-2) > f (2, 2) is continuous on BY for almost all t in [t , 4,].
Then for any m-measurable map y: [ty , t,] — B? the map

t>f,(8) = f(t, y@): [fg, tu[ > E (4.18)
s m measurable.

Proof. There exists a sequence of step maps s, converging almost every-
where to . It is sufficient to show that

(1) {f,} is a sequence of m-measurable maps, and

(2) {fs,} converges almost everywhere to f, .
By the hypothesis (CAR~2)

fsn(t) = f(t! sn(t)) g f(ta y(t)) = f'y(t)

for almost all # since s,(¢) — y(¢) for almost all £ Let s(¢) be an arbitrary
step map defined on [£,, #,[. Its most general form is

s(f) == éazXAl(tL

where r > 1 is a positive integer and the A4,’s are Lebesgue measurable
disjoint subsets of [#, , [ the union 4 = U, 4, of which has finite measure.
Then

fo8) = [t s()) = f (2 O)1 — xa(8)] + i‘ J(& a) xa (D)

=1
is clearly the sum of N + 1 m-measurable maps by the hypothesis (CAR-1). §

Remark. The proof of the above lemma is essentially Carathéodory’s
original proof [3, p. 665].

‘We now know that under hypotheses (CAR~1) and (CAR-2) the right-hand
side of Eq. (3.8) as a function of ¢,

t>f (5 ok, 2)(0)): [f, H[ — &, (4.19)

is m-measurable, Under the hypotheses of Theorems 3.3 or 3.5 it will be

505/12/2-2
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established that the map (4.19) is an element of Li (%, , t; ; E). It would be
good to have this formulation of the problem right from the beginning.
However this last fact is obtained via different sets of hypotheses (Theo-
rems 3.3 and 3.5).

5. Proors or THEOREMs 3.3, 3.5 anp 3.7

5.1. Auxiliary Results

The proof of Theorem 3.3 will make use of the Banach fixed-point theorem
[12, p.305] and some techniques borrowed from A. Bielecki [2] and
C. Corduneanu [7].

Lemma 5.1. (Bielecki, Corduneanu). Let ne Loty , ;3 R) be a non-
negative function, and o, 0 << o << 1, be given. The inequality

[ 6y ds <og,  telty.nl G.1)

has a solution in Cioelty , &y ; R) which is strictly positive and nondecreasing.
In particular the following function is a solution of (5.1):

4]
at) = exp ot [ ms)dsl,  telty, bl (5.2)
to
Remark. The introduction of the function g, in the context of “global
differential equations” is due to A. Bielecki [2]. Thereafter this idea was

successfully used by C. Corduneanu [7, 6] in the global case.

DErINITION 5.2, Let o, 0 < << 1, g, be given by (5.2) and ¢ € Jt,, #[.
C.(%y , t; E) will denote the space of all continuous maps defined on [£,, #]
with values in E endowed with the norm

[ %lly = max {| x(s)|/ga(s)]- 1

seltg,t]
Remark. CJt,,t; E) and C(t,, t; E) are equal as sets and equivalent as

Banach spaces.

Lemma 5.3 (Corduneanu [7]). For all o, 0 <o <1, x€ Croe(ly, & 5 E)
and t <ty , 1],

max{] 2(s)\fga(s)} = max{]| wy(®llcto. 5285} (5:3)

[2g,%]
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5.2. Proof of Theorem 3.3
(1) For arbitrary (A, x) € M® o Cyo. consider the map

ti->f(h, 2)(t) = f(t, o(h, ®)O)): [ty , [ — E. (5.4)

We claim f(&, x) € Li,o(fy , t: ; E). By the hypotheses (LIP) the map f is
continuous in z for almost all z &[4, 4]; hence hypotheses (CAR-1) and
(CAR-2) are satisfied. Also o(h, x) e Ll (t,, t; ; B?) (Proposition 4.3). By
Lemma 4.4 f(k, x) is m-measurable. Also for all £ € ]ty , #[

[ oo < [ 170,96 = 6.0l d + [ 17601 (65)

By the hypothesis (BC), the last term on the right is finite. By hypothesis
(LIP) and by Proposition 4.3

[ 176,30 = £6,0) ds < [l mtoths ),
° < mlm)lo B(p, £ — 1l Ay -+ | o)l
‘This shows that f(h, %) € Liy(to , 1 ; E).
(2) To establish the continuity of the map
(B, %) > f(h, %) : M? o Croe —> Lloc(ty , 113 E)

we use the following inequalities [Proposition 4.3, Eq. (4.8)]:

o Fih, ) — Fk 0y < | w(s) Il ok, #)(s) — ok, )(s)] s

< [ w9 o — k2 — ) s
to
<l p, = 1l b — &l + [ s — )l
(5.6)

(3) Fix he M? and let (A% A1) = (k) (Definition 2.1). Consider the
map

x> ﬁml = K_l(x(to)’ };1): Cloc(to ] tl ) E) — M?.

By construction (%1, x) € M? o Cioc for all x e Cioe [Proposition 4.3(iii)].
We define the map

o D) = B0+ [ Ji )0 ds s o, 1 > B.
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From part (1) we conclude that U, € AC}, (%, , ¢, ; E) which is a subspace of
Ciocel(ty , 1y 5 ). So for each t €]z, , ¢,[ and an arbitrary o, 0 << a << 1, to be
chosen later, we have a map

7{U,): Clty . £ B)— Cyfty , t; E) 7

since Cyty, #; E) and C(t,, t; E) are equal as sets and have equivalent
norms. We show that for some o = & such a map is a contraction mapping.
For atbitrary x and v in C,(¢,, ¢; E} and #' € [1, , 1],

|70 = TN < [ " (p 1 — tma | 40) — YN s (58)

r&fty,s]

[Proposition 4.3(iii)]. But
[ ot 130~ 50 s

< f Z n(s) g(s) ds max { max | x(r) — ¥(r)|/g.(s)}

e[t ,t7] re[t ,5]
< ag, () || 7y — y)”cm

by Lemmas 5.1 and 5.3 and

Il 7 U(x) — T(d)lle, < (B, 2~ 1) | i — D)lc,, - (5.9)

Since ¢'(p, t — 1) > 1 (Proposition 4.3) there exists &, 0 <& < 1, such
that &'(p, t — t,) = 1/2. By the Banach fixed-point theorem [12, p. 305],
#(U;) has a unique fixed point. By definition this fixed point is in
ACY¢, , #; E). So it is the unique solution in ACYY, , ¢; E) of the differential
equation (3.4). Finally for each ¢ in ]z, , #[ there exists a unique solution x*
on [t,, t]. For 1y <<t <t < t; the restriction my{x*') to [4,, £] of the solu-
tion x*' on [ty , #'] is also a solution on [¢,, £] which is necessarily equal to x?
by uniqueness. Hence there exists 2 unique x € AC} (2, , t, ; E) such that
wy(x) = &%, which is the sought global solution.

(4) The continuity of the map (3.13) is also obtained via the spaces
C,. Let ¥ and y be solutions corresponding to % and &, respectively. Fix
telty, fyf. To compute |7 x — ¥)| 420 We need || mfx — y)c. For all
refty, ]

|5 =500 < | [ (f )0) — Fte, )6 | + | WO) — KO (5.10)
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and by Proposition 4.3(iii), hypothesis (LIP) and inequality (4.8)
170 56) ~ b 36
< " 12, 0 = Fn )01 ds + [ 170,456 — FkA 90 ds

< [ 9 ¢yt — ) pax | () — 501 ds

+ | 7l k(p, £ — to) | A* — R |l (5.11)
< ac'(p, t — to) glr) | m(% — Plle, + | welm)llg K(p, £ — to) [[ A+ — R,
(5.12)

If we substitute (5.12) in inequality (5.10) and divide both sides by g,(r)
we obtain by taking the maximum over [4, , 7],

7% — Y, < oe'(py t — o) | mlx — M) lic, + dul(ps £ — 1) [ 2 — kel

where dy(p, t — t5) = 1 + || my(n)l|, R(p, t — t,), and

I mx — Wlle < mdx — Ylleg < 2d(p t — L) | — K, (5.13)

by choice of & (In the above we made use of the fact that (g,(r))* < 1,
re[ty, t] [see Eq. (5.2)].) Finally from inequalities (5.11) and (5.13) we
obtain [| my(x — Y)llacs < d(p, t — to) | 2 — kllpgs, where
d(p, t — fg) = 1 + || m(m)ll, [26'(p, t — 1)t — )7 (P, £ — 1)
+k(pt— )] | (5.14)
Remark. With C(—a, 0; E) in place of B¥—a, 0; E) and M?*(—aq, 0; E)
the map o becomes o(h, x)(f) = (h o x);, £ € [£, , ;], and the map fis defined

as in Eq. (54). Fix & € C(—a, 0; E) and define the map U, on the subspace
S ={xe Cioolty » t1 ; E) | 2(ts) = A0} of Cuoelty , t; 3 E) as follows:

s Oa)(®) = ) + [ fh o)) ds sy, 5~ E.

With the above definitions the proof of Theorem 3.3 remains correct.

5.3. Proof of Theorem 3.5

(1) 7V, is clearly closed and convex by definition. We show that for
all x e V,, the map

te> f(t, o(h, %)(B): [ty , bl — E (5.15)
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is in L} (%9 , t; ; E). For each x € V,, the map
ti—> o(h, x)): [ty , t,] — B

is in L{).(% , t; ; B®) by Proposition 4.3 since (&, ¥) € M?® o Cioe . Hence
hypotheses (CAR-1), (CAR-2) and Lemma 4.4 establish the m measurability
of the map (5.15). The assertion is now true by part (b) of the hypothesis
(CAR-3) and the Lebesgue dominated convergence theorem.

(2) The map x> Ugx): Vy—> Croc(ty , 4, 5 E) which is defined by
U0 = BO) + [ ot N s, Veely,ul,  (516)

now makes sense. Moreover for all ¢ € [1,, £,

| U0 = WO = | [ 565, ot )9 ds | < [ (s s,

and U,(x)(t,) = h(0). Thus U,(x) e V,, C V. But
Vi =V OV, CV AV, =V,.

So the image of the map Uy is contained in V.
(3) Let
M) = | Cm(o)dv,  selty, . (5.17)

tp

M is uniformly continuous on compact subsets of [z, , £,[ and monotonically
increasing in [4, , ,[. For arbitrary s and t in [#,, ¢;[ and any x €

| U0 — UAO < | [ oot 90 do — [ o, ol o) do
< | @) — M) (5.18)

For each te 1o, ta[ the family =, (Ux(V,)) is equicontinuous. Also for
sefty, 1]

| T = [ 10) + [ f(o, ofh () do
< 18O + [ me) do < | WO) + M)

and 7 (UxV})) is an equicontinuous and uniformly bounded family, hence
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a relatively compact subset of C(t,, #; E) by Ascoli’s lemma [18, p. 211].
Finally ULV,) is relatively compact in Cioc(ty, #; ; E), since for all ¢ in
Jto » t] the set w{C) is relatively compact in C(¢,, £, ; E).

(4) Finally to show Uj, is continuous on ¥, pick any point x € ¥ and
consider an arbitrary Cauchy sequence {x,} of points in J/, converging to x.
Let g,(t) = f(¢, a(h, x,)(2)), g(2) = f(¢, o(h, x)(£)). By definition of o

o(h, x,)#) —o(h, x)(f)  ae.in [f, 4
when x, — x; and by hypothesis (CAR-2)

2a(2) — 2(t), a.e in [ty, 4]

By part (b) of the hypothesis (CAR-3), the Lebesgue dominated convergence
theorem can be applied and for all £ € ¢, , %]

T gn) —> (&) in LYt,,t E),

that is, g, ~> g in L1 (¢, , #; ; E). By continuity of the integral

£ ¢
[ eds—[ s6yds, e, nl
o ]

and hence Ug(x,) — Ugx).

(5) The map U,: Vy~— ¥V, is continuous and UgVy) is relatively
compact. The theorem is now true by the Schauder-Tychonoff theorem
[13, Corollary 3.6.2, p. 163 and Remarks, p. 164]. }

Remark. 'The proof also holds with C(—a, 0; E) in place of M?*(—a, 0; E)
and B?(—a, 0; E).
5.4. Proof of Theorem 3.7

The existence of a solution ¢(k) € ACL (2, , ¢ ; E) is guaranteed for all
k e N(h). Pick a sequence {k,} in N(k) converging to & There exists a subse-
quence of {&,} (also denoted {%,}) which converges almost everywhere to A.
For each k, choose a solution x, . For t &7ty , #,] the set {m(x,)},cn is 20
equicontinuous family of maps on [¢,, #] since

| #a(s) — %a(s) < | M(s) — M(s')|

[Eq. (5.18)] and sr>ar(M)(s): [4y, ] > R is uniformly continuous on
[#o , £]; it is also uniformly bounded since

| a(s) — MO)| < | kn(0) — A(0)] + M(7)
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and a converging sequence is bounded. By Ascoli’s lemma [18, p. 211] the
set {ay(x,,) | # € N} is relatively compact. Hence the set {x,, | » € N} is relatively
compact in Cleel(ty , £, ; £) (as in the proof of Theorem 3.5). Therefore there
exists a subsequence, also denoted {x,,}, converging to some y € Cloelty , & ; E)
as & — co. By definition of ¢

k,—>k ae in I(—5,0)
and
K>y = ok, , 2,)t)—>o(h, y)(2) ae in [fy, 4]

Thus for 2]ty , 2]

tim [* 705 o, 2290 ds = [ 105 ot 3)6) d

n->0

by the continuity of the map 2> f(s, 2): M?— E for fixed s, hypothesis
(CAR-3) on N(4) and the Lebesgue dominated convergence theorem.
Finally

30 = lim w(t) = fim [R0) + [ 765 ot 56 ]
—H0) + [ o oth X ds el bl

This means that y is a solution with initial datum 4. By uniqueness y is
necessarily equal to ¥ and x,, —>x as k,—>h. ||

Remark. 'The proof also applies with C(—a, 0; E) in place of B#*(—a, 0; E)
and M?(—a, 0; E).

Remark. The proof of Theorem 3.7 is essentially Carathéodory’s proof [3]
with obvious technical changes.
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