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CONTROLLABILITY AND OBSERVABILITY FOR
INFINITE-DIMENSIONAL SYSTEMS*

M. C. DELFOUR" AND S. K. MITTER

Abstract. This paper systematically studies the notions of controllability and observability for
an affine abstract system defined in a Hilbert space with initial data, controls and observations also
belonging to Hilbert spaces. Necessary and sufficient conditions are obtained in that framework
and the duality property is studied. This theory can find applications in the study of "boundary con-
trollability" and "boundary observability" for parabolic partial differential equations. Specific results
have been obtained for affine hereditary differential systems defined in the M2-space framework
(cf. Delfour and Mitter [1], [2], [5]).

1. Introduction. This paper systematically studies the notions of control-
lability and observability for an affine abstract system defined in a Hilbert space
with initial data, controls and observations also belonging to Hilbert spaces.
Necessary and sufficient conditions are obtained in that framework and the
duality property is studied. In fact, the notion of controllability was chosen in
such a way that the duality between the two notions reduces to the notions of
topological duality and adjoint map. The choice of this framework was motivated
by the work of H. O. Fattorini [8], [9], S. K. Mitter [13], V. Jurdjevic [10] and
J. L. Lions [12], and the main ideas all arise from the study of partial differential
equations.

This theory finds applications in the study of the notions of "boundary
controllability" and "boundary observability" for parabolic partial differential
equations. But it is in the theory of affine hereditary differential systems (HDS)
that the most interesting applications are found. It is well known that the state
space of a HDS is infinite-dimensional. When such a system is studied in the
framework of the space M2( b, 0; H), its state space is a Hilbert space (cf. Delfour
and Mitter [1], [2], [3], [4]). Therefore it was possible to adapt techniques developed
by J. L. Lions [12] for optimal control problems with a quadratic cost (cf. Delfour
and Mitter [5], [6]). It was also possible to use the results of this paper to study
the various notions of controllability and observability for affine HDS in the
framework of the space M2( b, 0;H) (cf. Delfour and Mitter [5]).

Notations and terminology. Given two real linear spaces X and Y and a linear
map T:X -- Y, the image of T in Y will be denoted by Im(T) and the kernel of
T ih X by Ker(T). Let H and K be two Hilbert spaces and T:H -, K be a con-
tinuous linear map. The adjoint of T will be denoted T*(6(K, H)). When H K
we shall write T __> 0 for a positive operator ((Txlx) 0 for all x) and T > 0 for a
positive definite operator ((Txlx)> 0, x a 0). The identity map in (H) is
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written I. The restriction of the map x "[0, oo[ X to the interval [0, t] is denoted
rctx for all

2. Definitions. Let D, U, X, Y be real Hilbert spaces with norm and inner
product (. l" indexed by the appropriate space. The space D is the space of data
(or initial states), U is the space of controls, L2oc(0, ; U) is the space of control
maps, X is the space of evolution and Y is the space of observations. Consider the
affine system at time [0, [ which is characterized by the evolution map

(1) (d, u) (t d, u) F(t)d + S(t)zt,(u) + g(t)

defined on D x L2oc(0, ; U) with values in X, where
(i) for all d D, t-- F(t)d’[O, oo[ X is continuous;

(ii) t-- g(t)’[0, oo[ X is continuous;
(iii) S(0) 0, S(t) 5(L2(0, t; U), X) for all ]0, oo[;
(iv) for all u L2oc(O, U), S(t)zt(u) [O, oo X is continuous.
Remark. D can be thought of as the state space of system ’. When X D

the above formulation is similar to Kalman’s definition of a dynamical system,
where (1) is the state transition map. In general (that is, X 4- D), (1) is not a state
transition map; it only describes the evolution of the system. This occurs in the
theory of hereditary differential equations where the space in which the system
evolves is not the state space. Finally, the space X should not be confused with
the space of observations Y which can be different from both X and D.

For system ’ we define an observer Z(t) at time ]0, oo[ as an element of
.-Qp(L2(0, t; X), L2(0, t; Y)); the observation (t, d, u) at time is given by (t, d, u)

z(t),((. d, u)).
DEFINITION 1. Let T, 0 < T < , be fixed.
(i) The data d 6 D is controllable at time T to a point x 6 X if there exists a

sequence of control maps {u,} in L2(0, T; U) such that b(T; d, u,) - x; d is said
to be strictly controllable at time T to x if there exists a control map u in L2(0, T; U)
such that b(T; d, u) x. System ’ is said to be controllable (strictly controllable)
at time T if all points of D are controllable (strictly controllable) at time T to all
points of X.

(ii) Given u L2(0, T; U), a state d D is said to be observable at time T if d
can be uniquely determined from a knowledge of u and the observation map
(T, d, u); system a’ is said to be observable at time T if all states in D are observable
at time T.

DEFINITION 2. The data d D is controllable (strictly controllable) to the origin
if there exists a finite time T > 0 for which d is controllalle (strictly controllable)
at time T to the origin. System ’ is said to be controllable (strictly controllable)
to the origin if all points of D are controllable (strictly controllable) to the origin.

PROPOSITION 3. When X is finite-dimensional the notions of controllability
and strict controllability in Definitions 1 and 2 coincide.

Proof. All subspaces of a finite-dimensional Hilbert space are closed.
In general, the notions of controllability at time T and controllability to the

origin are not equivalent. Very often the sufficient conditions for controllability
to the origin are obtained in the following way.
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PROPOSITION 4. is controllable to the origin if there exists a finite time T > 0

for which system is controllable at time T.
In this paper we shall limit our investigation to the problem of controllability

at time T. Definition 2 was introduced for completeness.

3. Main results. We first derive necessary and sufficient conditions for the
various notions introduced in Definition 1. Prior to our main theorem we need
three lemmas and a definition.

LEMMA 5. Let H and K be Hilbert spaces and let T(t)lt 0, } be a family
of elements of (H, K). Assume that for all h H the map T(t)h is continuous.
Then T Llc(O, ;(H, K)).

Proof. The proof is a straightforward adaptation of the proof of a similar
lemma in 7, Lemma 3, p. 616].

DEFINITION 6. Let T > 0 be finite. The maps F(T)’D- L2(0, T;X) and
(T)’L2(0, T; U)- L2(0, T; X) are defined by (F(T)d)(t)= F(t)d and ((T)u)(t)

S(t)Tr,t(u)"
LEMMA 7. The maps (T) and (T) are linear and continuous. In particular,

the map (d, u)- nw(b(. d, u)) (resp. (d, u)- (T, d, u)) defined in D L2(0, T; U)
with values in L2(0, T; X) (resp. L2(0, T; Y)) is affine and continuous.

Proof. By Lemma 5, F(T) L(O, T; /(D, X)). Hence F(T)dlIL
<= (T) LldlD. The proof is identical for (T). The remainder of the lemma is
now obvious.

LEMMA 8. Let H and K be Hilbert spaces and let A 5LZ(H, K) be given. The
following statements are equivalent"

(i) A is injective (resp. has a dense image in K);
(ii) A* has a dense image in H (resp. is injective)

(iii) A*A > 0 (resp. AA* > 0).
Proof. (i),, (ii). Ker A (lm A*)- (lm A*)-, where +/- denotes the orthog-

onal complement in H. Hence Im A* H if and only if Ker A 0.
(i) : (iii). By definition, Ker A*A Ker A. Conversely, h e Ker A*A implies

that IAhl (hlA*Ah) 0. Hence Ker A*A Ker A. When A is injective, A*A
is injective. By symmetry, A*A > 0.

THEOREM 9.
(i) is controllable at time T if and only if the image of S(T) is eerywhere

dense in X.
(ii) is strictly controllable at time Tifand only if the map S( T) is surjectie.

(iii) ’ is observable at time T ! and only !f the composite map Z(T)F(T) is
injective.

Proof. (i) Let the image of S(T) be everywhere dense in X. Then for arbitrary
dD and x X there exists a sequence (Un) in L2(0, T; U) such that S(T)u- x- F(T)d- g(T), that is, (T;d,u)- x. Conversely, for arbitrary y X,
let h 0 and x g(T) / y. Since is controllable at time T there exists (u)
in L2(0, T; U) such that b(T; 0, u) - x g(T) / y, that is, S(T)u - y. Hence
the image of S(T) is everywhere dense in X.

(ii) When S(T) is surjective, is clearly strictly controllable at time T.
Conversely, for arbitrary yX, let h 0 and x g(T)/ y; there exists
U L2(0, T; U) such that g(T) + y x S(T)u + g(T). Hence S(T) is surjective.
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(iii) Let Z(T)F(T) be injective. For arbitrary d D consider the observation
(T, d, 0) and assume that there exists d’ - d such that (T, d, 0) (T, d’, 0).
Then Z(T) (F(T) (d d’)) 0 in contradiction with our initial hypothesis. Con-
versely, if the system is observable at time T, then for all d - 0,

Z(T) (F(T)d + rOT(g)) - Z(T)(cT(g)).

But this means that Z(T) (F(T)d) 0 and that the composite map Z(T)F(T) is
injective.

COROLLARY 10. Thefollowing conditions are equivalent"
(i) ’ is controllable (observable) at time T;

(ii) Im (S(T)) X (Z(T)F(T) is injective)
(iii) (S(T))* is injective (Im (F(T)*Z(T)*) D);
(iv) S(T)(S(T))* > 0 (F(T)*Z(T)*Z(T)F(T) > 0).
Remarks. (i) The evolution space X is the direct sum of the closed linear

subspace X Im(S(T))and its orthogonal complement Xu. Similarly, the state
space D is the direct sum of the closed linear subspace D, Ker(Z(T)F(T)) and
its orthogonal complement Do which is isomorphic to the quotient D/Du. There
exist linear maps

(T)’Do D X,. ( Xu and 9(T)’L2(0, T, U) --, X,. X

such that system 0 at ,time T is equivalent to the following canonical system"

(d, u)-, (T)d + ,9(T)u’(Do @ D,) L2(0, T; U)- X1 ) X2.
(ii) X. (resp. X,) is usually referred to as the controllable (resp. uncontrollable)

part of ’. Similarly, Do (resp. D,) is referred to as the observable (unobservable)
part of ’.

(iii) When ’ is strictly controllable at T, S(T) is surjective. Thus it is a
topological isomorphism by the open-mapping theorem. In particular, when a
point h e D is strictly controllable to a point x e X, all points in a neighborhood
of h are strictly controllable to points in a neighborhood of x.

The duality between the notions of observability and controllability is a
consequence of Lemma 8.

DEFINITION 1. (i) The controlled dual system * of is defined at time
e 0, T] by the map

F(s)((T)*y)(s) ds’L2(O, T; Y) D.

(ii) The observed dual system of ’ is defined by the map

x- O(x) S(T)*x’X L2(0, T; U).

Remark. For dual systems, Y is the space of controls, D is the space of evolu-
tion, X is the space of data and U is the space of observations.

DEFINITION 12. Assume that the following hypotheses are satisfied:
(i) the operator S(T) has the integral representation

S(T)u R(T, t)B(t)u(t) dt,
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where B L(O, T; (U, D)), R(T, t) (D, X) and the map -. R(T, t)d: [0, T]
--. X is continuous for all d in D;

(ii) there exists Z L(0, T; (X, Y)) such that

(2(r)x)(t) Z(t)x(t) a.e. in [0, r] for all x L2(0, T; X).

The simultaneously controlled and observed adjoint system s* is defined as
follows:

4*(t;x, y) R(T, t)*x + F(s)*Z(s)*y(s) ds (evolution map),

*(t;x, y) B(t)*dp*(t;x,y) (observation map).

Remarks. (i) Notice that by Lemma 8, the maps -. R(T, t) [0, T] -, (D, X)
and s- F(s)* :[0, T] (X, D) are in L(0, T; c(D, X)) and L(0, T; qC’(X, D)).
Thus the above hypotheses make sense. Moreover, when x 0 system
coincides with s* and when y 0 it coincides with

(ii) For system s* the direction of time has been reversed and we must
speak of controllability and observability at time 0 (zero) instead of at time T.

TUEOREM 13. System is controllable (resp. observable) at time T if and only
if system s* is observable (resp. controllable) at time O.

Proof. The proof follows from Definitions 11 and 12, Lemma 8 and Corollary
10.
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