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Maximum work extraction and implementation costs for nonequilibrium Maxwell’s demons
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We determine the maximum amount of work extractable in finite time by a demon performing continuous
measurements on a quadratic Hamiltonian system subjected to thermal fluctuations, in terms of the information
extracted from the system. The maximum work demon is found to apply a high-gain continuous feedback
involving a Kalman-Bucy estimate of the system state and operates in nonequilibrium. A simple and concrete
electrical implementation of the feedback protocol is proposed, which allows for analytic expressions of the flows
of energy, entropy, and information inside the demon. This let us show that any implementation of the demon must
necessarily include an external power source, which we prove both from classical thermodynamics arguments
and from a version of Landauer’s memory erasure argument extended to nonequilibrium linear systems.
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I. INTRODUCTION

Ever since Maxwell [1] put forward the idea of an abstract
being (a demon) apparently able to break the second law of
thermodynamics, it has served as a great source of inspira-
tion and helped to establish important connections between
statistical physics and information theory. See, for example,
Refs. [2–6]. In the original version, the demon operates a
trapdoor between two heat baths, such that a seemingly coun-
terintuitive heat flow is established. Today, more generally,
devices that are able to extract work from a single heat bath
by rectifying thermal fluctuations are also called “Maxwell’s
demons” [7]. Several schemes detailing how the demon could
apparently break the second law have been proposed, for
example, Szilard’s heat engine [2]. More recent schemes are
presented in Refs. [7–12], where measurement errors are also
accounted for.

A classical expression of the second law states that the
maximum (average) work extractable from a system in contact
with a single thermal bath cannot exceed the free-energy
decrease between the system’s initial and final equilibrium
states. However, as illustrated by Szilard’s heat engine, it is
possible to break this bound under the assumption of additional
information available to the work-extracting agent. To account
for this possibility, the second law can be generalized to
include transformations using feedback control [8,13–19]. In
particular, in Ref. [18] it is shown that under feedback control,
the extracted work W must satisfy

W ! kT Ic, (1)

where k is Boltzmann’s constant, T is the temperature of
the bath, and Ic is the so-called transfer entropy from the
system to the measurement. Note that in Eq. (1) we have
assumed there is no free-energy decrease from the initial to
the final state. Related generalizations of the second law are
stated in Refs. [20–22]. It is possible to construct feedback
protocols that saturate Eq. (1) using reversible and quasistatic
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transformations [18,23,24]. Reversible feedback protocols
may be optimal in terms of making Eq. (1) tight, but they
are also infinitely slow, and in Refs. [17,25–29] some related
finite-time problems are addressed.

The first contribution of this paper is to state an explicit
finite-time counterpart to Eq. (1), characterizing the maximum
work extractable using feedback control, in terms of the
transfer entropy. To explain our result, consider a system
modeled by an overdamped Langevin equation. We show that
the maximum amount of extractable work over a duration t ,
Wmax(t), can be expressed by the integral

Wmax(t) = k

∫ t

0
Tminİc dt ′ ! kT Ic(t). (2)

Here Tmin(t) has an interpretation as the lowest achievable
system temperature after t time units of continuous feedback
control, assuming an equilibrium initially Tmin(0) = T . Since
Tmin(t) ! T , for all t , the upper bound in Eq. (2) follows
trivially, implying Eq. (1). The transfer entropy Ic(t) measures
the useful amount of information transmitted to the controller
from the partial observations in the time interval [0,t].
Therefore, every bit of transfer entropy, if optimally exploited,
allows us to retrieve between kTmin ln 2 and kT ln 2 units of
work. We furthermore provide a novel expression for the
transfer entropy Ic(t), applicable to a large class of systems
in both continuous and in discrete time. In particular, the new
expression yields closed-form solutions of the transfer entropy
and shows its independence of the applied feedback law.

For systems of dimension higher than one satisfying linear
dynamics, e.g., systems with quadratic Hamiltonians in contact
with a heat bath, we show that

Wmax(t) # k

∫ t

0
Tminİc dt ′, (3)

with asymptotic equality as t → ∞, i.e., in nonequilibrium
steady state (NESS). Furthermore, it always holds that
Wmax(t) ! kT Ic(t) and the second law is validated for all
finite-time intervals. A quadratic Hamiltonian is a common
and reasonable assumption for a system excited by thermal
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fluctuations of moderate temperature around a minimum-
energy state.

Our second contribution is to use control theory to charac-
terize and interpret the feedback protocol the demon should
apply to reach the upper limit Wmax(t). The protocol is a
linear feedback law based on the optimal estimate of the
system state, which can be recursively computed using the
so-called Kalman-Bucy filter. The found feedback law also
offers a simple electrical implementation. A proper physical
implementation is also shown to require an external work
supply to maintain the noise on the wires at an acceptable
level. The cost of this noise suppressing mechanism can be
evaluated by standard thermodynamic arguments, or through
a nonequilibrium extension of Landauer’s memory erasure
principle.

A difference of this paper compared to Refs. [8,15,16,18–
22,30], for example, is the focus on demons extracting
work at maximum rate rather than focusing on bounding or
maximizing the extracted work per bit of received information
(“information efficiency”). A large information efficiency is
associated with slow and reversible work extraction close to
equilibrium, and so our study naturally leads to demons op-
erating at nonequilibrium. Most practically relevant feedback
systems, in engineering and in biology, by design operate at
nonequilibrium, and we argue that characterizing limits on
their energy conversion rates is a problem of major importance.
Perhaps surprisingly, we find that maximum work demons
obey several insightful relations, including Eq. (2), information
efficiency, and implementation costs, that are independent
on many of the precise details of the demons. Another
difference of our work is that we exploit some stochastic
calculus techniques, well known in control engineering but less
frequently used in the physics literature. This most of the time
lets us work directly with continuous-time models, yielding
simple closed-form solutions of Ic(t) and Tmin(t), for example,
instead of using discrete-time models and limiting arguments
[18,19,31,32]. An advantage of our continuous-time approach
is that it immediately suggests how to physically implement
the found feedback protocols. Traditional controller design
in engineering science is often done in a continuous-time
setting [33,34]. The papers [35–37] do employ continuous-
time feedback as well, but exact system state knowledge by the
controller is assumed there, which significantly simplifies the
studied optimal-control problems. The paper [38] also studies
continuous-time feedback with measurement errors but does
not characterize information flows and maximum work bounds
of the type in Eq. (2).

The structure of the paper is as follows. In Sec. II,
we introduce an electrical system that is modeled by an
overdamped Langevin equation. This is the example system
used throughout the paper, although we show in Appendix B
how to generalize the results to higher-dimensional systems.
In Sec. III, we introduce the model of the demons and the
Kalman-Bucy filter used for their implementation. In Sec. IV,
we give a novel characterization of the transfer entropy Ic(t)
and use it to obtain the maximum work relation in Eq. (2).
The derivation of the transfer entropy is found in Appendix
A. In Sec. V, we present some alternative demon schemes
to challenge and give further insight to Eq. (2). In Sec. VI,
we show how the demons can be built using simple electrical
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FIG. 1. The demon (the feedback controller) connected to a
capacitor, a heat bath of temperature T , and a measurement noise
source of intensity Vmeas. The demon may choose the current i freely
and has access to the noisy voltage measurement vmeas.

components. We also compute their implementation costs. For
this, an expression for the information rate to the memory
is needed, which is derived in Appendix C. We conclude the
paper in Sec. VII with a summary and discussion of the results.

II. SYSTEM MODEL

The system we first consider is an electric capacitor
C, a resistor R with thermal noise (the heat bath), and
a feedback controller (the demon) with access to noisy
voltage measurements, see Fig. 1. The resistor is subjected
to Johnson-Nyquist noise [39,40]. The circuit is modeled by
an overdamped Langevin equation

τ v̇ = −v + Ri +
√

2kT Rw, 〈v(0)〉 = 0,
(4)

vmeas = v +
√

Vmeaswmeas, 〈v(0)2〉 = kT

C
,

with v(0) Gaussian, w and wmeas uncorrelated Gaussian
white noise (〈w(t)w(t ′)〉 = 〈wmeas(t)wmeas(t ′)〉 = δ(t − t ′)),
Vmeas the intensity of the measurement noise, and τ = RC
being the time constant of the open circuit. The measurement
noise

√
Vmeaswmeas can be thought of as the Johnson-Nyquist

noise of the wire between the capacitor and the demon, whose
resistance for simplicity is incorporated in the demon. The heat
flow to the capacitor is Q̇ and the work-extraction rate of the
demon is Ẇ , and satisfy the first law of thermodynamics,

U̇ = Q̇ − Ẇ , (5)

where

U = 1
2
C〈v2〉 ≡ 1

2
kTC,

Q̇ = k

τ
(T − TC), Ẇ = −〈vi〉.

(6)

We denote the effective instantaneous temperature (“kinetic
temperature”) of the capacitor by TC and its internal energy by
U . For detailed derivations of Eqs. (5) and (6), see Ref. [37].
Furthermore, we assume the capacitor initially is in thermal
equilibrium with the heat bath, i.e., TC(0) = T . Just as in
Ref. [17], we can justify calling TC(t) a temperature since
it appears in a Fourier-like heat conduction law (see Q̇). Also,
since our applied controls will maintain a Gaussian distribution
of v, TC(t) will be the true temperature of the capacitor if it
were to be disconnected from all the other elements at time t .
The voltage vmeas is the measurement that supplies the demon
with information and can be seen as a noisy measurement
of the fluctuating capacitor voltage v. We will show how a
demon can optimally control the work extraction by carefully
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exploiting the measurements vmeas and properly choosing the
injected current i. Intuitively, the demon can create a positive
work rate Ẇ if it chooses i < 0 when it correctly estimates
v > 0 and vice versa. But how the demon should estimate v
and how to optimally choose i may be less obvious.

If we know the trajectory of the effective temperature TC ,
it is from Eqs. (5) and (6) possible to solve for the amount of
extracted work,

W (t) =
∫ t

0

k

τ
(T − TC) dt ′ + 1

2
k[T − TC(t)]. (7)

In particular, if we can characterize a lower bound on the
effective temperature under all allowed controls, Tmin(t ′) !
TC(t ′) for 0 ! t ′ ! t , we get an upper bound on the work that
a demon can extract,

Wmax(t) :=
∫ t

0

k

τ
(T − Tmin) dt ′ + 1

2
k[T − Tmin(t)], (8)

so W (t) ! Wmax(t). In the following, we obtain Tmin, and
thereby Wmax, using optimal control theory.

III. DEMON MODEL AND OPTIMAL
CONTINUOUS-TIME FEEDBACK

Optimal control theory [41] teaches how to compute
Tmin, and to characterize the corresponding feedback law.
In particular, for linear systems the separation principle
[42] says we can achieve the goal in two steps: First, we
should continuously and optimally estimate the voltage v(t) of
the capacitance, given the available measurements (vmeas)t0 ≡
{vmeas(t ′), 0 ! t ′ ! t}. Second, we should continuously use
the found optimal estimate to update the current i(t) using a
suitable linear feedback law.

The best possible estimate of v(t), given the measurement
trajectory (vmeas)t0, can be recursively constructed by the
celebrated Kalman-Bucy filter [43], which leads to a minimum
variance estimation error [41] and exploits as much of the
information contained in vmeas as is possible [44]. We give a
brief background to the Kalman-Bucy filter and its properties
next. The filter state is denoted v̂ and satisfies the differential
equation

τ
d

dt
v̂ = −v̂ + Ri + K(vmeas − v̂), v̂(0) = 0, (9)

where K is a time-varying function to be specified. The first
two terms in the right-hand side of Eq. (9) are copied from
the true system dynamics as specified in Eq. (4). Hence,
if there were no noise w and the initial conditions were
identical, v̂(0) = v(0) = 0, we would have a perfect estimate
v̂(t) = v(t) for all t " 0 using K = 0. However, since we have
unknown noise w driving v, K = 0 will generally result in
poor estimates. To improve the situation, we therefore exploit
the measurements (vmeas)t0 of (v)t0 and compare them to the
previous estimates (v̂)t0. The difference is fed back through the
gain K to drive the estimate v̂ closer to v in the next time
instant. A large value K will therefore make a large correction
to v̂ and is only viable when there is little measurement noise.
In fact, for fixed noise levels there is an optimal gain (K)t0, the

Kalman gain, that will minimize the estimation error variance,

min
(K)t0

〈[v(t) − v̂(t)]2〉. (10)

This optimization problem can be solved offline [without
knowing the realization of (vmeas)t0] by means of dynamic
programming [45]. In fact, dynamic programming leads to a
filter Riccati equation (see Refs. [41,43], for example), which
for the above problem takes the form

τ Ṫmin = 2(T − Tmin) − σT 2
min

2T
, Tmin(0) = T , (11)

where the optimal gain K is parameterized by the solution
(Tmin)t0,

K = σTmin

2T
. (12)

Here

σ ≡ 2kT R

Vmeas
(13)

is a fundamental adimensional characterization of the bath
noise compared to the measurement noise. A large value of σ
signifies a demon with access to high-quality measurements
and vice versa. The initial conditions v̂(0) = 0 and Tmin(0) = T
reflect the fact that the best unbiased estimate initially is zero
and that the demon knows the temperature of the bath. The
current i in Eq. (9) is identical to the current applied by the
demon to the system and can be any well-behaved causal
feedback control policy [42]. That is, i(t) = ft (vmeas) for
some functional ft , which only depends on the measurements
received until time t , i.e., (vmeas)t0. Note that the Kalman-Bucy
filter can be implemented online in a feedback controller, since
it causally depends on the measurement realization vmeas, and
Tmin can be solved for offline.

We also note that the smallest possible estimation error
variance is given by Tmin,

〈$v2〉 = min
(K)t0

〈[v(t) − v̂(t)]2〉 = kTmin

C
, (14)

see Ref. [41]. The optimal estimation error $v ≡ v − v̂ is also
stochastically orthogonal to the estimate v̂,

〈v̂$v〉 = 0, (15)

which follows by the projection theorem (see Theorem 3.4 in
Ref. [41], for example). Because of the linear Gaussian setting,
v̂ is actually the conditional mean of v, so N (v̂,kTmin/C)
is the conditional distribution. [N (µ,σ 2) denotes a Gaussian
distribution of mean µ and variance σ 2.]

As we shall see, Tmin solving Eq. (11) is identical to the
minimum possible effective temperature Tmin which deter-
mines Wmax(t) in Eq. (8). The Riccati equation Eq. (11) has a
closed-form solution,

Tmin(t) = T NESS
min

+
(
T − T NESS

min

)
e−2γ t/τ

1 + σ
(
T − T NESS

min

)
(1 − e−2γ t/τ )/(4γT )

, (16)

where γ =
√

1 + σ > 1. From the solution it is seen NESS
is approached monotonically and exponentially fast. Starting
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FIG. 2. (Color online) Transient effective temperature Tmin of a
capacitor being optimally cooled by a demon. The capacitor starts
in equilibrium (T = 1 K) and then rapidly reaches a cooler NESS,
whose level is solely determined by the measurement quality σ and
bath temperature T . In particular, a very accurate measurement (σ
large) leads to an effective temperature close to zero.

from T , Tmin decreases to a steady-state value,

T NESS
min = 2T√

1 + σ + 1
< T. (17)

In the noisy measurement limit σ * 1, the NESS may reach
the effective temperature (1 − σ/4)T , slightly colder than
T , while accurate measurements σ + 1 allows us to reach
a low effective temperature 2T/

√
σ . The case σ ≈ 0, and

thus T NESS
min ≈ T , will be of some interest in the following.

Therefore, we call this the poor measurement limit. In
particular, in this limit the capacitor will be close to equilibrium
with the bath, even if the demon extracts work at the maximum
possible rate. In Fig. 2, three transient trajectories of Tmin are
shown. It is seen that NESS is reached in the time of order τ .

Guided by optimal control theory and the separation
principle, we let the demon use the simple linear causal
feedback

i(t ′) = −Gv̂(t ′), 0 ! t ′ ! t, (18)

where 0 ! G < ∞ is a fixed scalar feedback gain. We may
think of the feedback gain G as the “conductance” of the
demon: If the demon believes the voltage of the capacitor to be
v̂, it will admit the current Gv̂. If v ≈ v̂, the demon will indeed
look like an electric load of conductance close to G. While
G = 0 (open circuit) creates a demon that only (optimally)
observes, G → ∞ also removes energy from the capacitance
at the highest possible rate, achieving the minimum effective
temperature Tmin. This can be seen as follows: Inserting
Eq. (18) in Eq. (9) we can compute the evolution of the variance
V̂ ≡ 〈v̂2〉 of the filter estimate as

τ
d

dt
V̂ = −2 (1 + GR) V̂ + σkT 2

min

2CT
, V̂ (0) = 0. (19)

We note that since Tmin is bounded, V̂ can be made arbitrarily
close to zero by increasing the feedback gain G. From

Eqs. (14) and (15) it follows that

kTC

C
= 〈v2〉 = 〈v̂2〉 + 〈$v2〉 = V̂ + kTmin

C
. (20)

Since Tmin is independent of G, and V̂ can be made arbitrarily
close to zero, we realize that the demon through its policy is
cooling the capacitor and for all t ,

TC(t) ↘ Tmin(t) as G → ∞. (21)

This shows a demon should implement a Kalman-Bucy filter
with a large (infinite) feedback gain G to extract the work
Wmax.

For a general feedback gain G " 0 in Eq. (18), the effective
temperature of the capacitor will drop exponentially from
TC(0) = T to

T NESS
C = 1

1 + GR
T + GR

1 + GR
T NESS

min . (22)

The corresponding NESS work-extraction rate can be shown
to become

ẆNESS = k

τ

(
T − T NESS

min

) GR

1 + GR
. (23)

Thus the continuous feedback protocol in Eq. (18) can realize
any NESS work rate between 0 and the maximum ẆNESS

max =
k
τ

(T − T NESS
min ) by proper choice of gain G.

The above optimal controller can be generalized to any
system with linear dynamics. Details are given in Appendix B
for systems with quadratic Hamiltonians.

IV. INFORMATION FLOW AND MAXIMUM
WORK THEOREM

To establish the maximum work theorem in Eq. (2), we
need to quantify the information flow from the uncertain part
of the voltage v to the measurement vmeas under continuous
feedback. This is the transfer entropy, as is explained in
Ref. [18], for example. We show in Appendix A that the
appropriate continuous-time limit of the transfer entropy is
[46]

Ic(t) = I ((v(0),(w)t0); (vmeas)t0). (24)

This is the mutual information between the uncertain initial
voltage v(0) and noise trajectory w from the bath and
the measurement trajectory vmeas. Mutual information [47]
between two stochastic variables ξ and θ is as usual defined as

I (θ ; ξ ) ≡
∫

ln
(

dPθξ

d(Pθ ⊗ Pξ )

)
dPθξ " 0 (25)

and is equal to the amount the (differential) Shannon entropy
of ξ decreases with knowledge of θ and vice versa. Here
Pθξ ,Pθ , and Pξ are joint and marginal probability measures of
the stochastic variables θ and ξ . We prove in Appendix A that
the transfer entropy in fact has the following explicit form:

Ic(t) = σ

4τ

∫ t

0

Tmin

T
dt ′. (26)

Note that Ic does not otherwise depend on the details of
the demon, for example, the feedback gain G, as is further
discussed in Appendix A.
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It now follows from Eqs. (8), (11), and (26) that the
maximum extracted work must satisfy

Wmax(t) =
∫ t

0

k

τ
(T − Tmin) dt ′ + 1

2
k[T − Tmin(t)]

=
∫ t

0

σkT 2
min

4τT
dt ′ = k

∫ t

0
Tminİc dt ′, (27)

which proves the equality in Eq. (2). The inequality trivially
follows since Tmin ! T . As is shown in Appendix B, for mul-
tidimensional systems we only have an asymptotic equality:
As soon as the system satisfies an equipartition condition (true
at all times in the one-dimensional case and in any dimension
when a NESS is reached) the equality holds.

The expressions for Ic and Wmax provide interesting insights
concerning information and work flow in the feedback loop.
Since Tmin decreases monotonically, the transfer entropy rate
İc is largest just when the measurement and feedback control
start and then decreases until it stabilizes at

İNESS
c = σT NESS

min

4τT
=

√
1 + σ − 1

2τ
. (28)

In NESS, the fresh measurements are no longer able to improve
the quality of the estimate, i.e., to decrease the error variance
〈[v(t) − v̂(t)]2〉 any further. Since Ẇmax = kTminİc, the work-
extraction rate also decreases until it stabilizes at

ẆNESS = kTminİ
NESS
c

GR

1 + GR
, (29)

see Eq. (23).
As in related studies [18,23,26], we can now define and

study the information efficiency η of the demon,

η ≡ W

kT Ic

∈ [0,1]. (30)

It measures the amount of extracted work per unit of received
useful information. An η ≈ 1 means that the demon is close to
saturating Eq. (1) and is operating at the limit of the generalized
second law of thermodynamics. For our demons in NESS, we
obtain the efficiency

ηNESS = Tmin

T

GR

1 + GR
, (31)

using Eq. (29). Hence, only a maximum work demon (G →
∞) with Tmin ≈ T will operate at an information efficiency
close to 1. This corresponds to the poor measurement limit
(σ ≈ 0) and a very small maximum work rate. A demon with
access to almost perfect measurements (σ → ∞) has Tmin ≈ 0
and a very low information efficiency, η ≈ 0. Note also that a
less aggressive demon (small G) has a lower efficiency but that
this is by choice: The transfer entropy rate is independent on
G, and a smaller G decreases Ẇ , leading to a lower efficiency.
These observations are further elaborated on and interpreted
in Secs. V and VI.

V. ALTERNATIVE SWITCHED CONTROL SCHEMES

In this section, we consider three different switched work
extraction schemes to shed light on and to challenge the
optimality of Wmax and to establish some connections to
previous work in the literature

A. Maximizing information efficiency
and the relation to Szilard’s engine

As both the work extraction rate and transfer entropy rate
are highest when the system is in equilibrium at temperature
T , it may be tempting to run the feedback controller only
when the system is close to equilibrium. Of course, as soon as
the optimal feedback loop is closed, the effective temperature
drops along the trajectory Tmin. But if the optimal feedback
control is only applied for a very short time, say of duration
tbur → 0, it holds

Wmax(tbur) ≈ kT Ic(tbur) ≈ σkT

4τ
tbur, (32)

since Tmin(0) = T . The work σkT
4τ

tbur saturates the upper
bound in Eq. (2) and has the largest possible information
efficiency, η ≈ 1. On the other hand, the amount of work
is also very small since tbur is small. Nevertheless, if the
system is allowed to relax back to thermal equilibrium again
before the next feedback burst, it is possible to operate the
feedback controller in a switched mode at the same efficiency
as feedback reversible discrete controllers [2,18,23], which
saturate Eq. (1). To be specific: Let us apply N bursts of
feedback control, each burst of duration tbur, and assume the
time it takes for the system to relax back to thermal equilibrium
is trel. During the total time N (tbur + trel) the amount of received
useful information and extracted work become

Ic = NIc(tbur), W ≈ NkT Ic(tbur), (33)

and W/(kT Ic) = η ≈ 1. It should be noted that continuous
extraction yields more work in the same amount of time,
Wmax(N (tbur + trel)) > W , albeit at a lower information effi-
ciency. Nonetheless, it is possible to achieve a high efficiency
also using continuous extraction, as already noted in Sec. IV,
but only in the poor measurement limit, when the transfer
entropy rate vanishes.

The switched controller discussed here mimics the discrete
ones in that it tries to make a very short (sampled) measure-
ment. It immediately acts on the obtained information and
extracts the small work it can. If the controller waited to act on
the system, its information would be less valuable due to the
constant thermal fluctuations in v, as further discussed in the
next subsection. Since the amount of extracted work is small,
the system remains close to equilibrium, and essentially the
control is quasistatic. Therefore, the switched scheme here
is analogous to other maximum-efficiency schemes which
extract work quasistatically, close to equilibrium, such as
Szilard’s engine [2].

B. Collecting information before work extraction

Another switched control strategy to consider starts with
running the controller with G = 0, just observing v during
some time tobs. At time tobs, the controller estimate v̂(tobs)
has the estimation error variance kTmin(tobs)/C. Since no
control is applied, TC(t) = T throughout this mode and the
capacitor remains in thermal equilibrium. When the estimate
is considered good enough, one can start the work extraction
by switching on the control with G → ∞. The hope with this
scheme may be that by collecting more information before
extraction we may be able to increase the work amount.
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As the extraction starts, the effective temperature TC will
almost instantaneously drop from T to Tmin(tobs) while the
work 1

2k[T − Tmin(tobs)] is retrieved. If the controller is left in
the mode G → ∞ until some time t " tobs, the total amount
of extracted work is

∫ t

tobs

k

τ
(T − Tmin) dt ′ + 1

2
k[T − Tmin(t)]. (34)

Compared to the maximum work Wmax(t), it should be clear
that an amount

∫ tobs

0
k
τ

(T − Tmin) dt ′ of work is lost by using
this switched control strategy. It does not pay off to wait and
observe before applying the control. The reason for the loss
is that only a fraction of the received transfer entropy Ic(tobs)
can be used to extract work at time tobs. A part of Ic(tobs) is
outdated when it comes to estimate the state v(tobs), wherein
the available energy is stored. In Ref. [44], the information that
is no longer useful for control is termed dissipated information,
and exact expressions for the amount are found there.

C. Retrieving the nonequilibrium free energy

As explained in Refs. [21,24], a system’s nonequilibrium
free energy can be used to upper bound the amount of work
retrievable from a system in a particular (nonequilibrium) state.
The nonequilibrium free energy [21,44] is defined as F ≡
U − T S, where U is the internal energy and S the (Shannon)
entropy. It is well known that F attains a minimum, F = F eq,
in equilibrium. The amount of work attainable while forcing
a system (in contact with a T bath) to equilibrium F eq is
bounded by the decrease of free energy −$F = F − F eq =
−$U + T $S, see Refs. [21,24].

After applying our maximum work extraction scheme
for some time t , the system is clearly in a nonequilibrium
state, since $U = k

2 [T − Tmin(t)] and $S = k
2 ln[T/Tmin(t)].

Hence, it would seem that in addition to the amount Wmax(t),
it should be possible to extract the work amount,

−$F = k

2
[Tmin(t) − T ] + kT

2
ln

[
T

Tmin(t)

]
" 0. (35)

Indeed, this is possible but only after the allotted time interval
[0,t], and thus the amount −$F should not be counted in
Wmax(t).

To extract the work amount −$F without taking more
measurements (without increasing Ic), we need to use a
different type of work extraction than before. Inspired by
Ref. [37], we can apply a mechanical force and vary the plate
distance of the capacitor. The work is then retrieved in two
steps: First, the plates are quickly (adiabatically) pulled apart
until the effective temperature of the capacitor has increased to
TC = T . This requires the work $U . Second, we let the plates
slowly and isothermally (at temperature T ) move together to
their original position. This yields the work amount T $S.
Overall, the scheme yields the net work −$F , without making
any new measurements.

To summarize, it is possible to obtain the total work
Wmax(t) − $F after t time units of maximum work extraction
and with the transfer entropy Ic(t). Note, however, that for
two reasons the additional work −$F does not fall within
the scope of the problem we set out to study initially. First,
the additional work cannot be retrieved using a (linear) current

injection. This is understood since the expected voltage at time
t is zero, given the demon’s knowledge, and nonlinear work
extraction acting on the voltage variance is necessary. Second,
the work is retrieved outside of the allotted time interval
[0,t]. It should also be remembered that −$F is neglectable
in comparison to Wmax(t) for large t , since the latter grows
linearly with t and the former is bounded. Nevertheless, this
example shows that an interesting problem for future research
is to consider more general demons, with access to multiple
actuation channels.

VI. THE DEMON IN NONEQUILIBRIUM STEADY STATE
AND ITS PHYSICAL IMPLEMENTATION

The demon is traditionally seen as a little being observing
the fluctuating system and acting on it so as to pump energy
from it, apparently against the second law. In more modern
treatments, it may be seen as a controller composed of a
measurement device, a (digital or analog) computer that finds
the most appropriate action, implemented by an actuator. The
relevant information must be stored in the computer memory
as long as it is deemed useful and must be eventually discarded
or stored on an infinite memory tape. The Landauer-Penrose-
Bennett treatment [3–5] of the demon considers the memory
management combined with Landauer’s principle that erasing
a bit of information in a memory at temperature T must
dissipate at least the work kT ln 2 to the bath as the key to
reestablishing the second law.

In the spirit of Refs. [7,10,11,24], we next find explicit
physical devices implementing the demon, which allows for
a detailed discussion of the energy or entropy flows inside
the demon. To simplify the presentation, we only consider
the NESS and avoid writing out the superscript “NESS”
on the quantities in this section. The key quantities of interest
in NESS, derived in the previous sections and which our
implementation of the demon will realize, are

İc =
√

1 + σ − 1
2τ

, (36)

Tmin = 2T√
1 + σ + 1

, (37)

Ẇ = kTminİc

GR

1 + GR
! Ẇmax = kTminİc. (38)

In Fig. 3, normalized versions of these quantities are plotted
as a function of measurement quality σ . In particular, we
emphasize that an infinite transfer entropy rate (perfect
measurements) does not result in an infinite work rate. The
intuitive explanation is that the demon acts on the capacitor,
which in equilibrium has the energy 1

2kT and equilibrate with
the bath with the time constant τ . A very large information
supply will allow the demon to extract almost all of the energy
1
2kT , but it will nevertheless need to wait a time of order τ
before the bath has refilled the capacitor with new energy to
be extracted. The fundamental upper bound on the work rate
is therefore proportional to 1/τ ,

Ẇmax = kTminİc = k

τ
(T − Tmin) ! kT

τ
, (39)
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σ

η = Tmin/T

τ İc

τẆmax/(kT )

FIG. 3. (Color online) Information (dimensionless) transmitted
during a time constant of the system (τ İc), normalized work ex-
tractable in the same time [τẆmax/(kT )], and information efficiency
(η), for a maximum work demon at NESS, as function of measurement
quality σ . We note that even a demon with large amounts of
information cannot extract more work than kT during a time constant
of the system, in accordance with Eq. (39).

which is reached with equality by a maximum work demon
with infinite transfer entropy rate, i.e., G → ∞ and σ → ∞.
Such a demon comes at a very high implementation cost since
it needs to process a huge amount of information, as will be
further discussed below. As was already found in Sec. IV,
we also see that in the poor measurement limit (σ ≈ 0), the
capacitor is close to equilibrium with the bath, Tmin ≈ T , even
under maximum work extraction. This makes the information
efficiency as large as possible, η = Ẇ/(kT İc) ≈ 1, although
the extracted power is small. This observation is in accordance
with Sec. V A, where we also saturated the information
efficiency by only processing small amounts of information
and using it to the maximum.

Kalman-Bucy demons, as we call those demons that imple-
ment a Kalman-Bucy filter together with a linear control law
[Eq. (18)], turn out to be implemented with simple linear circuit
elements. As such they include a real (resistive) impedance Z
that is accountable for the energy absorbed by the demon
and is associated with random Johnson-Nyquist thermal
noise, following fluctuation-dissipation theorem. We naturally
assume that this thermal noise is precisely responsible for the
measurement noise

√
Vmeaswmeas. One may therefore define

an effective demon temperature Tdem that suitably explains the
observed level of measurement noise as

Tdem ≡ Vmeas

2kZ
. (40)

We next turn to analyzing the electrical circuit used to realize
the above expressions.

A. Implementation of the demon

To exactly implement the Kalman-Bucy filter and the
control law [Eq. (18)], only a resistive and an inductive element
are needed, as illustrated in Fig. 4. The inductance L and the

−+

2kT

R
wRC

+

−

+

−

v

Z

(b)

−+

2kT

R
wRC

+

−

+

−

vZ L

i
(a)

M      

−+

2kT

R
wRC

+

−

+

−

v
Z

(c)

2kTdemZ wmeas

vmeas

vmeas

2kTdemZ wmeas

2kTdemZ wmeas

vmeas

L

i

L

i

FIG. 4. Three exact electric implementations of the Kalman-Bucy
demon, with different realizations of the purely resistive element Z.
The current i through the inductive element is proportional to the
optimal (Kalman-Bucy) estimate v̂ and Z creates measurement noise.
To realize Z, implementation (a) uses a normal resistor, (b) uses a
lossless transmission line as memory element and energy storage, and
(c) uses an abstract computer with memory element and a motor M.
In the three cases, Z is perceived by the circuit as a resistance Z of
temperature Tdem.

resistance Z should be chosen as

L = CZmin

G
,

Z = 1
G

(
1 + Zmin

R

)
+ Zmin " Zmin, (41)

where

Zmin = R√
1 + σ − 1

> 0 (42)

is the resistance of a demon extracting work at the maximum
possible rate (maximum power, at G → ∞). Hence, a Kalman-
Bucy demon that would like to implement a less aggressive
control law (finite G) should use a resistance larger than Zmin.
One may interpret the inductor L as both actuator and dynamic
state of the Kalman-Bucy demon, since the best instantaneous
estimate v̂(t) of the capacitor voltage is proportional to the
current i(t) = −Gv̂(t). The demon temperature can now be
explicitly computed as

Tdem = Tmin

2
GR

GR +
√

1 + σ
< T. (43)

We note in particular that there is always a temperature gradient
from the demon to the bath, driving the energy flow Ẇ .

Let us insist that the element Z, although required to behave
externally as a resistance of temperature Tdem, is otherwise
unconstrained. It may be a simple resistor, which burns the
received energy flow Ẇ into heat. It may also be realized
as a semi-infinite lossless transmission line of characteristic
impedance Z, in which injected energy is stored and disposed
of as a traveling wave satisfying the telegrapher’s equation.
A transmission line, a well-known lossless realization of a
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resistance [48,49], is the electric equivalent of an elastic string,
itself a well-known lossless model of friction [50]. Assuming a
wave propagation velocity of c means that the control actuation
applied and the power extracted $t time units ago is stored in
the line voltage Zi(t − $t) and line current i(t − $t), to be
found a distance c$t down from the terminal connected to L.
In this sense, we can think of the lossless line as a model of
a continuous and infinite memory tape, where all past demon
control actions and energy are stored. Finally, Z can be a
“load” resistance, i.e., a machine, comprising, for instance, a
computational device, memory, a motor, etc., that converts at
least part of the electric energy W into another useful form,
such as the kinetic energy of a wheel maintained in motion
by the motor against adversary forces. We do not here go into
the details of how to actually build such a device, albeit in any
case it should externally look like a resistance Z. A simple
example of an electromechanical device converting electrical
energy into work while externally looking like a resistor is
given in Ref. [37]. All of these different interpretations of Z
are illustrated in Fig. 4.

B. Implementation costs of the demon

From Eq. (43), it is seen that as G increases, the Kalman-
Bucy demon temperature Tdem increases and, at maximum
power extraction, Tdem is half the effective capacitor tempera-
ture, i.e.,

Tdem = 1
2
TC = 1

2
Tmin = T√

1 + σ + 1
. (44)

To apply an external potential (the demon temperature) that
is half of the source potential (the capacitor temperature) to
generate maximum power transfer has also been observed
in previous work in other settings, see Refs. [51,52]. The
maximum power demon is electrically equivalent to just a
resistance Zmin in series with a vanishing inductance, L → 0.
While the inductance vanishes, the current through it increases
as the demon becomes more aggressive (G → ∞), resulting
in a nonvanishing stored energy L〈i2〉 = kTdem. One cannot
simply remove the inductance from the circuit in general, for
a correct representation. However, in NESS the inductance
plays no role in the energy and entropy flows. To simplify
the presentation, we will only consider this maximum power
case (Z = Zmin, Ẇ = Ẇmax), since finite G can be treated
analogously.

We first assume that Z is a pure resistor, the simplest
situation to analyze. If the demon has access to a bath Tdem,
then the resistor creates a noise of same temperature and burns
Ẇ into heat as required. If the demon has only access to the
same bath as R, of temperature T , then one may refrigerate
the resistor down to Tdem and evacuate the heat Ẇ from Tdem
to T . This can be done by a Carnot ideal refrigerator with an
external power supply of

(
T

Tdem
− 1

)
Ẇ =

(
2
η

− 1
)

Ẇ . (45)

This extra supply is the cost of maintenance of the NESS,
showing clearly that the demon, in this implementation, is
overall active unless it can rely on a colder heat bath than T . In
the poor measurements limit (σ ≈ 0, T ≈ Tmin = 2Tdem), the

refrigeration cost approaches Ẇ . With good measurements,
the refrigeration cost is much larger than Ẇ . A maximum
power demon with a high-quality measurement device has a
small information efficiency η and requires a large external
power supply. In all cases, the total energy dumped to the T
bath takes the simple form

Ẇimpl =
(

T

Tdem
− 1

)
Ẇ + Ẇ = 2kT İc, (46)

since Ẇ = kTminİc and 2Tdem = Tmin. This is a measure of the
implementation cost of the demon, as further discussed below.

Let us now consider the model of the lossless transmission
line of characteristic impedance Z. Let us recall that a trans-
mission line is akin to an ideal memory tape, with information
encoding past measurements of the system traveling away
from the circuit towards infinity, and random white noise
traveling from infinity into the circuit. A crucial observation
is that the useful information retrieved from the measurement,
the transfer entropy Ic, is embedded into a signal of larger
information rate, and it is that total signal that the memory
tape has to manage. We show in Appendix C, from a spectral
analysis of the signal into the tape, that the total information
rate entering the memory is

Rinfo =
∫ ∞

0
ln

[
1 + Ẇ (f )

kTdem

]
df, (47)

where (with some abuse of notation) Ẇ (f ) is the power
spectral density of Ẇ at the Fourier mode of frequency f ,
so Ẇ =

∫
Ẇ (f )df . From the inequality ln(1 + x) ! x, we

easily see

Rinfo ! Ẇ

kTdem
= 2İc. (48)

Let us now assume a finite-length memory tape, which
requires erasing bits at the same rate they enter the line. This
can be done in a simple way by ending the finite-length line
with a resistance of exact value Z, burning all energy and
information on the line. We here recover the simple resistor
analysis, where the line only creates a delay in the dissipation.
We may imagine many other ways to erase information on
the line, but any such mechanism should respect Landauer’s
principle [3] and dispose at least kT times Rinfo to the bath of
temperature T . Therefore, using Eq. (48),

CLandauer ! T

Tdem
Ẇ = 2kT İc. (49)

Landauer’s cost therefore coincides with the implementation
cost (46) derived above in the poor measurements limit (T ≈
Tmin = 2Tdem, σ ≈ 0), where Rinfo ≈ Ẇ

kTdem
= 2İc. In this case,

every bit of transfer entropy measured from the system allows
us to retrieve an energy kT ln 2 from the system but comes
with another bit of “useless” information to be stored, and
eventually erased, by the memory. Therefore, the demon earns
kT ln 2 but has to dispose at least 2kT ln 2 to the heat bath.
The second law is therefore true with a wide margin.

Further away from equilibrium (σ > 0), the strict inequality
in Eq. (49) seems to suggest that Landauer’s bound leaves
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potential room for a more clever information-erasure mech-
anism than pure refrigeration. Nevertheless, we show below
that (46) provides the correct minimum implementation cost.
The strict inequality thus arises from the conservativeness of
Landauer’s bound far from equilibrium, when the information
flow is high and fast erasure is required. In Appendix
C, we postulate a nonequilibrium extension of Landauer’s
principle, demanding proportionally more power consumption
for high rate erasure, which allows us to recover the same
implementation cost as for the resistor. Even if the demon
chooses to cover parts of Ẇimpl with the energy flow Ẇ , gained
from the system, an extra Ẇimpl − Ẇ = (2T − Tmin)kİc > Ẇ
has to be supplied by an external source of power.

We next turn to an interpretation where Z is any device
that attempt to convert Ẇ to mechanical work. In the absence
of concrete implementation details, we can only proceed from
general thermodynamic principles. No matter how it is actually
built, the element externally should appear as a heat bath of
temperature Tdem. Hence, since energy at a rate Ẇ disappears
into Z, physical entropy at a rate

Ṡ = Ẇ

Tdem
(50)

is at least being created inside Z. Now we assume that Z is
composed of a steady-state finite device in communication
with a bath of temperature T . According to the second law,
this can only be achieved if we dispose at least an amount

Ẇimpl = T

Tdem
Ẇ = 2kT İc (51)

of energy into the heat bath of temperature T , a general
implementation cost of the demon, whether it consists of a
refrigerated resistor, a continuous memory tape with erasure
mechanism, or any other implementation.

In conclusion, any maximum power demon for a linear
system must be active, with at least an extra power supply
Ẇimpl − Ẇ = (2T − Tmin)kİc > Ẇ . The second law is thus
safe with a margin. As a final remark, we note that less
aggressive Kalman-Bucy demons (G < ∞) have a lower
effective temperature, see Eq. (43), and lower information
efficiency, see Eq. (31), and thus spend even more power into
heat, T

Tdem
Ẇ > 2kT İc. This has the surprising consequence that

the maximum power demon is the cheapest of all Kalman-Bucy
demons, cheaper in particular than the pure observer (G → 0,
no control).

VII. DISCUSSION

The first finding of our study is that the maximum work a
demon can extract from a thermally fluctuating system over
a time interval [0,t] takes the form Wmax(t) =

∫ t

0 kTminİc dt ′.
Here Tmin < T for t ′ > 0. One may have expected Tmin = T
for all t ′, i.e., that every unit of transfer entropy corresponds
to kT units of potential work. But if time is limited, there
is a diminishing return on the received information. In
fact, Wmax(t) ! kT t/τ , where τ is the time constant of the
fluctuating system. This bound becomes tight if the demon
has access to very accurate measurements, so the transfer
entropy rate İc tends to infinity. The work Wmax remains finite
since Tmin tends to zero. Using optimal filtering theory, we

show that Tmin can be interpreted as an out-of-equilibrium
effective temperature of the maximally cooled fluctuating
system. An intuitive explanation as to why a very well
informed demon cannot extract unbounded amounts of energy
in finite time, even with access to unbounded amounts of
information, is that the fluctuating system is of low-pass
character. That is, all thermal fluctuations of frequency above
1/τ are effectively attenuated by the system itself and the
corresponding (unbounded) energy is kept beyond reach of the
demon. We recover a work of kT per unit of useful information
every time that the demon extracts work at an infinitely slow
rate by intermittent, bursty control, a continuous strategy that
only uses a fraction of retrieved information, or because the
measurement is of poor quality. We underline that our main
conclusions apply not only to the capacitance obeying a linear
scalar Langevin equation that served as motivating example but
also, more generally, to any system undergoing small thermal
fluctuation around a minimum energy level.

Our second contribution is to use control theory to
characterize and interpret the feedback protocol the demon
should apply to reach the upper limit Wmax. The protocol is a
linear feedback law based on the Kalman-Bucy estimate of
the system state. The so-called separation principle shows
that the demon should use all the received information to
first optimally estimate the current state of the system and
then quickly pull out the energy it can. Since our system is
subjected to continuous thermal fluctuations, old information
is less useful and there is no reason to wait before exploiting
it. We also propose an easily analyzed family of demons, the
Kalman-Bucy demons. These demons interpolate with less
and less aggressive control strategies between the maximum
power demon and a demon that only observes the system
without acting on it. The family illustrates the trade-off
obtained when we give up maximum power extraction and
remain close to equilibrium and allows for a better comparison
with the literature on many aspects. We believe that Kalman-
Bucy demons and variants can play a role similar to the
Szilard’s engine and its variants in illustrating and under-
standing the fundamental interactions between thermodynam-
ics and information theory, in particular in nonequilibrium
situations.

Kalman-Bucy demons offer simple physical implementa-
tions. We find that any such implementation is necessarily
active, i.e., consumes power from an external source that
exceeds the power retrieved from the system. This makes
Kalman-Bucy demons necessarily energy deficient in whatever
implementation. We can understand this since the demons are
out of equilibrium with the system even when the system is
close to equilibrium with the bath, and we need to spend work
to keep them in such states. More specifically, the extra cost can
be interpreted as the cost of a noise suppression mechanism,
e.g., through refrigeration or memory erasure, and the deficit
can be interpreted as the fact that only part of the information
that must be handled by the demon’s memory (Rinfo) is useful
to retrieve energy (İc).

Finally, we believe that our results exemplify how key tools
from control theory, such as (continuous-time) Kalman-Bucy
filtering, the separation principle, and circuit realization,
can contribute to stochastic thermodynamics and statistical
mechanics.

042119-9



SANDBERG, DELVENNE, NEWTON, AND MITTER PHYSICAL REVIEW E 90, 042119 (2014)

ACKNOWLEDGMENTS

The authors thank Jordan Horowitz for many helpful
discussions and suggestions. H.S. is supported by the Swedish
Research Council under Grants No. 2009-4565 and No.
2013-5523. J.-C.D. is supported by the Interuniversity At-
traction Pole “Dynamical Systems, Control and Optimization
(DYSCO),” initiated by the Belgian Science Policy Office
(BELSPO), and by an Action de Recherche Concertée funded
by Fédération Wallonie Bruxelles. S.K.M. is supported in
part by Siemens Corporate Research Grant, “Methods for
Optimal Control in Grids with Storage,” and NSF Grant No.
EECS-1135843, “Smart Power Systems of the Future: Founda-
tions for Understanding Volatility and Improving Operational
Reliability.”

APPENDIX A: THE TRANSFER ENTROPY Ic(t)

In order to motivate our definition of Ic(t) for the
continuous-time system in Eq. (4), we first consider the notion
of transfer entropy in the more familiar context of a controlled
discrete-time system with signal and observation processes
subject to additive noise. In this, the signal and observation
sequences, (Xk; k = 0,1, . . .) and (Yk; k = 0,1, . . .), satisfy the
following equations:

X0 = W0,

Xk+1 = fk

(
Xk

0

)
+ uk

(
Y k

0

)
+ Wk+1,

Yk = gk

(
Xk

0

)
+ Zk,

(A1)

where (Wk; k = 0,1, . . .) and (Zk; k = 0,1, . . .) are indepen-
dent white-noise sequences. (By this, we mean that the
random variables {Wk,Zl,0 ! k,l < ∞} are independent.) We
assume that the functions fk , gk , and uk and the distributions
of the noise sequences are such that, for some 0 ! N <
∞, the mutual information between XN

0 and YN
0 is finite:

I (XN
0 ; YN

0 ) < ∞.
I (XN

0 ; YN
0 ) has its origins in two components of entropy

exchange between X and Y : one from X to Y through
the observation function gk and the other from Y to X through
the control function uk . The first of these is called in Ref. [18]
the transfer entropy and is the component most important to
us here since it determines the information about the statistical
mechanical system modelled by X made available to the
demon by the partial observations Y . It is sometimes called
the directed information. In the context of (A1) the transfer
entropy is defined in the following way [18]:

Ic(n) ≡
n∑

k=0

I
(
Xk

0; Yk|Y k−1
0

)
, where Y−1

0 ≡ 0. (A2)

Proposition 1. For the system of (A1) and any 0 ! n ! N ,

Ic(n) = I
(
Wn

0 ; Yn
0

)
. (A3)

Proof. (Induction) The case n = 0 is trivial. Suppose then
that (A3) is true for some 0 ! n < N . It follows from two
applications of the chain rule of mutual information (see, for
example, Theorem 2.5.2 in Ref. [47]) that

I
(
Wn+1

0 ; Yn+1
0

)
= I

(
Wn+1

0 ; Yn
0

)
+ I

(
Wn+1

0 ; Yn+1|Yn
0

)

= I
(
Wn

0 ; Yn
0

)
+ I

(
Wn+1; Yn

0 |Wn
0

)

+ I
(
Wn+1

0 ; Yn+1|Yn
0

)

= I
(
Wn

0 ; Yn
0

)
+ I

(
Wn+1

0 ; Yn+1|Yn
0

)
, (A4)

the last step resulting from the independence of Wn+1 and
(Wn

0 ,Y n
0 ). It thus remains to prove that I (Wn+1

0 ; Yn+1|Yn
0 ) =

I (Xn+1
0 ; Yn+1|Yn

0 ), but this follows from “sufficient statistics”
arguments based on the fact that there exist maps Fn+1 and
Gn+1 such that

Xn+1
0 = Fn+1

(
Wn+1

0 ,Y n
0

)
and

Wn+1
0 = Gn+1

(
Xn+1

0 ,Y n
0

)
. (A5)

Proposition 1 shows that the transfer entropy is equal to
the mutual information between the observation Y and the
signal noise W . (We regard the signal initial condition X0 as
being part of this noise sequence.) Unlike the signal itself,
W is not affected by the action of the control term uk(Y k

0 )
in (A1) and so is not influenced by the second component of
entropy exchange identified above. We use Proposition 1 to
motivate our definition of transfer entropy for the continuous-
time system in Eq. (4).

Although it can be formally defined through its (constant)
power spectral density, continuous-time Gaussian white noise
does not have sample paths with any reasonable properties.
The values it takes at two distinct times (no matter how
close) are independent, “infinite-variance” random variables.
To give precise meaning to equations such as (4) we need
to use stochastic calculus. This expresses both equations in
(4) as integral equations, thereby replacing the white-noise
processes w and wmeas by Brownian motion processes B and
Bmeas. (In a formal sense, w = dB/dt and wmeas = dBmeas/dt ,
although neither B nor Bmeas is actually differentiable.) The
measurement voltage, vmeas, is replaced by its integral form,
which we denote Y . Equation (4) is thereby replaced by the
following pair of equations:

τv(t) = τv(0) +
∫ t

0
(Ri − v) dt ′ +

√
2kT RB(t),

Y (t) = 1√
Vmeas

∫ t

0
vdt ′ + Bmeas(t). (A6)

We define the mutual information between v and vmeas to
be that between v and Y . As above, the latter has its origins
in two exchanges of entropy: one from v to Y through the
observation mechanism and the other from Y to v through the
control; only the first of these, the transfer entropy, is relevant
to the demon. Motivated by Eq. (A3), we define the transfer
entropy of the system (A6) as follows:

Ic(t) ≡ I ((v(0),(B)t0); (Y )t0). (A7)

This can be found by a classical result dating back to
Ref. [53], which appears in a fairly general form in Ref. [54].
It is expressed there in the context of a problem of commu-
nication across a channel subject to additive Gaussian white
noise. A “message” signal θ (t) is encoded, by a mechanism
that has access to the output of the channel ξ (t), to produce
a channel input signal, at (θ,ξ ). This has finite variance and
is nonanticipative in the sense that, for each time t , at (θ,ξ )
depends only the past and present of θ and ξ [(θ )t0 and (ξ )t0].
Theorem 16.3 in Ref. [54] derives an explicit form for the
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mutual information between the process segments (θ )t0 and
(ξ )t0; in fact,

I ((θ )t0; (ξ )t0) = 1
2

∫ t

0
〈[at ′(θ,ξ ) − ât ′ (ξ )]2〉 dt ′, (A8)

where ât (ξ ) is the (ξ )t0-conditional mean of at (θ,ξ ).
In the context of Eqs. (A6) and (A7), the message signal

is the pair (v(0),B), the input to the channel is v/
√

Vmeas,
and the output of the channel is Y . The representation v(t) =√

Vmeas at ((v(0),B),Y ) is made explicit by the first equation
in (A6). The nonanticipative condition of Theorem 16.3 in
Ref. [54] is satisfied if the injected current i is itself nonantic-
ipative [i.e., if i(t) depends only on the past and present of Y ].
This is a natural condition to impose on the demon—it should
use only past and present measurements of Y when deciding
what current to inject at time t . This condition is certainly
satisfied by the feedback control of Eq. (18). Substituting these
terms into Eqs. (A7) and (A8), we obtain the following explicit
form for the continuous-time transfer entropy:

Ic(t) = 1
2Vmeas

∫ t

0
〈[v − v̂]2〉dt ′,

= 1
2Vmeas

∫ t

0

kTmin

C
dt ′,

= σ

4τ

∫ t

0

Tmin

T
dt ′.

(A9)

This is not dependent on the value of the control gain G. In
fact it would take the same value with any control regime
for which the resulting process v satisfied the finite variance
and nonanticipative conditions. This is true, for example, for
a large class of nonlinear feedback controls.

APPENDIX B: THE HAMILTONIAN CASE
IN HIGHER DIMENSION

Let us consider the more general case where the capac-
itor in Eq. (4) is replaced by a Hamiltonian system. We
assume a quadratic Hamiltonian, H (x) = 1

2xT Mx, where
xT = [qT pT ] ∈ R2n is a point in the phase space with
generalized positions q and momenta p and M ∈ R2n×2n is
a symmetric positive-definite matrix. Hamilton’s equations
under the influence of a generalized external force Buu(t) (the
constant matrix Bu ∈ R2n determines which coordinates are
directly affected), applied by the demon, now reads

ẋ = J∇H (x) + Buu,

y = BT
u ∇H (x),

(B1)

where J = −J T = [0 In

−In 0 ], and y is the generalized velocity

conjugate to u. That is, Ḣ (t) = y(t)u(t) is the rate of
work applied to the system. Now ∇H (x) = Mx, and the
Hamiltonian system is a linear dynamical system.

We connect the Hamiltionian system to a heat bath of
temperature T and with viscous friction coefficient r > 0,
producing a dissipative force in the direction B ∈ R2n. We

obtain [37]

ẋ = (J − D)Mx + Buu + B
√

2kT rw,

〈x(0)〉 = 0, 〈x(0)x(0)T 〉 = kT M−1,

y = BT
u Mx,

ymeas = BT Mx +
√

Vmeaswmeas, (B2)

where x(0) is Gaussian, w and wmeas uncorrelated Gaussian
white noise, D = rBBT is the dissipation, and B

√
2kT rw

models the corresponding thermal fluctuation. We have also
assumed a scalar noisy measurement ymeas of the generalized
velocity conjugate to the dissipative force [55], which is
available to the demon. In the following, it is assumed the
system in Eq. (B2) is controllable and observable [34]. That
is, in the absence of noise (w = wmeas = 0), it is possible to
force the system to x = 0 in arbitrarily short time from any
initial point using some force u, and it is possible to determine
x(t) exactly given an arbitrarily short measurement trajectory
(ymeas)t+ε

t−ε , ε > 0. If these assumptions do not hold, it means
that there are system coordinates that are either invisible to, or
beyond the influence of, the demon. Such degrees of freedom
can systematically be eliminated to create a minimal model,
see, for example, Ref. [34].

Let us denote the second moment of the phase-space
coordinate by X(t) ≡ 〈x(t)x(t)T 〉 ∈ R2n×2n. Then the internal
energy can be written as U (t) = 〈H (t)〉 = 1

2 Tr(MX(t)). The
first law of thermodynamics reads [37]

U̇ = Q̇ − Ẇ ,

Q̇ = kT Tr(MD) − Tr(MDMX),

Ẇ = −〈uy〉,

(B3)

where Q̇ is the expected energy exchange rate with the heat
bath and Ẇ is the expected work extraction rate. We note that
in thermal equilibrium (Q̇ = Ẇ = 0) we have X = kT M−1,
and the internal energy is U = nkT , in accordance with
the equipartition theorem. We say the internal energy is
equipartitioned when X takes the form kT M−1 for some scalar
temperature T .

Similarly to the scalar case, we can determine the smallest
achievable second-moment of the phase-space coordinate,
Xmin, under all possible causal feedback laws u(t) = ft (ymeas).
It satisfies the filter Riccati equation

Ẋmin = (J − D)MXmin + XminM(J − D)T

+ 2kT D − XminMBV −1
measB

T MXmin,

Xmin(0) = X(0) = kT M−1. (B4)

As before, the internal energy for the controlled system
must obey a bound, U (t) " Umin(t) ≡ 1

2 Tr(MXmin(t)). The
assumption on controllability and observability ensures that
there exists a feedback control that drives the internal energy
to the limit U (t) = Umin(t). Just as in the scalar case, one such
control is a high-gain feedback from the Kalman-Bucy state
estimate x̂. For example, one can use u(t) = −BT

u Gx̂(t) for a
suitably chosen large positive-definite gain matrix G.

Using the first law of thermodynamics, Eq. (B3), we
can quantify the maximum possible amount of extractable
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work by

Wmax(t) =
∫ t

0
−U̇min + kT Tr(MD)

− Tr(MDMXmin) dt ′

= 1
2

∫ t

0
Tr

(
MXminMBV −1

measB
T MXmin

)
dt ′. (B5)

The transfer entropy from x to ymeas in Eq. (B2) [analogously
to Eq. (26)] is

Ic(t) = 1
2

∫ t

0
Tr

(
MBV −1

measB
T MXmin

)
dt ′, (B6)

which clearly has many factors in common with Wmax.
Nevertheless, in the matrix case, the integrand in Wmax does not
generically factorize into a product of the transfer entropy rate
and a scalar temperature, unless Xmin is equipartitioned, where
Xmin = kTminM

−1 for some scalar Tmin. However, it is possible
to define a useful scalar instantaneous effective temperature for
arbitrary X as follows. By assuming Q̇ = 0 instantaneously in
Eq. (B3), we define the effective temperature in the state X(t)
as

TX(t) ≡ Tr[MDMX(t)]
kTr(MD)

. (B7)

The physical intuition behind the definition is that if the
system has covariance X(t) and is connected to a heat bath
of temperature TX(t), along the direction B, then there is no
instantaneous heat exchange between the system and the heat
bath. This effective temperature does not depend on the friction
coefficient r and transforms Eq. (B3) into a Fourier-like heat
conduction equation as in the scalar case [see Eq. (6)],

Q̇ = kTr(MD)(T − TX). (B8)

If the system is equipartitioned at temperature T , then TX = T .
Using the effective temperature and applying the Cauchy-

Schwarz inequality [Tr(AB)2 ! Tr(AAT )Tr(BBT )] we obtain
the general lower bound,

k

∫ t

0
Tminİc dt ′ ! Wmax(t), Tmin ≡ TXmin . (B9)

Note that in NESS (Ẋmin = 0) the solution to Eq. (B4) is given
by XNESS

min = kT NESS
min M−1, where T NESS

min is given by the same
formula as for the overdamped Langevin case, Eq. (17), using
1/R = r in the definition of σ . In NESS, it holds that the
maximum work extraction rate is exactly given by

ẆNESS
max = kT NESS

min İNESS
c , (B10)

and the lower bound in Eq. (B9) is reached. Therefore, it is
only in an initial transient phase where we expect some slack
in the inequality. As t → ∞, the lower bound approaches an
equality, as claimed in the introduction in Eq. (3).

Finally, let us prove the upper bound Wmax(t) ! kT Ic(t),
claimed after Eq. (3) for the multidimensional case. For sim-
plicity, and without loss of generality, let us choose coordinates
in the phase space such that M = I2n (the 2n × 2n identity
matrix). Then Xmin(0) = kT I2n, and from Eq. (B4) it follows
that Xmin(t) − kT I2n is symmetric negative semidefinite for
all t " 0. Rewriting the maximum work formula in Eq. (B5),

using that Tr(AB) = Tr(BA) for matrices of compatible
dimensions, we have

Wmax(t) = 1
2Vmeas

∫ t

0
BT X2

minB dt ′

! kT
1

2Vmeas

∫ t

0
BT XminB dt ′

= kT Ic(t).

(B11)

The inequality follows since Xmin(t) − kT I2n is negative
semidefinite. This concludes the proof.

APPENDIX C: INFORMATION RATE INTO THE
TRANSMISSION LINE

We study a semi-infinite lossless transmission line of (real)
characteristic impedance Z and temperature Tdem. This line
is interconnected to an external circuit and as a result carries
a random voltage signal v(t) to infinity. We assume that the
signal is Gaussian and that its restriction to disjoint frequency
bands are independent, which is always the case for white
noise, possibly filtered by linear circuits, as is the case in this
paper. This allows us to compute energy or information-related
quantities over every infinitesimal frequency band [f,f + df ]
as a separate channel and then integrate over all frequencies.

It is well known that a signal carrying a bit across a
linear transmission line at temperature Tdem must be of energy
kTdem ln 2 at least [56,57]. This bound is reached in the limit
of low rates for a given frequency band, for Gaussian signals,
which in our case is the limit of poor measurements, σ ≈ 0.
Therefore, we deduce that the information rate carried into the
line by a (low) power Ẇ is

Rinfo = Ẇ

kTdem
. (C1)

More generally, sending information at a rate dR (in nat/s)
over a frequency band df into our linear transmission line of
temperature Tdem can only be achieved with a signal whose
energy per bit, or power over information rate, is at least [56]

Ẇ1 bit transmission " edR/df − 1
dR/df

kTdem ln 2. (C2)

Equation (C2) is satisfied with equality for a Gaussian signal,
as is the case in this paper. This is the energy stored into the
memory tape whenever one bit is written. Equivalently, the
information rate into the line is

Rinfo ≡
∫

dR =
∫ ∞

0
ln

[
1 + Ẇ (f )

kTdem

]
df ! Ẇ

kTdem
, (C3)

where Ẇ (f )df is the power contained in the signal restricted
to frequency band [f,f + df ].

Let us give a direct physical argument for this formula.
A signal over a frequency bandwidth df is completely
characterized by a sampling frequency 2df , as stated by
the Nyquist-Shannon sampling theorem. This means that the
signal over a time interval $t can be reconstructed in a unique
way from just 2df $t samples of it. In other words, the signal
has exactly 2df $t degrees of freedom.

Let us give concrete examples of such degrees of freedom.
Those samples can be measured on the signal observed at
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regularly spaced time instants at a given point of the line.
Since the information is traveling along the line as a wave,
this can also be achieved by measuring the signal at a given
time at regularly spaced points of the line. A common physical
model for the transmission line is an infinite ladder of small
inductances and capacitances [48], just as an elastic string is
seen as a sequence of small masses and springs. We therefore
can measure 2df $t currents or voltages in different elements
of the line to reconstitute the whole signal.

We choose the degrees of freedom x1,x2, . . . ,x2df $t to
be uncorrelated and normalized so the associated energy
is x2

i /2. If not for the external signal, each variable xi

would have an energy kTdem/2, thus a variance 〈x2
i 〉 = kTdem,

from the equipartition theorem. Due to the signal, every
variable has an extra energy Ẇ (f )df $t

2df $t
, or Ẇ (f )/2, thus a

total variance kTdem + Ẇ (f ). As the differential entropy of
a Gaussian variable of variance V is 1

2 ln V + ln
√

2πe, this
extra variance due to the signal leads to an extra entropy
1
2 ln(kTdem + Ẇ (f )) − 1

2 ln kTdem, or 1
2 ln(1 + Ẇ (f )

kTdem
), on every

degree of freedom. Summed over 2df $t degrees of freedom,
and integrated over all frequencies, we recover Eq. (C3) above.

This interpretation has a direct connection with Landauer’s
principle, as follows. Recall that the differential entropy h(x)
of a random variable x taking real values with probability
density φ is −〈ln φ〉. The number of discrete Shannon bits
required to encode the value taken by a continuous random
variable x with accuracy ε is (h(x) − ln ε)/ ln(2) in the limit
of small ε. Therefore, the entropy difference ( 1

2 ln[kTdem +
Ẇ (f )] − 1

2 ln kTdem)/ ln(2) is precisely the number of discrete
Shannon bits that we would have to remove from every degree
of freedom in order to erase the effect of the signal and restore
the line to its original state.

Nevertheless, it is shown in the text that Landauer’s bound
on erasure cost is tight only in the poor measurements limit,

when erasure can be arbitrarily slow as the information rate
into the line approaches zero. As the thermodynamic argument
in the main text does not make any assumption on the shape
of signal, it is valid for any distribution of power Ẇ (f )
over frequencies. In particular, the implementation cost of the
demon to absorb a signal restricted to the frequency band
[f,f + df ] is

Ẇimpl(f )df = T

Tdem
Ẇ (f )df = (edR/df − 1)kT df, (C4)

for an associated information rate dR. Therefore, we must
postulate, in the present context, that the nonequilibrium
Landauer per-bit cost for erasing information at rate dR from
the frequency band [f,f + df ] is at least

Ẇ1 bit erasure = edR/df − 1
dR/df

kT ln 2 (C5)

to be disposed to a heat bath of temperature T . We recover
the usual Landauer cost kT ln 2 for the limit of slow rates
dR/df → 0. Erasing a bit on a narrow band at high speed
is therefore exponentially more costly then infinitely slow
erasure. Note that this nonequilibrium form of Landauer’s
principle is strongly dependent on our assumptions, mainly
linearity of the line. Integrating the cost (C5) over all bits at
all frequencies, we recover total implementation cost Ẇimpl =
T Ẇ/Tdem as required.

In conclusion, the demon’s implementation cost there-
fore can be entirely attributed to erasure of information
in the demon’s memory, through Landauer’s principle,
corrected for the fast rates observed out of equilibrium
(Tmin < T ).
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[34] K. J. Åström and R. M. Murray, Feedback Systems: An

Introduction for Scientists and Engineers (Princeton University
Press, Princeton, NJ, 2008).

[35] E. Aurell, C. Mejı́a-Monasterio, and P. Muratore-Ginanneschi,
Phys. Rev. Lett. 106, 250601 (2011).

[36] E. Aurell, K. Gawdzki, C. Mejá-Monasterio, R. Mohayaee, and
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