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An Information-Theoretic Characterization
of Channels That Die
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Abstract—Given the possibility of communication systems
failing catastrophically, we investigate limits to communicating
over channels that fail at random times. These channels are
finite-state semi-Markov channels. We show that communication
with arbitrarily small probability of error is not possible. Making
use of results in finite blocklength channel coding, we determine
sequences of blocklengths that optimize transmission volume
communicated at fixed maximum message error probabilities. We
provide a partial ordering of communication channels. A dynamic
programming formulation is used to show the structural result
that channel state feedback does not improve performance.

Index Terms—Channel coding, communication channels, dy-
namic programming, finite blocklength regime, reliability theory.

“a communication channel… might be inoperative because of
an amplifier failure, a broken or cut telephone wire,…”

—I. M. Jacobs

I. INTRODUCTION

P HYSICAL systems have a tendency to fail at random
times. This is true whether considering communication

systems embedded in sensor networks that may run out of
energy [3], synthetic communication systems embedded in
biological cells that may die [4], communication systems
embedded in spacecraft that may enter black holes [5], or com-
munication systems embedded in oceans with undersea cables
that may be cut [6]. In these scenarios and beyond, failure of
the communication system may be modeled as communication
channel death.

As such, it is of interest to study information-theoretic limits
on communicating over channels that die at random times. This
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paper gives results on the fundamental limits of what is pos-
sible and what is impossible when communicating over chan-
nels that die. Communication with arbitrarily small probability
of error (Shannon reliability) is not possible for any positive
communication volume; however, a suitably defined notion of

-reliability is possible. Schemes that optimize communication
volume for a given level of -reliability are developed herein.

The central tradeoff in communicating over channels that die
is in the lengths of codeword blocks. Longer blocks improve
communication performance as classically known, whereas
shorter blocks have a smaller probability of being prematurely
terminated due to channel death. In several settings, a simple
greedy algorithm for determining the sequence of blocklengths
yields a certifiably optimal solution. We also develop a dynamic
programming formulation to optimize the ordered integer par-
tition that determines the sequence of blocklengths. Besides
algorithmic utility, solving the dynamic program (DP) demon-
strates the structural result that channel state feedback does not
improve performance.

The optimization of codeword blocklengths is reminiscent
of frame size control in wireless networks [7]–[10], however,
such techniques are used in conjunction with automatic repeat
request protocols and are motivated by amortizing protocol
information. Moreover, the results demonstrate the benefit of
adapting to either channel state or decision feedback. Con-
trarily, we show that adaptation to channel state provides no
benefit for channels that die.

Limits on channel coding with finite blocklength [11]–[18]
are central to our development. Indeed, channels that die bring
the notion of finite blocklength to the fore and provide a con-
crete physical reason to step back from infinity.1 Notions of
outage in wireless communication [19], [20] and lost letters in
postal channels [21] are similar to channel death, except that
neither outage nor lost letters are permanent conditions. There-
fore, blocklength asymptotics are useful to study those channel
models but are not useful for channels that die. Recent work
that has similar motivations as this paper provides the outage
capacity of a wireless channel [22].

The remainder of this paper is organized as follows.
Section II defines discrete memoryless channels (DMCs) that
die and shows that these channels have zero Shannon capacity.
Section III states the communication system model and also
fixes our novel performance criteria. Section IV shows that our
notion of Shannon reliability is not achievable, strengthening
the result of zero Shannon capacity and then provides a com-
munication scheme and determines its performance. Section V
optimizes performance for several death distributions using

1The phrase “back from infinity” is borrowed from J. Ziv’s 1997 Shannon
Lecture.
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either a greedy algorithm or a dynamic programming algorithm.
Optimization demonstrates that channel state feedback does not
improve performance. Section VI discusses the partial ordering
of channels. Section VII suggests several extensions to this
work.

II. CHANNEL MODEL

Consider a channel with finite input alphabet and finite
output alphabet . It has an alive state when it acts like
a noisy DMC and a dead state when it erases the input.2

Assume throughout the paper that the DMC from the alive state
has zero error capacity [24] equal to zero.3

For example, if the channel acts like a binary symmetric
channel (BSC) with crossover probability in the
alive state, with , and , then the
transmission matrix in the alive state is

(1)

and the transmission matrix in the dead state is

(2)

The channel starts in state and then transitions to
at some random time , where it remains for all time thereafter.
That is, the channel is in state for times and
in state for times . The death time
distribution is denoted . Note that there is always a finite

such that .

A. Finite-State Semi-Markov Channel

Channels that die can be classified as finite-state channels
(FSCs) [27, Sec. 4.6].

Proposition 1: A channel that dies
is an FSC.

Proof: Follows by definition, since the channel has two
states.

Channels that die have semi-Markovian [28, Sec. 4.8], [29,
Sec. 5.7] properties.

Definition 1: A semi-Markov process changes state ac-
cording to a Markov chain but takes a random amount of time
between changes. More specifically, it is a stochastic process
with states from a discrete alphabet , such that whenever it
enters state , :

1) The next state it will enter is state with probability that
depends only on , .

2) Given that the next state to be entered is state , the time
until the transition from to occurs has distribution that
depends only on , .

2Our results can be extended to cover cases where the channel acts as other
channels, such as Gaussian or Gilbert-Elliott channels [15], [23], in the alive
state.

3If the channel is noiseless in the alive state, the problem is similar to settings
where fountain codes [25] are used in the point-to-point case and growth codes
[26] are used in the network case.

Definition 2: The Markovian sequence of states of a semi-
Markov process is called the embedded Markov chain of the
semi-Markov process.

Definition 3: A semi-Markov process is irreducible if its em-
bedded Markov chain is irreducible.

Proposition 2: A channel that dies
has a channel state

sequence that is a nonirreducible semi-Markov process.
Proof: When in state , the next state is with probability

1 and given that the next state is to be , the time until the transi-
tion from to has distribution . When in state , the next
state is with probability 1. Thus, the channel state sequence is
a semi-Markov process.

The semi-Markov state process is not irreducible because the
state of the embedded Markov chain is transient.

Note that when is a geometric random variable, the channel
state process forms a Markov chain, with transient state and
recurrent, absorbing state .

There are further special classes of FSCs.

Definition 4: An FSC is a finite-state semi-Markov channel
(FSSMC) if its state sequence forms a semi-Markov process.

Definition 5: An FSC is a finite-state Markov channel
(FSMC) if its state sequence forms a Markov chain.

Proposition 3: A channel that dies
is an FSSMC and is

an FSMC when is geometrically distributed.
Proof: Follows from Propositions 1 and 2.

FSMCs have been widely studied in the literature [27], [30],
[31], particularly the panic button/child’s toy channel of Gal-
lager [30, p. 26], [27, p. 103] and the Gilbert-Elliott channel
and its extensions [32], [33].

Contrarily, FSSMCs seem not to have been specifically
studied in information theory. There are a few works [34]–[36]
that give semi-Markov channel models for wireless commu-
nications systems but do not provide information-theoretic
characterizations.

B. Capacity is Zero

A channel that dies has Shannon capacity equal to zero. To
show this, first notice that if the initial state of a channel that
dies were not fixed, then it would be an indecomposable FSC
[27, Sec. 4.6], where the effect of the initial state dies away.

Proposition 4: If the initial state of a channel that dies
is not fixed, then it is an inde-

composable FSC.
Proof: The embedded Markov chain for a channel that dies

has a unique absorbing state .

Indecomposable FSCs have the property that the upper ca-
pacity, defined in [27, eqs. (4.6.6) and (4.6.7)], and lower ca-
pacity, defined in [27, eqs. (4.6.3) and (4.6.4)], are identical
[27, Th. 4.6.4]. This can be used to show that the capacity of
a channel that dies is zero.
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Proposition 5: The Shannon capacity, , of a channel that
dies is zero.

Proof: Although the initial state is here, tem-
porarily suppose that may be either or . Then the channel
is indecomposable by Proposition 4.

The lower capacity equals the upper capacity , for inde-
composable channels by [27, Th. 4.6.4]. The information rate
of a memoryless “dead” channel is clearly zero for
any input distribution, so the lower capacity . Thus, the
Shannon capacity for a channel that dies with initial alive state
is .

III. COMMUNICATION SYSTEM

In order to provide an information-theoretic characterization
of a channel that dies, a communication system that contains the
channel is described. We start with a general formulation and
then impose some restrictions to define performance criteria.

A. General System

We have an information stream (like i.i.d. equiprobable bits)
that is to be transmitted to a receiver over a channel that dies. An
encoder maps the information stream into a codeword and
a noisy version of this codeword is received , with received
symbols after channel death. Due to channel death, the trans-
mitted codeword can be thought of as randomly truncated and
must be decoded at that truncation length. Thus, the decoder is
a sequence of finite blocklength decoders, one for each possible
truncation length, charged with recovering or a function of

.
Note that the encoder mapping may be a tree code, a block

code, or some other style of code. Going forward, we restrict
attention to constructing codeword as a concatenation of
shorter codewords that each represent individual messages.

B. Sequences of Messages

Now consider that the information stream can be grouped into
a sequence of messages, . Each message
isdrawnfromamessageset .Eachmessage

is encoded into a channel input codeword and these
codewords are trans-
mitted in sequence over the channel. A noisy version of this code-
word sequence is received, .
The receiver then guesses the sequence of messages using an
appropriate decoding rule , to produce

. The are drawn from alphabets
, where the message indicates the de-

coder declaring an erasure. The receiver makes an error on
message if and .

Block coding results are typically expressed with the concern
of sending one message rather than messages as here.4

System definitions can be formalized as follows.

Definition 6: An individual message code for a
channel that dies consists of:

4An alternate formulation of communicating over channels that die using tree
codes [37, Ch. 10] with random truncation would also be interesting. In fact,
communicating over channels that die using convolutional codes with sequential
decoding would be very natural, but would require performance criteria different
from the ones developed herein.

1) an individual message index set ; and
2) an individual message encoding function

.
The individual message index set is de-
noted , and the set of individual message codewords

is called the individual message
codebook.

Definition 7: An code for a channel that dies
is a sequence of individual

message codes, , in the sense of comprising:
1) a sequence of individual message index sets

;
2) a sequence of individual message encoding functions

; and

3) a decoding function
.

There is no essential loss of generality by assuming that the
decoding function is decomposed into a sequence of indi-
vidual message decoding functions where

when individual messages are chosen inde-
pendently, due to this independence and the conditional memo-
rylessness of the channel.

To define performance measures, we assume that the de-
coder operates on an individual message basis. That is, when
applying the communication system, let ,

, and so on.
For the sequel, we make a further assumption on the opera-

tion of the decoder. This assumption corresponds to the physical
properties of a communication system where the decoder fails
catastrophically. Once the decoder fails, it cannot perform any
decoding operations, and so the symbols in the channel model
of system failure must be ignored.

Assumption 1: If all channel output symbols used by in-
dividual message decoder are not , then the range of is

. If any of the channel output symbols used by individual
message decoder are , then maps to .

C. Performance Measures

We formally write the notion of error for the communication
system as follows.

Definition 8: For all , let

be the conditional message probability of error given that the th
individual message is .

Definition 9: The maximal probability of error for an
individual message code is

Definition 10: The maximal probability of error for an
code is
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Performance criteria weaker than traditional in information
theory are defined, since the Shannon capacity of a channel that
dies is zero (Proposition 5). In particular, we define formal no-
tions of how much information is transmitted using a code and
how long it takes.

Definition 11: The transmission time of an code
is .

Definition 12: The expected transmission volume of an
code is

Notice that although declared erasures do not lead to errors, they
do not contribute transmission volume either.

The several performance criteria for a code may be combined
together.

Definition 13: Given , a pair of numbers
(where is a positive integer and is nonnegative) is said
to be an achievable transmission time-volume at -reliability if
there exists, for some , an code for the channel
that dies such that

(3)

(4)

(5)

Moreover, is said to be an achievable transmission
time-volume at Shannon reliability if it is an achievable trans-
mission time-volume at -reliability for all .

IV. LIMITS ON COMMUNICATION

Having defined the notion of achievable transmission time-
volume at various levels of reliability, the goal of this study is
to demarcate what is achievable.

A. Shannon Reliability is not Achievable

Not only is the Shannon capacity of a channel that dies zero,
but also there is no such that is an achiev-
able transmission time-volume at Shannon reliability. A coding
scheme that always declares erasures would achieve zero error
probability (and therefore Shannon reliability) but would not
provide positive transmission volume; this is also not allowed
under Assumption 1.

Lemmas are stated and proved after the proof of the main
proposition. For brevity, the proof is limited to the alive-BSC
case, but can be extended to general alive-DMCs by choosing
the two most distant letters in for constructing the repetition
code, among other things.

Proposition 6: For a channel that dies
, there is no

such that is an achievable transmission time-volume
at Shannon reliability.

Proof: From the error probability viewpoint, transmitting
longer codes is not harder than transmitting shorter codes

(Lemma 1) and transmitting smaller codes is not harder than
transmitting larger codes (Lemma 2). Hence, the desired result
follows by showing that even the longest and smallest code
that has positive expected transmission volume cannot achieve
Shannon reliability.

Clearly, the longest and smallest code uses a single individual
message code of length and size . Among such
codes, transmitting the binary repetition code is not harder than
transmitting any other code (Lemma 3). Hence, showing that the
binary repetition code cannot achieve Shannon reliability yields
the desired result.

Consider transmitting a single individual mes-
sage code that is simply a binary repetition code over a channel
that dies .

Let , where the two codewords
are of length . Assume that the all-zeros codeword and the
all-ones codeword are each transmitted with probability 1/2 and
measure average probability of error, since average error proba-
bility lower bounds [27, Problem 5.32]. The transmis-
sion time and let . The expected transmission
volume is .

Under equiprobable signaling over a BSC, the minimum error
probability decoder is the maximum likelihood decoder, which
in turn is the minimum distance decoder [38, Problem 2.13].

The scenario corresponds to binary hypothesis testing over a
with observations (since after the channel dies, the

output symbols do not help with hypothesis testing). Since there
is a finite such that , there is a fixed constant
such that for any realization .

Thus, Shannon reliability is not achievable.

Lemma 1: When transmitting over the alive state’s mem-
oryless channel , let the maximal probability of error

for an optimal individual message code
and minimum probability of error individual decoder be

. Then, .
Proof: Consider the optimal block-length- individual

message code/decoder, which achieves . Use it to
construct an individual message code that appends
a dummy symbol to each codeword and an associated de-
coder that operates by ignoring this last symbol. The error
performance of this (suboptimal) code/decoder is clearly

, and so the optimal performance can only be better:
.

Lemma 2: When transmitting over the alive state’s mem-
oryless channel , let the maximal probability of error

for an optimal individual message code
and minimum probability of error individual decoder be

. Then .
Proof: Follows from sphere-packing principles.

Lemma 3: When transmitting over the alive state’s
memoryless channel , the optimal
individual message code can be taken as a binary repetition
code.

Proof: Under minimum distance decoding (which yields
the minimum error probability [38, Problem 2.13]) for a code
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transmitted over a BSC, increasing the distance between code-
words can only reduce error probability. The repetition code has
maximum Hamming distance between codewords.

Notice that Proposition 6 also directly implies Proposition 5,
providing an alternative proof.

Corollary 1: The Shannon capacity of a channel that dies
is zero.

B. Finite Blocklength Channel Coding

Before developing an optimal scheme for -reliable com-
munication over a channel that dies, finite blocklength channel
coding is reviewed.

Under our definitions, traditional channel coding results [11],
[13]–[18] provide information about individual message codes,
determining the achievable trios . In partic-
ular, the largest possible for a given and is de-
noted .

The purpose of this study is not to improve upper and lower
bounds on finite blocklength channel coding, but to use existing
results to study channels that die. In fact, for the sequel, simply
assume that the function is known, as are
codes/decoders that achieve this value. In principle, optimal
individual message codes may be found through exhaustive
search [13], [39]. Although algebraic notions of code quality do
not directly imply error probability quality [40], perfect codes
such as the Hamming or Golay codes may also be optimal in
certain limited cases.

Recent results comparing upper and lower bounds around
Strassen’s normal approximation to [41]
have demonstrated that the approximation is quite good [15].

Remark 1: We assume that optimal -achieving
individual message codes are known. Exact upper and lower
bounds to can be substituted to make our results
precise. For numerical demonstrations, we will further assume
that optimal codes have performance given by Strassen’s ap-
proximation.

The following expression for that first ap-
peared in [41] is also given in [15, eq. (54)].

Lemma 4: Let be the largest size of an individual
message code with blocklength and maximal error proba-
bility upper bounded by . Then, for any DMC with
capacity and

where

and standard asymptotic notation is used.
For the , the approximation (ignoring the

term above) is

(6)

where is the binary entropy function to the base 2. This
BSC expression first appeared in [42].

Fig. 1. (a) Expression (6) for � � ���� and � � �����. (b) Normalized ver-
sion, ����� �� � ����� , for � � ���� and � � �����. The capacity of a
	
���� is � � � ��� � ���.

For intuition, we plot the approximate func-
tion for a in Fig. 1(a). Notice that is zero for
small since no code can achieve the target error probability

. Also notice that is a monotonically increasing func-
tion of . Moreover, notice in Fig. 1(b) that even when normal-
ized, , is a monotonically increasing function of .
Therefore longer blocks provide more “bang for the buck.” The
curve in Fig. 1(b) asymptotically approaches capacity.

C. -Reliable Communication

We now describe a coding scheme that achieves positive ex-
pected transmission volume at -reliability. Survival probability
of the channel plays a key role in measuring performance.

Definition 14: The survival function of a channel that dies
is , is denoted ,

and satisfies

where is the cumulative distribution function.
is a nonincreasing function.



5716 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 9, SEPTEMBER 2012

Proposition 7: The transmission time-volume

is achievable at -reliability for any sequence of indi-
vidual message codeword lengths, where

.
Proof: Code Design: A target error probability and

a sequence of individual message codeword lengths
are fixed. Construct a length- sequence of indi-
vidual message codes and individual decoding functions

that achieve optimal performance. The size of
is . Note that individual decoding

functions have range rather than .
Encoding: A codeword is selected uniformly at

random from the codebook . The mapping of this codeword
into channel input letters, , is transmitted
in channel usage times .

Then, a codeword is selected uniformly at random
from the codebook . The mapping of this codeword into

channel input letters, , is transmitted in
channel usage times .

This procedure continues until the last individual message
code in the code is transmitted. That is, a codeword

is selected uniformly at random from the codebook .
The mapping of this codeword into channel input letters,

, is transmitted in channel usage times
.

We refer to channel usage times
as the th transmission epoch.

Decoding: For decoding, the channel output symbols for each
epoch are processed separately. If any of the channel output
symbols in an epoch are erasure symbols , then a decoding
erasure is declared for the message in that epoch, i.e.,

. Otherwise, the individual message decoding function
is applied to obtain .

Performance Analysis: Having defined the communication
scheme, we measure the error probability, transmission time,
and expected transmission volume.

The decoder will either produce an erasure or use an in-
dividual message decoder . When is used, the maximal
error probability of individual message code error is bounded
as by construction. Since declared erasures do
not lead to error, and since all , it follows that

The transmission time is simply .
Recall the definition of expected transmission volume:

and the fact that the channel produces the erasure symbol for
all channel usage times after death, , but not before. Com-

bining this with the length of an optimal code, ,
leads to the expression

since all individual message codewords that are received in their
entirety before the channel dies are decoded using whereas
any individual message codewords that are even partially cut
off are declared .

Recalling the definition of the survival function, the expected
transmission volume of the communication scheme is

as desired.

Proposition 7 is valid for any choice of . Since
is monotonically increasing, it is better to use

individual message codes that are as long as possible. With
longer individual message codes, however, there is a greater
chance of many channel usages being wasted if the channel dies
in the middle of transmission. The basic tradeoff is captured
in picking the set of values . For fixed and
finite , this involves picking an ordered integer partition

. We optimize this choice in Section V.

D. Converse Arguments

Since we simply have operational expressions and no in-
formational expressions in our development, as per Remark
1, and since optimal individual message codes and individual
message decoders are assumed to be used, it seems that con-
verse arguments are not required. Indeed due to Assumption 1,
Proposition 7 gives the best performance possible.

In particular, optimality follows from two facts stemming
from Assumption 1. First, that the last partially erased mes-
sage block cannot be decoded (due to the physical modeling of
system failure). Second, that errors-and-erasures decoding [43]
by the for codewords that are received before channel death
is not allowed.

One might wonder whether the possibility of errors-and-
erasures decoding by the individual message decoders need be
explicitly restricted.

Let be the maximum individual message
codebook size under erasure probability and maximum error
probability . Then, at the level of Strassen’s approximation
(up to the term), and
are the same [44, Th. 47]. Hence, there is little, if any, benefit
to errors-and-erasures decoding. A precise characterization,
however, requires precise knowledge of specific optimal codes
obtainable through large-scale combinatorial enumeration.

V. OPTIMIZING THE COMMUNICATION SCHEME

In Section IV-C, we had not optimized the lengths of the in-
dividual message codes; we do so here. For fixed and , we
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maximize the expected transmission volume over the choice
of the ordered integer partition :

(7)

For finite , this optimization can be carried out by an ex-
haustive search over all ordered integer partitions. If the
death distribution has finite support, there is no loss of
generality in considering only finite . Since exhaustive search
has exponential complexity, however, there is value in trying
to use a simplified algorithm. A dynamic programming formu-
lation for the finite horizon case is developed in Section V-C.
Section V-A develops a greedy algorithm which is applicable to
both the finite and infinite horizon cases and yields the optimal
solution for certain problems.

A. Greedy Algorithm

To try to solve the optimization problem (7), we propose a
greedy algorithm that optimizes blocklengths one by one.

Algorithm 1:

1) Maximize through the choice of
independently of any other .

2) Maximize after fixing ,
but independently of later .

3) Maximize after fixing , but
independently of later .

4) Continue in the same manner for all subsequent .

Sometimes the algorithm produces the correct solution.

Proposition 8: The solution produced by the greedy algo-
rithm, , is locally optimal if

(8)
for each .

Proof: The solution of the greedy algorithm partitions
time using a set of epoch boundaries . The proof proceeds
by testing whether local perturbation of an arbitrary epoch
boundary can improve performance. There are two possible
perturbations: a shift to the left or a shift to the right.

First consider shifting an arbitrary epoch boundary to the
right by one. This makes the left epoch longer and the right
epoch shorter. Lengthening the left epoch does not improve
performance due to the greedy optimization of the algorithm.
Shortening the right epoch does not improve performance since

remains unchanged whereas does not in-
crease since is a nondecreasing function of .

Now, consider shifting an arbitrary epoch boundary to the
left by one. This makes the left epoch shorter and the right epoch
longer. Reducing the left epoch will not improve performance
due to greediness, but enlarging the right epoch might improve
performance, so the gain and loss must be balanced.

The loss in performance (a positive quantity) for the left
epoch is

whereas the gain in performance (a positive quantity) for the
right epoch is

If , then perturbation will not improve performance.
The condition may be rearranged as

This is condition (8), so the left-perturbation does not improve
performance. Hence, the solution produced by the greedy algo-
rithm is locally optimal.

Proposition 9: The solution produced by the greedy algo-
rithm, , is globally optimal if

(9)

for each , and any nonnegative integers .
Proof: The result follows by repeating the argument for

local optimality in Proposition 8 for shifts of any admissible size
.

There is an easily checked special case of global optimality
condition (9) under Strassen’s approximation, given in the forth-
coming Proposition 10.

Lemma 5: The function is
a nondecreasing function of for any , where

(10)

is Strassen’s approximation.
Proof: Essentially follows from the fact that is a con-

cave function in . More specifically satisfies

for . This implies that

Adding the positive constant to both sides, in the form
on the left and in the form

on the right yields



5718 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 9, SEPTEMBER 2012

and so

Proposition 10: If the solution produced by the greedy algo-
rithm using Strassen’s approximation (10) satisfies

, then condition (9) for global optimality is satisfied.
Proof: Since is a nonincreasing survival function

(11)

for the nonnegative integer . Since the function
is a nondecreasing func-

tion of by Lemma 5, and since the are in nonincreasing
order

(12)

Taking products of (11) and (12) and rearranging yields the con-
dition

Since is a nonincreasing survival function

Therefore, the global optimality condition (9) is also satisfied,
by substituting for in one place.

B. Geometric Death Distribution

A common failure mode for systems that do not age is a geo-
metric death time [45]

and

where is the death time parameter.

Proposition 11: When is geometrically distributed, the so-
lution to (7) under Strassen’s approximation yields equal epoch
sizes. This optimal size is given by

Proof: Begin by showing that Algorithm 1 will produce a
solution with equal epoch sizes. Recall that the survival function
of a geometric random variable with parameter is

. Therefore, the first step of the algorithm will
choose as

The second step of the algorithm will choose

Fig. 2. Optimal epoch lengths under Strassen’s approximation for an ��� ��
BSC-geometric channel that dies for � � ���� and � � �����.

which is the same as . In general

so .
Such a solution satisfies and so it is optimal

by Proposition 10.

The optimal epoch size for geometric death under Strassen’s
approximation can be found analytically, [46, Sec. 6.4.2]. Con-
sider the setting when the alive state corresponds to a .
For fixed crossover probability and target error probability ,
the optimal epoch size is plotted as a function of in Fig. 2.
The less likely the channel is to die early, the longer the optimal
epoch length.

Alternatively, rather than fixing , one might fix the number
of bits to be communicated and find the best level of reliability
that is possible. Fig. 3 shows the best that is pos-
sible when communicating 5 bits over a
channel that dies.

Notice that the geometric death time distribution forms a
boundary case for Proposition 10. One can consider discrete
Weibull death time distributions [47] to see what happens with
heavier tails

and

where is the shape parameter. When , the tail is lighter
than geometric, and when , the tail is heavier than geo-
metric.

With heavy-tailed death distributions, the greedy algorithm
gives epoch sizes that are nonincreasing: , and
therefore optimal; it is better to send long blocks first and then
send shorter ones.
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Fig. 3. Achievable �-reliability in sending 5 bits over ��� �� BSC-geometric
channel that dies.

C. Dynamic Programming

The greedy algorithm of the previous section solves (7) under
certain conditions. For finite , a DP may be used to solve (7)
under any conditions. To develop the DP formulation [48], we
assume that channel state feedback (whether the channel output
is or whether it is some other symbol) is available to the trans-
mitter; however, solving the DP will show that channel state
feedback is not required.

System Dynamics:

(13)

for . The following state variables, distur-
bances, and controls are used:

1) is a state variable that counts the location in the
current transmission epoch;

2) is a state variable that indicates whether the
channel is alive (1) or dead (0);

3) is a disturbance that kills
(0) or revives (1) the channel in the next time step; and

4) is a control input that starts (0) or continues
(1) a transmission epoch in the next time step.

Initial State: Since the channel starts alive (note that
) and since the first transmission epoch starts at the beginning

of time

(14)

Additive Cost: Transmission volume is
credited if the channel is alive (i.e., ) and the transmis-
sion epoch is to be restarted in the next time step (i.e.,

). This implies a cost function

(15)

This is negative so smaller is better. Note that the 0-1-valued
variable ensures contribution to the cost only when an
epoch ends.

Terminal Cost: There is no terminal cost: .
Cost-to-go: From time to time is

Notice that the state variable which counts epoch time is
known to the transmitter and is determinable by the receiver
through transmitter simulation. The state variable indicates
the channel state and is known to the receiver by observing
the channel output. It may be communicated to the transmitter
through the channel state feedback. The following result follows
directly.

Proposition 12: A communication scheme that follows the
dynamics (13) and additive cost (15) achieves the transmission
time-volume

at -reliability.
Proof: The proof is trivial: it can directly be verified that

the constructed system dynamics, initial state, additive cost, ter-
minal cost, and cost-to-go yield the stated transmission time-
volume.

DP may be used to find the optimal control policy .

Proposition 13: The optimal for the initial state (14), dy-
namics (13), additive cost (15), and no terminal cost is equal to
the cost of the solution produced by the dynamic programming
algorithm.

Proof: The system described by initial state (14), dynamics
(13), and additive cost (15) is in the form of the basic problem
of dynamic programming [48, Sec. 1.2]. Thus, the result follows
from [48, Prop. 1.3.1].

The DP optimization computations are now carried out; stan-
dard notation is used for cost [48]. The base case at time
is

In proceeding backwards from time to time 1

for , where
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Substituting our additive cost function yields

(16)

Notice that the state variable dropped out of the first term
when we took the expectation with respect to the disturbance

. This is true for each stage in the DP.

Proposition 14: For a channel that dies
, channel state feed-

back does not improve performance.
Proof: By repeating the expectation calculation in (16) for

each stage in the stage-by-stage DP algorithm, it is verified
that state variable does not enter into the stage optimization
problem. Hence, the transmitter does not require channel state
feedback to determine the optimal signaling strategy.

D. Dynamic Programming Example

To provide some intuition on the choice of epoch lengths, we
present a short example. Consider the channel that dies with

, , given by (1) with ,
given by (2), and that is uniform over a finite

horizon of length 40 (disallowing death in the first time step):

otherwise.

Our goal is to communicate with -reliability, .
Since the death distribution has finite support, there is no ben-

efit to transmitting after death is guaranteed. Suppose some se-
quence of is chosen arbitrarily:

. This has expected transmission volume (under
Strassen’s approximation)

where (a) removes the fourth epoch since uncoded transmission
cannot achieve -reliability, (b) substitutes the expression for
the survival function, and (c) uses the numerical approximation
(6) for when , and .

If we run the DP algorithm to optimize the ordered integer
partition, we get the result

.5 Notice that since the solution is in order, the greedy algo-

5Equivalently �� � ��� � � ��� � � �� � � �� � � ��, since the last
two channel usages are wasted [see Fig. 1(a)] to hedge against channel death.

rithm would also have succeeded. The expected transmission
volume for this strategy (under approximation (6)) is

E. Precise Solution

It has been assumed that optimal finite blocklength codes are
known and used. Moreover, Strassen’s approximation has been
used for certain computations. It is, however, also of interest to
determine precisely which code should be used over a channel
that dies. This section gives an example where a sequence of
length-23 binary Golay codes [49] are optimal. Similar exam-
ples may be developed for other perfect codes.6

Before presenting the example, the sphere-packing upper
bound on for a is derived. Recall the
notion of decoding radius [50] and let be the largest
integer such that

The sphere-packing bound follows from counting how many de-
coding regions of radius could conceivably fit in the Hamming
space disjointly. Let be the number of channel output
sequences that are decoded into message and have distance

from the th codeword. By the nature of Hamming space

and due to the volume constraint

Hence, the maximal codebook size is upper-bounded
as

Thus, the sphere-packing upper bound on is

Perfect codes such as the binary Golay code of length 23 achieve
the sphere-packing bound with equality if the decoding radius

matches the distance between codewords in the code.

6A perfect code is one for which there are equal-radius spheres centered at the
codewords that are disjoint and that completely fill� . Note that perfect codes
other than repetition codes do not exist for most combinations of dimension and
alphabet size.
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Consider an BSC-geometric channel that dies, with
and . The target error probability is fixed at

. For these values of and , the decoding radius
for . It is for ;
for ; for ;

and so on.
Moreover, one can note that the binary

Golay code has a decoding radius of 3; thus it meets the BSC
sphere-packing bound

with equality.
Now to bring channel death into the picture: If one proceeds

greedily, following Algorithm 1, but using the sphere-packing
bound rather than the optimal

By the memorylessness argument of Proposition 11, it follows
that running Algorithm 1 with the sphere-packing bound will
yield .

It remains to show that Algorithm 1 actually gives the true
solution. Had Strassen’s approximation been used rather than
the sphere-packing bound, the result would follow directly from
Proposition 11. Instead, the global optimality condition (9) can
be verified exhaustively for all 23 possible shift sizes for the
first epoch

Then, the same exhaustive verification is performed for all 23
possible shifts for the second epoch

For each future epoch beyond the second, a nearly identical ex-
haustive verification procedure can be carried out to show that
using the length-23 binary Golay code is optimal for that epoch.

F. Practical Codes and Empirical Death Distributions

It should be noted that the algorithms developed for opti-
mizing communication schemes over channels that die work
with arbitrary death distributions, even empirically measured
ones, e.g., the experimentally characterized death properties of a
synthetic biology communication system [4, Fig. 3: Reliability].

Further, rather than considering the function
for optimal finite blocklength codes, the code optimization pro-
cedures would work just as well if a collection of finite block-
length codes was provided. Such a limited set of codes might
be selected for decoding complexity or other practical reasons.

As an example, consider the collection of 9191 binary min-
imum distance codes of lengths between 6 and 16 given in [39,
DVD supplement].7 We run the optimization over the example
in Section V-D but restricting to .

The solution obtained from optimization has epoch sizes
. When measuring

expected transmission volume using Strassen’s approxima-
tion for this set of epoch sizes, the result is 5.344 bits. This
is less than the 5.594 bits under the optimal epoch sizes
under Strassen’s approximation. Strassen’s approximation
is, however, only an approximation and the exact expected
transmission volume achieved with the epoch sizes opti-
mized for is 7.246 bits. The two minimum distance codes
used are the code and the

code. It remains to be seen whether
the restriction to the collection of minimum distance codes is
actually suboptimal.

VI. PARTIAL ORDERING OF CHANNELS

It is of interest to order channels that die by quality. The par-
tial ordering of DMCs was studied by Shannon [51], and as a
first step, we can slightly extend his result to order channels that
die having common death distributions.

Definition 15: Let be the transition probabilities for
a DMC and let be the transition probabilities for a
DMC . Then, is said to include , , if there exist
two sets of valid transition probabilities and , and
there exists a vector : and , such that

Proposition 15: Consider two channels that die with
identical death distributions: and

. Let DMC correspond to and
let DMC correspond to and moreover suppose that

. Fix a transmission time and an expected trans-
mission volume . Let be the best level of reliability for
the first channel and be the best level of reliability for the
second channel, under . Then, .

Proof: The main theorem of [51] proves that the average
error probability when transmitting an individual message code
over is less than or equal to the average error probability
when transmitting the same individual message code over .

Shannon’s proof [51] holds mutatis mutandis for maximum
error probability, replacing “average error probability” by “max-
imum error probability.”

The desired result follows by concatenating individual mes-
sage codes into a code.

We can also order channels that die having common alive
state transition probabilities.

Definition 16: Consider two random variables and with
survival functions and , respectively. Then, is

7By a minimum distance code, we mean a code that has maximum cardinality
among all codes that have a given length and a given minimum distance among
codewords.
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said to stochastically dominate , , if
for all .

Proposition 16: Consider two channels that die with
identical state properties: and

. Let death random variable
correspond to and let death random variable correspond
to and moreover suppose that . Fix a transmission
time and a level of reliability . Let be the best expected
transmission volume for the first channel and be the best
expected transmission volume for the second channel, under

. Then, .
Proof: Recall the expected transmission volume expres-

sion (7) for the first channel

and for the second channel

Since for all , the result follows directly.

These two results give individual ordering principles in the
two dimensions essentially depicted in Fig. 3. Putting them to-
gether provides a partial order on all channels that die: if one
channel is better than another channel in both dimensions, then
it is better overall.

Proposition 17: Consider two channels that die:
and . Let DMC

correspond to and let DMC correspond to and
moreover suppose that . Let death random variable
correspond to and let death random variable correspond
to and moreover suppose that . Fix a transmission
time and a level of reliability . Let be the best expected
transmission volume for the first channel and be the best
expected transmission volume for the second channel, under

. Then, .

VII. CONCLUSION AND FUTURE WORK

We have formulated the problem of communication over
channels that die and have shown how to maximize expected
transmission volume at a given level of error probability reli-
ability.

There are several extensions to the basic formulation studied
in this paper that one might consider; we list a few.

1) Inspired by synthetic biology [4], rather than thinking of
death time as independent of the signaling scheme ,
one might consider channels that die because they lose fit-
ness as a consequence of operation: would be depen-
dent on . This would be similar to Gallager’s panic
button/child’s toy channel, and would have intersymbol in-
terference [27], [30]. There would also be strong connec-
tions to channels that heat up [52] and communication with
a dynamic cost [53, Ch. 3].

2) In the emerging attention economy [54], agents faced with
information overload [55] may permanently stop listening
to certain communication media received over noisy chan-
nels. This setting is exactly modeled by channels that die.

The impact of communication over channels that die on the
productivity and efficiency of human organizations may be
determined by building on the results herein.

3) Since channel death is indicated by the symbol , the
receiver unequivocally knows death time. Other channel
models might not have a distinct output letter for death
and would need to detect death, perhaps using the theory
of estimating stopping times [56].

4) Inspired by communication terminals that randomly lie
within communication range, e.g., in vehicular communi-
cation, one might also consider a channel that is born at a
random time and then dies at a random time. One would
suspect that channel state feedback would be beneficial.
Networks of birth–death channels are also of interest and
would have connections to percolation-style work [2].

5) This study has simply considered the channel coding
problem; however, there are several formulations of
end-to-end information transmission problems over chan-
nels that die, which are of interest in many application
areas. There is no reason to suspect a separation principle.

Randomly stepping back from infinity leads to some new un-
derstanding of the fundamental limits of communication in the
presence of noise and unreliability.
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