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Sensitivity of Quadratic Gaussian Matching to Interference

Lav R. Varshney, Member, IEEE, and Sanjoy K. Mitter, Life Fellow, IEEE

Abstract—It is well known that uncoded transmission of a
memoryless Gaussian source over a memoryless additive white
Gaussian noise channel results in optimal performance theoret-
ically attainable. When there is additional interference in the
channel, uncoded transmission is robust. It achieves the same
sensitivity performance as optimal performance, measured using
sensitivity results of Pinsker, Prelov, and Verdu.

Index Terms—Uncoded transmission, joint source-channel cod-
ing, interference, sensitivity.

I. INTRODUCTION

ESULTS on end-to-end information transmission sys-

tems have provided non-separation based, uncoded ap-
proaches to achieving optimal performance [1]. Optimal un-
coded transmission requires that certain system components
be matched in a certain way. As Shannon had described [2],
“Solving this problem corresponds, in a sense, to finding a
source that is just right for the channel and the desired cost.
... Solving this problem corresponds to finding a channel that
is just right for the source and allowed distortion level.”

As has long been recognized, the matching conditions are
satisfied by memoryless Gaussian sources and memoryless ad-
ditive white Gaussian noise (AWGN) channels [1], [3]-[5], [6,
pp. 100-101], [7, Section IL.E]. In this note, we investigate the
degradation from optimal performance when the components
are slightly mismatched. In particular, we focus on the scenario
when there is weak additive interference, in addition to the
modeled channel noise. We develop results for the case when
the receiver has access to partial channel side information and
when it does not. Comparisons to optimal performance show
that to first-order approximation, the uncoded systems perform
as well as optimal systems in the face of weak interference.

Unmodeled weak additive interference might arise in wire-
less networks, communication near ultrawideband systems,
or cognitive radio [8], [9]. Robustness to such modeling
errors is desirable in these communication systems. Prior
work on compound channel capacity as well as on the ca-
pacity of arbitrarily varying channels (AVCs) similarly deals
with additional interference. For AVCs, the interference is
modeled as adversarial rather than as stochastic. Moreover,
the coding schemes used for showing achievability are much
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Fig. 1. Optimal quadratic Gaussian system.

more complicated than uncoded transmission, sometimes even
making use of common randomness between the transmitter
and receiver [10], [11]. Some work related to AVCs, but
dealing directly with end-to-end transmission is [12], [13].

II. QUADRATIC GAUSSIAN MATCHING

The fact that a memoryless Gaussian source is matched
to a memoryless AWGN channel with quadratic cost, under
squared error distortion has long been known; here we make
this explicit. Consider the system shown in Fig. 1. The
source/channel input is distributed as U = X ~ N(0, P); the
independent additive noise is distributed as N ~ N(0,0?);
the channel input cost function is quadratic; and distortion
is the squared difference between U and V. Computing the
performance of this scheme, we find that the expected input
power and expected end-to-end distortion pair (B, A) is given
by

Po?

B=P, AN=—.
’ P+ o2

Optimality of this single-letter coding scheme can be seen
by noting that the scheme simultaneously achieves the rate-
distortion and the capacity-cost bounds. The rate-distortion
function for a Gaussian source with squared error distortion
is well known to be

%log2 (g) , A<P
0, otherwise.

R(A) = { (1)

and the capacity-cost function for an AWGN channel with
quadratic cost is well known to be

C(B)=1log, (1+2). )

Equating these two expressions yields the fact that the smallest
achievable distortion at cost I' = P is

Po?

Amim = m,

and since the single-letter scheme achieves this, it is optimal.
Next, we will look at what happens when there is mismatch
induced by additive interference.
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Fig. 2. Quadratic AWGN channel with additive interference.

III. SENSITIVITY OF CHANNEL CAPACITY

Before proceeding with the analysis, we review some results
of Pinsker, Prelov, and Verdu on the sensitivity of channel
capacity to weak additive interference [14].

Consider the channel shown in Fig. 2, with average power
constraint B on the input X; nominal Gaussian noise N ~
N (0, 0?%); and contaminating noise normalized so that E[Z] =
0 and E[Z?] = 1. The scalar § determines the contaminating
noise power, #2 = (. We denote the capacity of this channel
as Cp(#), and for any & > 0, this capacity is usually not
known in closed form; for § = 0, the channel reduces to the
usual AWGN channel which has known solution. Since we
cannot find Cp(#), we would like to find an approximation
to it for small 6, based on the known value for C'5(0). One
can think of this as the technique from perturbation theory
which uses the result of a known solvable problem to find an
approximation to the solution of a difficult problem. Here, we
aim to find the linearization of C'z(#) around 6§ = 0.

We define the sensitivity of channel capacity with respect
to contaminating noise power as

_ . Cp(6) - Cp(0)
Sp=fm-———

By the limit definition of the derivative, this is also
0Cp

_ 8—C » )

Then the linearization of the channel capacity is

CB(Q) ~ CB(O) — SBQQ.

Sp =

When the contaminating noise is Gaussian, we can find the
sensitivity directly from the definition:

B
202 (B+0?)log, 2’
This is clearly an upper bound on arbitrary white noise, since
Gaussian noise results in worst case capacity degradation. A
surprising result in [14], however is that the sensitivity is
actually equal to the upper bound for any contamination noise

Z that is drawn i.i.d. Thus we can approximate the channel
capacity for a wide class of interference noise distributions as

logy (1+5) B6?
- 2 202 (B 4 02)log, 2"

SB

Cp(0) ©)

IV. SENSITIVITY OF DISTORTION TO INTERFERENCE

The previous section established the sensitivity of channel
capacity to interference. Now we want to find the sensitivity
of end-to-end distortion to interference. For a V' (0, B) source,
the distortion-rate function, the inverse of the rate-distortion
function, is

A(R) = B27%E, 4)

Using a separation-style method, we want to use the
distortion-rate function operating at capacity to find the sen-
sitivity of distortion to the contamination noise power. Using
the chain rule of differentiation, and assuming that (3) is exact,

we find that
_% _(6‘A 803)’ )
aC =0 0Cg 0C =0

= (50 ()
9CE ) lop=cuo) \ ¢ /lc=o
= <i32203) Sp

Cp Cp=Cpg(0)

2Blog, 2 B
1+ 5 202 (B + 0?)log, 2

B2
2)2’
(B+0?)
The Gaussian rate-distortion function is differentiable, so this
computation makes sense. We have found the sensitivity of

distortion to changes in contamination noise power. By the
limit definition of the derivative, this is also

oA —Ap(O) oAl B®
S ¢=0 (B+02)%

timal A .
SP =1
A.B 0—0 02

where we have defined the new quantity, Sa g, the distortion
sensitivity to contamination noise power for a fixed cost B.
Thus the end-to-end distortion, for fixed cost B, as a function
of contamination noise power may be approximated by

AB(Q) ~ AB(O) - GQSAVB

N Bo? B26?

NB+0,2 (B+02)2'
This approximation involves two stages of linearization, first
the capacity is linearized using the results of [14], and then
the distortion is linearized using the chain rule of differentia-
tion. Alternatively, we can get a better approximation of the
distortion function if we use only one stage of linearization.
This would involve substituting (3) into (4) to get

Bo?

B+ o2

25392

A(Cp(0)) = Ap(0) =

V. PERFORMANCE OF SINGLE LETTER CODES IN THE
PRESENCE OF INTERFERENCE

Now that we know an approximation of the best that we can
do, let us determine how well our original single letter scheme
does. The new system is created by substituting the channel in
Fig. 2 into the system in Fig. 1. Since everything is mean zero,
the second moments and the variances are equal. Working
through the calculation, making use of various independence
relationships, we get that

B Bo* + B2%0? + B2%52
(B +02)?

Taking the derivative of this with respect to #? and evaluating
the negative at § = 0 yields

Ap(0)

B2

. 6
(B +02)? ©)

Suncodcd — _
AB
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Now consider a decoder that has knowledge of the inter-
ference statistics and takes that into account. The decoder is
now a scalar multiplication by B/(B + o2 + 6?). Computing
the distortion, we get

B (0% +6?)

“Brot
The associated sensitivity under partial information (PI) is

Ap(0)

BQ
uncoded,PI _
A,B - (B+0'2)2. (7)

Evidently, partial knowledge of the interference noise statistics
does not reduce the sensitivity to the interference noise power.
Proposition 1: To a first-order approximation, the end-to-
end distortion performance in the single-letter mismatched
case, in the single-letter partially-matched case, and in the
optimal case are the same.
Proof: Compare (6), (7), and (5). |

VI. DIRTY PAPER CODING AND AVCS

Since we are looking at channels with interference, for
completeness, we should also comment on dirty paper [15]
(or more precisely generalized writing on dirty paper [16])
results. In the previous section where we considered a partially
informed single-letter decoder, the decoder had access to the
variance of the contamination noise (dirt) distribution. In the
dirty paper scenario, the encoder has access to the actual
realization of the dirt, not just a statistical parameter. It has
been shown that for any i.i.d. interference noise, the capacity
is not reduced, so the distortion is not increased, and so the
sensitivity of distortion to interference, Si‘fgypaper, is zero.

One may also note that the basic result on Gaussian AVCs
shows that when the jammer power constraint is known and
the system has access to common randomness, the capacity is
simply the AWGN capacity with interference power treated
as additional Gaussian noise. This also holds true using
deterministic codes when the jammer power constraint is
smaller than the channel input power constraint [17]. Thus,
sensitivity of distortion to interference is also the same as in
Proposition 1.

VII. CONCLUSIONS

First, we have shown that distortion as a function of
interference noise power is continuous for arbitrary zero-mean,
memoryless interference. This follows from the continuity
of the channel capacity as a function of interference noise
power and the continuity of the distortion-rate function for
a Gaussian source with respect to squared error. One can
regard the optimal cost-distortion point as a saddlepoint, with
perturbations causing smooth changes.

Second, we have found an approximation of the optimal
sensitivity of distortion to interference noise power through a
first-order approximation of the channel capacity as a function
of interference noise power.

Third, we have found the distortion as a function of inter-
ference noise power for two single-letter coding schemes, one
that uses the decoder for no interference, and the other that
uses the decoder that takes the interference noise power into
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account. These distortion-interference noise power functions
give associated sensitivity values.

We find that the sensitivity in the optimal case, the partially
informed decoder case, and the uninformed decoder case are
all equal. Thus to a first-order approximation for weak additive
interference, the distortion-interference noise power functions
are all equal. That is to say, in an approximate sense, single-
letter codes perform as well as the optimality bound.

Additive interference reduces capacity. In a separation based
approach with simple random codes, when the channel capac-
ity reduces slightly below the rate, the probability of error
goes to one [18]. To continue operating at optimal levels, one
would require the use of new source and channel codes. In
the single letter coding scheme, the coding scheme remains
fixed, but the performance degradation is commensurate with
the optimal performance degradation, so there is a great deal
of robustness to uncertain weak channel interference. One may
also study similar questions for discrete alphabet systems [19,
Sec. 2.7].
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