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Abstract—A bound on the minimum distance of a binary error-
correcting code is established given constraints on the computa-
tional time–space complexity of its encoder where the encoder is
modeled as a branching program. The bound obtained asserts that
if the encoder uses linear time and sublinear memory in the most
general sense, then the minimum distance of the code cannot grow
linearly with the block length when the rate is nonvanishing, that is,
the minimum relative distance of the code tends to zero in such a
setting. The setting is general enough to include nonserially con-
catenated turbo-like codes and various generalizations. Our ar-
gument is based on branching program techniques introduced by
Ajtai. The case of constant-depth AND-OR circuit encoders with un-
bounded fanins are also considered.

Index Terms—Binary codes, branching programs, encoding
complexity, minimum distance, time–space tradeoffs.

I. INTRODUCTION

ABINARY error-correcting code is specified by an injective
map from the binary strings of

length to binary strings of length . The map is called the
encoding map, the image of in is called the code,

is called the message length, is called the block length,
the elements of are called the codewords, and the ratio
is called the rate of the code. A fundamental parameter that
characterizes the worst case error-correction capabilities of the
code is its minimum distance which is defined as the minimum
Hamming distance between two distinct codewords. One of the
main goals in combinatorial coding theory is to find codes with
a good trade off between rate and minimum distance, as the
message length tends to infinity. A code (meaning a family of
codes indexed by the block length) is called an asymptotically
good code if the block length grows linearly with the message
length and the minimum distance grows linearly with the block
length. Otherwise, the code is called asymptotically bad.

In this paper, we consider the following question:

What can be said about the growth of the minimum dis-
tance of a binary code given constraints on the computa-
tional complexity of its encoder?

We concentrate mainly on the time–space complexity of the
encoder. In this setting, the above question is a natural tradeoff
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between the parameters: minimum distance, rate, encoding
time, and encoding space.

From a practical perspective, this question is important
since there are popular error-correcting codes that have low
time–space encoding complexity. We are referring here to turbo
codes, or more precisely, to parallel concatenated turbo codes
introduced by Berrou, Glavieux, and Thitimajshima in [4],
and repeat–convolute codes introduced by Divsalar, Jin, and
McEliece in [6], [7]. This low time–space encoding complexity
is crucial for the corresponding iterative decoding algorithms.
These decoding algorithms use the state-space representation
of the encoder and their running time is proportional to the
cardinality of the state space. Sharp bounds on the minimum
distance of turbo codes were first obtained by Kahale and
Urbanke [9], [10] for random interleavers and constant memory
convolutional codes. In a recent joint paper with Mahdian
and Spielman [3], we derived strong bounds on the minimum
distance of turbo-like codes in a variety of cases. One of these
cases is the well-structured setting of generalized repeat–con-
volute codes where the convolutional code is replaced by an
arbitrary automaton. We argued that such codes are asymptoti-
cally bad when the memory of the automaton is sublinear and
the number of repetitions is constant.

In this paper, this particular result is extended to the much
more general setting where the encoder is a binary branching
program, or equivalently, a nonuniform random-access machine
with binary input registers.

A general theorem is established that asserts that if the en-
coder is a binary branching program that uses linear time and
sublinear space, then the minimum distance of the code cannot
grow linearly with the block length when the rate is nonvan-
ishing, which is a rather surprising result. In general, a bound is
derived relating the involved parameters.

Our proof is based on the branching program techniques in-
troduced in the recent paper of Ajtai [1].

Also considered is the case of constant-depth AND-OR circuit
encoders with unbounded fanins. We conclude with a conjecture
about the strongest possible time–space tradeoffs that can be
obtained for encoding asymptotically good codes.

II. BRANCHING PROGRAM ENCODERS

A branching program (binary, by default, i.e., two-way)
is defined by a connected, directed acyclic graph with a single
source and a single sink, together with a set of binary input
variables and a set of binary output variables which sat-
isfy the following. There are exactly two edges leaving each
non-sink node, the first labeled with a one input-label and the
second with a zero input-label. Every non-sink node is associ-
ated with an input variable. Some of the edges of the graph are
associated with output variables (possibly more than one output
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variable per edge), in which case the edges are labeled by bi-
nary output-labels (a separate or for each output variable
associated with the edge). The nodes of the graph are called
states, its source is called the start state, and its sink is called
the end state. The branching program computes an encoding
map as follows. The computation starts
by reading the value of the variable associated with the start state
and moving, according to its value, to the next state, and so on,
by reading more bits until the end state is reached. At each tran-
sition along an edge, the output variables associated with the
edge (if any) are set according to the edge output labels. We may
want to assume that on any input, each output variable will be
set at least once, or we can assume that the output variables are
arbitrarily preset. The computation of the branching program on
an input is the corresponding sequence of states starting with the
start state and ending with the end state.

More formally, by a branching program we mean a -tuple
in-var out-val , where we have the following.

• and are positive integers.
• is a connected, directed acyclic graph. is

the set of vertices of the graph and is its set of edges.
The graph has a single source and a single sink. The
elements of are called states. The source node of is
called the start state and is denoted by . The
sink node of is called the end state and is denoted by

. The graph has exactly two edges and
leaving each nonsink node . Thus, is

in one-to-one correspondence with .1

is associated with the state transition map

given by for each and for
each .

• - is the the input-variables map

-

(If is an integer, we mean by the set .)
• - is the output-values map

-

The output-values map is associated with the output-vari-
ables map - which is specified by

- - for all .
The branching program computes an encoding map

as follows.
The computation of the branching program on an input

is the sequence of states , where
, and -

for . Note that the end state must be reached
after a finite number of steps since the graph is acyclic.

The output of the branching program on the
input is a string in defined by , where

1Since the edges are labeled, multiple edges are allowed, i.e., the possibility
that e and e have the same destination is allowed.

are defined iteratively as: is the all-zeros
strings in , and is derived from via

if -
- if -

for and .
The length of the computation of on is defined as its

number of states, i.e., . The time of the computation of on
is defined as its number of states plus the total number of times
each output variable is set during the computation of on ,
i.e.,

-

Also, the branching program encodes the code , which
is defined as the image of in . is also called a
branching program encoder for the code .

Finally, we associate three complexity measures with a
branching program: length, time, size, and memory (or space).
The length of the branching program is the maximum length
of a computation of on an input where the maximization
is over all input strings . Similarly, the time of the
branching program is the maximum time of a computation. The
size of the branching program is its number of states, i.e.,

. The memory or the space of a branching program
is defined as .

A. Random-Access Machines as Encoders

The codes encodable by such general branching programs
correspond to those encodable by nonuniform random-access
machines with binary input registers which we define below.

The branching program model was introduced by Borodin
and Cook [5] as a model of random-access machines for
studying time–space tradeoffs for sorting algorithms; see also
Ajtai [1].

In this subsection, the relation between the two models is ex-
plained in the context of encoders. A nonuniform random-ac-
cess machine encoder is an -tuple

- -

where

• and are positive integers;
• is a finite set of states;
• and are special states in called the start and

end states, respectively;
• is the state transition map

.
A graph is associated with whose
vertex-set is the set of states , and whose set of
edges is constructed as follows. For each nonsink state

, there are two edges and
in labeled with and , respectively.

It is assumed that the state transition map satisfies the
condition that is an acyclic graph with as its
single source vertex and as its single sink vertex.
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• - is the the input-variables map -
.

• - is the output-values map -
.

The output-values map is asociated with the output-vari-
ables map - which
is specified by - - for all

and .
The equivalence of the random-access machine model and

the branching program model of an encoder is obvious from the
definition. The machine functions in exactly the same way as
the underlying branching program , and its time and memory
are defined as those of .

Note that this model, being nonuniform, does not restrict the
size of the code description. This contributes to the generality
of the results in this paper since we are deriving lower bounds.
One consequence of this unrestricted code description size is
that any code can be encoded in linear time and linear space.
This can be done using an exponential-size code description as
explained in Example 2.4.

In the rest of the paper, we will be working with the branching
program model.

B. Some Special Types of Branching Programs

The branching program is called leveled if the states are di-
vided into an ordered collection of sets each called a level where
edges are between consecutive levels only. In such a case, the
width of the branching program is the maximum number of
states per level.

The branching program is called oblivious if the input vari-
ables (and the output variables) are read (respectively, set) in the
same order regardless of the input under consideration. Thus, an
oblivious branching program is naturally leveled in such a way
that all the nodes in the same level read the same input variables,
and set the same output variables when moving to the next level.

The branching program is called a read- -times branching
program if each input variable is read at most times on any
input.

The branching program is called a write- -times if at most
output variables are set per transition.

C. Examples

Example 2.1: The trellis of a rate- convolutional code
is an oblivious, read-once, write- -times branching program.
Since we decided for simplicity to allow branching program en-
coders to have only one end state, we are assuming here that
the states in the last level of the trellis are grouped into a single
state. The width of the branching program is , where is
the number of memory registers of the convolutional code. The
size of the branching program is , where is the block
length. The length of the branching program is and its time
is . The additional is needed to account for the
end state.

Note that not any oblivious read-once branching program
encoder is a trellis of some convolutional code since such a
branching program can encode a nonlinear code. Moreover,
the graph structure of such a branching program need not be

uniform in the sense that the transitions structure can change
from one level to the other.

Example 2.2: Parallel-concatenated turbo codes are en-
codable by low-complexity oblivious branching programs as
follows.

A parallel-concatenated turbo encoder [4] with a constant
number of branches, message length , and memory is
specified by permutations , each on bits and
a rate- convolutional code (the component code) with

memory registers. For in is encoded as
, where is the

string obtained by permuting the bits of according to the
permutation , and is the output of the convolutional
encoder on the input string . is naturally encodable by
an oblivious read- -times write- -times branching program
as follows. Let be the read-once write- -times branching
program corresponding to the trellis of the rate- systematic
convolutional code (see Example 2.1).
For , let be the read-once write-once branching
program corresponding to the trellis of the convolutional code

. is the concatenating of
resulting from identifying the end state of with the start state
of for . The start state of is an element
of and its end state is an element of .

Thus, has length and time . The width
of is , and its size is at most .

Example 2.3: Repeat–convolute codes fit in the same pic-
ture. A repeat–convolute code [6], [7] consists of a repeat-
-times code, a convolutional code, and a permutation. More pre-
cisely, a repeat–convolute encoder of message length and
memory is specified by a constant integer , a permuta-
tion on bits, and a rate- convolutional encoder with

memory registers. For in is encoded as
, where is the repeat- -times map,

i.e., is the concatenation of copies of .

is naturally encodable by a leveled, oblivious, read- -times,
write- -times, length- , time- , and
width- branching program whose size is at most

.
The branching program is constructed as follows. Let be

the read-once write- -times branching program corresponding
to the trellis of the rate- convolutional encoder

, where . is constructed from
by relabeling the input variables of according to the repe-

tition map and the permutation .

Example 2.4: Any binary code can be trivially encoded in
the binary branching program model in linear time and linear
space by a leveled and oblivious branching program whose
graph has a tree structure. The graph of consists of a height-
complete binary tree whose leaves are grouped into a single sink
node. The root of the tree is the start state of . The binary input
labels of the edges correspond to the left and right labels of the
binary tree edges. Thus, the simple paths from the root of the
tree to the sink node are in one-to-one correspondence with the
input strings in . On any such input string, the branching
program follows the corresponding path and outputs the whole
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codeword at the last transition from the th level to the sink
node.

This linear encoding time and space makes sense for all codes
in the random-access machine encoding model because we are
not restricting the amount of read-only memory, which is expo-
nential in this example, needed to store the code description (see
Section II-A).

Example 2.5: Any block-length- binary linear code is nat-
urally encodable by a leveled, oblivious, width- -time,
write-once branching program . The reason is that one can
multiply (over GF ) a binary input vector by a fixed binary
matrix using such a branching program. The length of is ,
where is the number of ones in the matrix. The time of is

.

III. MAIN RESULT

Theorem 3.1: Let be an injective
encoding map computable by a branching program of size

, time , and length .
Let be the binary code associated with , i.e., the image of
in .

If , then the minimum distance of is

Therefore, is asymptotically bad when and
. More generally, if , then the min-

imum distance of is

Thus, is also asymptotically bad when and

for all

In other words, linear time and sublinear space for encoding
imply that the code is asymptotically bad, i.e., the minimum
distance cannot grow linearly with the block length when the
rate is nonvanishing.

A. Application to Turbo-Like Codes

By applying the first bound in Theorem 3.1 to parallel con-
catenated turbo codes and repeat–convolute codes (see Exam-
ples 2.2 and 2.3), we can recover the corresponding bound in
[3] as follows.

The minimum distance of a parallel concatenated turbo code
with a constant number branches, message length , and
memory registers is because the
length of the corresponding branching program is
and its size is at most (see Example 2.2), and
hence and . Note that
this bound is slightly weaker than the corresponding bound

in [3]. To get rid of the additive term,
apply Theorem 4.1 below, which is stated in terms of the width

of the branching program. Similarly, the minimum

distance of a repeat–convolute code with repetitions, message
length , and memory registers is .

So both types of codes will be asymptotically bad as long as
is sublinear in . Note that the situation when is sub-

linear in corresponds to the case when the underlying trellis
has subexponential size, i.e., when the corresponding iterative
turbo decoding algorithm has subexponential running time.

IV. PROOF OF THEOREM 3.1

A. Ajtai Proof Techniques for the Hamming Distance Problem

To prove the theorem, we use branching program techniques
introduced by Ajtai in [1]. More specifically, we are referring
to these branching program techniques to show that there is no

-time and -space -way branching program,
where and is some absolute constant that solves the
Hamming distance problem: given strings in , de-
cide whether any two of them that are distinct are at Hamming
distance apart, where is another absolute constant re-
lated to .

Even though this is a decision problem in the setting of -way
branching programs, while ours is not a decision problem and
is in the setting of two-way branching programs, the techniques
introduced by Ajtai lie behind the proof described later.

The reader is referred to Ajtai’s paper [1] for further details.

B. Objects and Terminologies Under Consideration

We start by making the branching program leveled. Recall
from Section II: this means that the states are partitioned into

consecutive sets of states, each called a level
in such a way that edges, i.e., transitions, occur only between
consecutive levels.

We will divide (meaning, partition) into blocks
(meaning, sets) of consecutive levels, i.e., sets of the form

. For a given block , we
will be looking at states in the lower boundary level of the
block; meaning, the last level in the block with respect to the
ordering of the levels in the block , i.e., .

Given an input, we will be looking at the computation of the
branching program on this input, which, as explained in Sec-
tion II, is defined to be the corresponding sequence of states
starting with the start state and ending with the end state. So, in
the leveled case, each computation takes exactly steps, i.e., it
contains exactly states.

Fix an input string , and consider the computation of
the branching program on . Fix also a set of levels or a set

of blocks.
By an input bit or variable being accessed or read in

(or ) during the computation of on , we mean that there is
a state in the computation of on that belongs to a
level in (or to a level in a block in ) such that the value of
the input variable is read in order to move from to ,
i.e., - in the terminology of Section II.

Similarly, by an output bit or variable being set in (or
) during the computation of on we mean that there is a

state in the computation of on that belongs to a
level in (or to a level in a block in ) such that the value of
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the output variable is set at the transition form to ,
i.e., - in the terminology of Section II.

Finally, by a computation containing a sequence of states, we
mean that each state in this sequence appears in the computa-
tion. Note that here the order does not matter since the states in
a computation are distinctly due to the fact that the branching
program graph is acyclic.

C. The Oblivious Case Argument

Recall that an oblivious branching program is naturally lev-
eled in such a way that all the nodes in the same level read the
same input variables, and set the same output variables.

Since the Proof of Theorem 3.1 is relatively long, it is instruc-
tive to look first at the very special case when is oblivious.
This case is very restrictive compared to a general branching
program. To restrict the setting further, assume that is read- -
times and write- -times, where and . This
additional restriction will further simplify the argument.

In [3], the setting of automata is used to bound the min-
imum distance of repeat–convolute codes. More specifically, we
studied the case of a repeat–convolute code where the convolu-
tional code is replaced by an arbitrary automaton. Even though
the automata setting is less general than the case being consid-
ering here, the argument can naturally be extended as follows.

Theorem 4.1: Let be an injective
encoding map computable by a read- -times, write- -times,
width- oblivious branching program , where and

.
Let be the binary code associated with , i.e., the image of
in .
Assume that . Then the minimum distance of is

Therefore, is asymptotically bad when .

Note that this bound is slightly sharper than that of
Theorem 3.1 since it is in terms of the width of the
branching program which is smaller than its size .

Note also that the time of the branching program in
Theorem 4.1 is at most , i.e., . Thus, the more
general case when is superlinear in , which is handled in the
second bound in Theorem 3.1, is not applicable in the setting
of Theorem 4.1.

Proof: We will exhibit two distinct input strings that map
to two codewords at distance . We will
do this by finding a nonempty set of input variables , a subset

of levels, and two distinct strings and in such
that and agree outside , and the computations of on

and agree outside . This will give us the desired bound
on the minimum distance. will be constructed as a union of
intervals from a partition of that we define next.

Let be the length of the branching program, and note that
, where the first inequality follows from the fact

that each input variable must be read in at least one level, since
is injective.

Partition into consecutive blocks, each consisting of
or levels, where and .
Assume for now that is arbitrary as long as . We
will optimize on the integer later.

Each of the input variables is read by in at most blocks.
Recall that is oblivious. Thus, for any specific variable, these
blocks will be the same irrespective of the setting of the input
variables. Define a -set of blocks to be a set of at most blocks.
There are at most possible -set of blocks. So there are at
least input variables that are read by in the same -set
of blocks. Let be such a set of input variables with

be such a -set of blocks, thus, . The
set mentioned earlier is the union of the blocks in .

Consider the lower boundary levels (see the definition in
Section IV-B) of the blocks in ordered by the
level index, and let be the set of strings in which
are zero outside , thus, . There are at most
state sequences in , and for each in the
computation of on contains such a sequence. So if we can
guarantee that , we understand that there should
be a sequence of states in and two
different strings and in such that the computation of

on both and contains . Since and agree
outside , the computation of on and are exactly the
same outside the blocks in . Thus, and can only
differ in the blocks in . This means that the distance between

and is at most

since and .
This bound holds under the assumption that ,

which can be guaranteed if

We choose

to guarantee this requirement.
Note that the only other constraints on are . Since

and , the chosen value of satisfies . The
chosen value of satisfies when is not exponential in .
Note also that if is exponential in (i.e., if ),
the statement of Theorem 4.1 is trivial.

By replacing the chosen value of in the upper bound
on the distance between and , we get

since and .
This is an upper bound on the minimum distance of since

because and is injective.

This proof is short and simple. But when is not oblivious,
this proof does not go through. The main reason is that and



2108 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 6, JUNE 2005

cannot be constructed regardless of the values the input vari-
ables assume, as shown above. Moreover, in the nonoblivious
case, the read- -times and the write- -times restrictions be-
come restrictive. For example, in the general branching program
model, depending on the input, a very large number of the output
variables may be fixed in a particular transition, or a particular
input variable may be read a very large number of times.

The next subsection is a sketch of how to handle the general
situation. The proof is longer and more sophisticated. This is to
be expected since the statement we are proving is much more
general. The reader is encouraged to go carefully over the pre-
vious argument before proceeding to the general case.

D. Proof Technique

This subsection is an informal overview of the main tech-
niques used in the proof. The formal argument is in the fol-
lowing sections. These techniques were introduced by Ajtai [1]
to study the Hamming distance problem.

We want to find two input strings and such that
and are close to each other.

The first step is to make the branching program leveled
without affecting its input–output behavior. Next, divide the
branching program into blocks each consisting of consecutive
levels whose number will be suitably selected later and whose
sizes are as uniform as possible. To exhibit and , find a
set of blocks such that:

• the size of is small;
• the computations of on and are exactly the same

in the blocks outside ; and
• not too many output bits of (respectively, )

are set in any of the blocks in during the computation
of on (respectively, ).

Thus, and can only disagree on the few output bits
that are set in .

To find such and , first find together with a set
of input strings in and a sequence of states in the
lower boundary levels of the blocks in in such a way that for
each in

• the computation of on contains ;
• not too many output bits of are set in any of the

blocks in during the computation of on ; and
• the number of variables in that are accessed only in the

blocks in during the computation of on is large.
The desired and are eventually found inside as follows.

Modify the branching program again so that is forced
to to pass through a state in the sequence each time it
attempts to leave a lower boundary level of a block in , but
without affecting its input–output behavior on .

Using , define an equivalence relation on by relating
two strings if

• they share the same set of input variables that are not read
during the computation of in blocks outside and

• they agree on the values of their bits outside this set.
Thus, each equivalence class is determined by a set of

input variables and a setting of the variables outside .
The computation of is forced to contain the states

on all inputs so that , and hence the size of each

equivalence class can be guaranteed to be large when is
large.

For each input string in , the number of input variables
that are accessed only in the blocks in during the computation
of on is by construction large. Hence, the equivalence class

of each in is large.
By considering the set of sufficiently large equivalence

classes, such that the equivalence classes of all the elements of
are guaranteed to be elements of , our problem reduces to

selecting the number of blocks so that is strictly larger than
, and hence there are distinct and in that have the

same equivalence class. The fact that means that the
computations of on and are exactly the same outside
the blocks in , and hence and can only disagree
on the output bits that are set inside the blocks in .

By construction, the number of those output bits will be small.
Moreover, and are distinct since is injective. The
distance between and will be the desired bound on
the minimum distance of .

E. Proof Steps

Assume for the moment that . We will deal with the
more general case when we are done by defining the constants
more carefully. So say that

and (1)

where are constants ( because is injective).

• Step I: The branching program is modified to be leveled.
This can be done by a classical procedure. Construct a
leveled directed graph of levels where each level con-
sists of a copy of all the nodes of the original branching
program together with the related output labels. Connect
the nodes in each two consecutive levels according to the
graph of the original branching program. This results in
an end state in each level. Associate each end state not
contained in the last level with an arbitrary input variable
and connect it to the end state in the next level by two
edges, the first with zero-input-label and the second with
one-input-label. Finally, remove all the nodes (together
with the ingoing and outgoing edges) which are not
accessible from the start state in the first level or cannot
reach the end state in the last level. The start state of the
new branching program is the remaining state in the first
level and its end state is the remaining state in the last
level.
The modified branching program computes the same
function, i.e., computes . The length of the resulting
branching program is , its time is , its size is at most

, and its width is at most . The difference is that
edges are now only between consecutive levels, and each
computation takes exactly steps.

• Step II: Partition into consecutive blocks, each con-
sisting of or levels, where

and (2)
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Assume for now that in general so that
. The integer will be optimized on later.

• Step III:
Lemma 4.2: There exist

a) absolute constants ;
b) such that

(3)

where

(4)

c) a set of blocks

(5)

d) and a sequence of states in the lower
boundary levels of the blocks in , such that for
each in :
1) the computation of on contains ,
2) at most

(6)

output bits of are set in each block in
during the computation of on , and

3) the number of variables in that are accessed
only in the blocks in during the computation
of on is at least .

Proof: See Section IV-F.

• Step IV: Now modify the branching program again so
that is forced to to pass through a state in each
time it attempts to leave a lower boundary level of a block
in , while guaranteeing that behaves exactly like the
old on the inputs in , i.e., it computes for each

in .
This can be done simply by connecting (on both inputs)
all the states in the level above that of to , for each .
Note that need not compute an injective function any-
more, so it may not read all the input variables on some in-
puts. It may also leave some of the output variables unset,
but this is not a problem since it is assumed that the output
variables were arbitrarily preset.

• Step V: Finally, in Section IV-G we bound the min-
imum distance of by exhibiting distinct and in

such that the distance between and is
.

• Step VI: In Section IV-H, we explain how to drop the
assumption .

F. Proof of Lemma 4.2

Consider any input in .

• Let be an integer, and let . Choose , and
then to continue with the proof.

• Let be the set of those blocks such that each of the
boxes renders fixed

bits of during the computation of on .

• Let be the set of input variables that are read in at most
states during the computation of on .

• And let be the set of input variables in that are read
only in blocks in during the computation of on .

First recall from (1) that are the constants satisfying

and

Recall also from (2) that

and

We have the following bounds.

• From the definition of since
each of the blocks not in fixes at least
output variables during the computation of on . Thus,

, i.e.,

(7)

where the equality follows from the definition of as
, and the last inequality follows from the

bound .
• From the definition of , each of the input

variables outside must be read in at least states in
the computation of on . Moreover, each input variable
in must be read in at least one state in the computation
of on since is injective. Thus,

because the number of states in the computation of on
is at most . We can rewrite this inequality as

since . Thus, if we set

we get

where (8)

• The number of input variables read in blocks outside
is at most

where the first inequality follows from (7), and the second
from the bound . Thus, by the
definition of , we must have

where the second inequality follows from (8).
Let be sufficiently large such that

(9)

Note that this implies also that since , i.e,

by (7).
In summary, some constants have been fixed, and

has been specified such that

and (10)
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Now, keep the definition of in mind, ignore , and recall
that is a set of input variables such that

• each input variable in is read in at most levels during
the computation of on and

• each of those levels belongs to a block in .

Recall also that up to now an input in has been fixed.
Consider all the -sets in , i.e., the subsets of of cardi-

nality at most . Each input variable in is read in such a -set
during the computation of on (recall the definition of an
input variable being read in a set of blocks from Section IV-B),
and there are at most such -sets, so there are at least

input variables in that are read in the same -set of blocks
in during the computation of on , where we have used
(10) to obtain the estimate. Let be such a set of variables in

, and let be such a -set of blocks in , such that

and

Note that is nonempty since is injective.
Associate each in with any such a and .
There are at most such , so there is a subset

and a -set of blocks such that

and for each in . Now consider the lower boundary
levels of the blocks in ordered by the level index.
There are at most state sequences in , and
for each in , the computation of on contains such a
sequence, so there is a sequence of states in

and a subset such that

and the computation of on contains , for each in .
This completes the Proof of Lemma 4.2.

G. Step V: Bounding the Minimum Distance

We are now ready to find the two distinct messages and
that are mapped by to codewords that are close to each other.

Using , for each in , let be the set of input
variables that are not read during the computation of on
in blocks outside . Note that a double negation is needed (“not
read” and “outside”) since some of the input variables may not
be read at all because the branching program in Step IV was
modified.

So, from (3) in Lemma 4.2, for each in

(11)

Using , define the equivalence relation on by
if

• and
• agrees with on the bits outside .

In other words, , where means the equivalence
class of .

Given any in , each can only disagree with
on . Conversely, if disagrees with only inside , it must
be the case that . To see why this is true, note that in Step
IV all the computations of were forced to leave the blocks
in in the same states: the that was exhibited in (1) in
Lemma 4.2. So the computations of on and are exactly
the same outside the blocks in , and hence, any bit accessed
on outside will be accessed on outside and none of the
bits in will be accessed on outside . It follows that

Thus, by (11), for each in

Let be the set of equivalence classes such that the size of
each equivalence class is at least . So, is in for
each in . Besides, since the equivalence classes are disjoint,

, i.e.,

(12)

If we can guarantee that

(13)

it follows that there will exist in such that
. The fact that means that the computations of

on and are exactly the same outside the blocks in , and
hence, and can only disagree on the output bits that
are set inside the blocks in . But, by (2) in Lemma 4.2, was
constructed in such a way that for on any in , each block in

can set at most bits of during the computation of
on . Thus, and can disagree on at most

(14)

bits, where the first inequality follows from (by (5)) and
(by (6) and (1)), and the second follows

from (by (2)).
Moreover, and must disagree on at least one bit

since , and is injective.
Using (3) and (12), condition (13) can be guaranteed to hold

if

which is fulfilled when
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since . If is selected so that this holds, the minimum
distance of is at most . The only restriction on is

, so use

(15)

This is always less than , and it cannot be less than unless
in which case the statement of the theorem is

trivial. Thus, via (14), the minimum distance of is at most

H. Step VI: Dropping the Linear Time Assumption

Now we drop the assumption that . Thus, and
need not be constants. Since , we use as an upper

bound on . Assume that grows with and assume also that
it is since otherwise the statement of Theorem 3.1 is
trivial. We will not choose . Going back to (8) and (9),
we have

a value that is needed to keep bounded away from zero by a
positive constant. Set and , thus,

.
Using the same choice of as in (15), and the same bound

on the minimum distance of in (14), but with the new values
of and and the bound , we obtain that the minimum
distance of is at most

V. WHEN THE ENCODER IS A CONSTANT-DEPTH

AND-OR CIRCUIT

To outline the boundaries of the “encoding complexity versus
minimum distance” question studied in this paper, the same
problem is considered, but from the perspective of the circuit
complexity of the encoder. Here note that not much can be said
other than what is essentially expected. Since we know from
[11] that there are asymptotically good codes that are encod-
able by linear-size and logarithmic-depth circuits, we are left
with constant-depth circuits encoders with unbounded fanins.

Let be a code. We say that is encodable by
an unbounded-fanin depth- AND-OR circuit if has an en-
coder (i.e., is an injective map
such that ) such that each of the output vari-
ables is computable by an unbounded-fanin
depth- AND-OR circuit on the input variables . We

require the gates in the circuit to be AND or OR gates with pos-
sibly negated inputs, but we allow the number of inputs per gate
to be unbounded. The size of the circuit is defined as the total
number of gates.

We argue by a direct application of the Hastad switching
lemma that a polynomial size constant-depth circuit cannot en-
code an asymptotically good code. We will actually show that a
size- constant-depth circuit cannot encode an asymptotically
good code as long as , where is the depth
of the circuit. This is not surprising since, in the special case of
linear codes, a small-depth circuit encoder corresponds to a code
with a low-density generator matrix.

Lemma 5.1 The Hastad Switching Lemma [8]: Let
be computable by an unbounded-fanin

depth- AND-OR circuit of size . Consider a random re-
striction that independently keeps each input bit unset with
a probability , sets it to with a probability

, and to with a probability . Then the
probability, over the choice of , that , when restricted to the
values set by , cannot be computed by a decision tree of depth

is at most .

Note that a decision tree computing a binary function
on variables is a binary tree where each

node is associated with one of the input variables, and each leaf
is associated with a or setting of the single output variable.
This implies that if any setting of the input variables are fixed,
there are at most variables which when negated will affect
the value of , where is the depth of the tree. In other words,
when is small, has low sensitivity. Thus, if a code

(an injective map) is encodable by decision trees,
each of depth , a direct counting argument shows that its min-
imum distance can be at most . The Hastad switching
lemma essentially reduces the circuit case to this situation.

Theorem 5.2: Let be an injective en-
coding map computable by an unbounded fanin AND-OR circuit
of size and depth .

Let be the binary code associated with , i.e., the image
of in . Assume that , i.e., assume that the
code-rate is nonzero.

Then the minimum distance of is

Thus, is asymptotically bad when and
.

Proof: Let be the input variables,
the circuits that compute the output variables , and

. Thus, is constant, the size of each is at
most , and the depth of each is at most .

Hit the ’s with a random restriction that keeps each
unset with a probability , sets to with a prob-
ability , and to with a probability .

Then, for each , from the Hastad switching lemma, the
probability that does not collapse to a decision tree of depth

is at most . Thus, the probability that one of the ’s



2112 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 6, JUNE 2005

does not collapse, or the number of remaining (unset) variables
is less than is at most

where the second term comes from the Chebychev inequality.
Fix so that

when is large enough and is subexponential in . Note
that when is exponential in , the statement of the theorem
is trivial.

So, fix any restriction with the property that

• the set of input variables left unset by has size at least
and

• each of the ’s collapses under to a decision tree of
depth , where and .

Consider any setting of the variables in , and let be the
set of variables in read by on this setting. Each contains
at most variables, and the output of can only be affected
when we change some of the variables in . So there should be
a variable in that appears in at most

of the ’s. By flipping this variable, at most output bits
can be affected, and at least one output bit since is injective.
Hence, the minimum distance of is at most

VI. OPEN QUESTIONS

Using branching program techniques introduced by Ajtai [1],
we argued in Theorem 3.1 that there are no asymptotically good
codes that are encodable in linear time and sublinear space in the
most general sense. Conversely, we know that there are asymp-
totically good codes that are encodable in linear time and linear
space (e.g., Spielman [11] explicitly constructed such codes.
See also Example 2.4.) Thus, when the encoding time is linear,
the linear memory requirement is asymptotically tight for en-
coding asymptotically good codes.

On the other extreme, any linear code can be encoded by a
quadratic time branching program that uses minimal memory
(see Example 2.5).

We conjecture the following in general.

Conjecture 6.1: Let be an injective
encoding map computable by a branching program of memory

and time , where .
Let be the binary code associated with , i.e., the image

of in . Assume that , i.e., assume that the
code-rate is nonzero.

Then the minimum distance of must be , i.e., cannot
be asymptotically good.

Proving the conjecture or finding the correct time–space
tradeoffs for encoding asymptotically good codes when the
encoding time is superlinear and subquadratic is very desirable.
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