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Abstract

Automated text recognition is a difficult but important problem. It can be sum-
marized as: how to enable a computer to recognize letters and digits from a prede-
fined alphabet, possibly using contextual information. Various attempts at solving
this problem, using different selections of features and classifiers, have been made.
Human performance has been achieved in accuracy by automated text recognition
systems, and has been bypassed in speed for the case of single size, single font, high
quality, known layout, known background, text. When one or more of the above
parameters are changed, the problem becomes increasingly difficult. In particular,
attaining human performance in recognizing cursive script of varying size, varying
style, unknown layout, unknown background is far from the reach of todays' algo-
rithms, despite the continuous research effort for almost four decades. In this report,
we analyze the problem in detail, present the associated difficulties, and propose a
coherent framework for addressing automated text recognition.
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Chapter 1

Automated Character Recognition

1.1 Introduction

The field of automated pattern recognition was originally stimulated by studies in

optical character recognition. Optical character recognition means the ability of map-

ping grey-level images of characters into equivalent ASCII code'. The achievement

of this goal implies the automation of time-consuming - yet important - tasks such

as data entry, check processing and mail interpretation. However, the simplicity of

the problem statement belies the complexity of the problem. This complexity is due

- mainly - to two factors: the variability in writing styles and sizes across different

writings, and the a priori uncertainty in the text layout. Two major approaches

to the problem can be identified in the literature: the statistical approach and the

linguistic approach. However, neither approach has yielded the desired performance

needed in the above cited applications, especially if the documents are handwritten.

The main difficulty encountered in both approaches is the question of representation,

or feature selection. What is a character? a binary image? a collection of strokes?

or a set of numbers resulting from morphological operations? Apparently, this ques-

tion can only be answered through a consideration of the text generation process and

the structure of the uncertainty present. We propose applying an information theory

'American Standard Code for Information Interchange.



framework to understand the problem and try evaluating previous approaches within

such a framework. The second major encountered difficulty is the question of simi-

larity. What similarity measure best models our perception? A weighted Euclidean

distance? A Hausdorff distance? or a set of rules? It is true that the questions of rep-

resentation and similarity are closely tied. Nevertheless, we argue that the classical

notion of looking for a metric (in the mathematical sense) is not the proper notion

for recognition.

This chapter is a general introduction to the problem, and a discussion of the

information theory framework. This framework will be used in the next chapter to

organize the literature survey. The comparative discussion between our work and

other people's work will be scattered throughout the thesis.

1.2 Problem Description

Given some text written on paper, we would like to be able to scan the paper and

recognize the text. In other words, we want an algorithm that transforms grey-

level bitmapped images of text into its corresponding ASCII code. The criterion of

success is the ability to achieve human-like performance in accuracy, and to do so

with reasonable speed, where "reasonable" differs in meaning from application to

application. The speed is measured as the number of characters, or predefined group

of characters (such as words, addresses, etc.) recognized per second, whereas the

accuracy is measured as the percentage of misclassified characters, or misclassified

groups of characters.

1.2.1 Handwritten vs Machine Print

It is convenient to define two main classes of text recognition problems: handwritten

and machine printed. The division is primarily due to the different types of vari-

abilities encountered in each class. In machine printed text, variability is due to the

vast collection of fonts as well as the quality of print in the printing mechanisms

(dot matrix, inkjet, laser, etc.). In handwritten text, variability is due to the loss of

2



synchronism between the muscles of the hand as well as the variation of styles due to

several factors, including but not limited to: education, mood, culture, etc.

1.2.2 On-Line vs Off-Line

The handwritten version of the problem can be further subdivided into two main

categories: on-line and off-line. In the on-line category, the dynamic process of

writing is captured, usually via a digitizer or a tablet, as is the case with current pen-

based computer systems. In the off-line category, this dynamic information is lost and

only the static information is available through a scanning process. While dynamic

information can be very helpful in improving the performance of the recognition

system, the true advantage of an on-line system is the possibility of adaptation that

it provides. The writer adapts to the system, resulting in a significant improvement

of the recognition accuracy.

1.2.3 Handprint vs Cursive

Alternatively, the handwritten text recognition problem can be subdivided into two

other main categories: handprinted and cursive. In the handprinted category, the

characters of a word are isolated and disconnected. In the cursive category, the

characters are connected by ligatures. It turns out that segmenting the characters is

not an easy problem, and that is the main reason why the performance results reported

in recognizing handprinted text are higher than those reported in recognizing cursive

text.

1.2.4 Layout and Background

Finally, there are two problems that add to the difficulty of off-line automated text

recognition: the layout problem and the background problem. The layout problem is

a consequence of the lack of a priori knowledge about the position and orientation of

the text. A typical magazine page might have pictures, and the text might run across

several columns in an unpredictable way. Similarly, an artist might design his text

3
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Figure 1-1: Text recognition categories and applications

on a very complicated layout.

The background problem is a consequence of the different possible background

colors in a typical page, and the existence of different image design techniques (e.g.,

partial reverse video, blurring, etc.), all of which complicate the extraction of the

actual text.

1.2.5 Our Focus

In our research program, we do not attempt to solve the background problem. Rather,

we will assume that the text is available in grey level, on a white background, and

that the text layout is known.

1.3 Historical Background and Current Status

1.3.1 Brief History

The order of difficulty in text recognition increases as follows:

4



1. Off-line, machine printed, single font

2. Off-line, machine printed, multifont (or omnifont)

3. On-line, handprinted

4. Off-line, handprinted

5. On-line, cursive

6. Off-line, cursive

Historically, the research on different versions of the problem started in the same

order. The lucid book "History of OCR" [41], describes the scientific and commercial

achievements in this field, up to 1982.

1.3.2 Current Commercial Packages

Currently, PC commercial packages exist to recognize off-line, machine printed, om-

nifont text,,such as Omnipage by Caere Inc., TypeReader by Expervision, and Word-

Scan Plus by Calera[19]. There are also packages to recognize off-line handprinted

text such as IDEPT by HNC, NestorReader by Nestor Applied Systems, Teleform by

Cardiff Software, and PaperKeyboard by Datacap. However, off-line packages have

not yet reached the level of accuracy that permits fully replacing the process of hand

keying or typing the data.

As for commercial on-line systems, Scriptwriter by Data Entry Systems recog-

nizes handprinted text. Also, recently, an application program written by Paragraph

and implemented on Apple Newton, showed good performance in recognizing on-line

cursive text.

Finally, the author is not aware of any commercial package that can reliably

recognize off-line cursive text.

5



1.4 Applications

The importance of text recognition arises from several applications. In the past, the

most common applications were "Reader for the Blind"' and "Data Entry". Today,

"Data Entry" still remains an important application, but "Reader for the Blind"

and such applications have been superseded by "Mail Interpretation" and "Check

Processing".

1.4.1 Mail Interpretation

Nearly 166 billion mail pieces are collected yearly by the U.S.Postal Service. Almost

15% of this mail volume has handwritten addresses. Currently, the post office uses an

optical character reader that can read printed addresses only, with 60-70% recognition

rate . Nearly 100,000 employees are assigned to sort the handwritten-address mail,

as well as the rejected 30-40% of the printed-address mail. While the productivity of

the OCR reader is 5000 accepted pieces/man-hr, that of the manual sorting is only

650 pieces/man-hr. Automating the process of mail interpretation and sorting can

result in a faster, more reliable and less expensive postal system. Estimated yearly

savings from automating the handwritten addresses mail alone are $125 million[14].

1.4.2 Check Processing

Americans write 50 billion checks a year. Currently, banks require that two people

review every check before deducting the amount on the check. Automating the process

can - at least - reduce the number of reviewers to one, thereby speeding up banking

transactions and reducing the processing cost[32].

1.4.3 Data entry

More than 200 million tax forms were filed in 1990. Nearly 112 million came from

individual taxpayers filing Forms 1040, 1040A or 1040EZ. A little less than 40,000

2In fact, the first OCR patent awarded in US was in 1809, and it was for a reading device to aid
the blind[41].
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employees were working in the Data Processing Operations. In order to provide tax-

payers the prompt and responsive service they desire, a Tax Systems Modernization

(TSM) program was established in 1990. By using electronic filing, optical character

recognition and other technologies over the next ten years, the IRS hopes to[42]:

• eliminate millions of unnecessary contacts with taxpayers needed now to correct

name, address and social security number mismatches;

• provide copies of tax returns to taxpayers and IRS employees in less than one

day rather than the current 45-day average;

• reduce by one quarter the time it takes to process cases.

Other data entry applications include: credit cards forms, mail orders, questionnaires,

etc.

1.5 Suggested Solutions

1.5.1 Previous Attempts

Traditionally, two approaches are known for pattern recognition: the statistical ap-

proach and the linguistic approach. The idea in both approaches is to select a set of

measurements called features (e.g., the density of black pixels, the number of loops

in the character, the type and position of a stroke, etc.), and a set of decision rules,

constituting a classifier. Due to the variability across different samples of the same

pattern class, these features will be unknown, i.e., modeled as random variables.

These variables define the feature space. In the statistical approach, the space is par-

titioned, according to the set of rules, into regions corresponding to different patterns,

i.e., one region for A, another for B, etc. Given an unknown pattern, the procedure

is to:

1. Extract the vector of features

2. Find which region it belongs to
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3. Assign to the pattern the label of that region.

In the linguistic approach, a pattern class is considered to be a set of features gener-

ated by a non-deterministic finite state machine, a Markov process, or a push-down

automata, etc. Given an unknown pattern, the procedure is:

1. Extract the set of features

2. Check which machine potentially generated it

3. Label the unknown pattern accordingly

Therefore, the main difference between the two approaches lies in the structure of

the classifier, which, in a sense, relies on our view of what defines a character. In the

statistical approach, possible classifiers are: nearest mean, Fisher, neural network,

or nearest neighbor[11]. In the linguistic approach, the classifier is usually a machine

matching classifier. The statistical approach is older and is more commonly used with

simple patterns such as characters. The linguistic approach is preferred in the case

of complex patterns, such as 3D images.

1.5.2 Encountered Difficulties

The difficulty in both approaches lies in choosing a useful set of features, which is

sometimes termed the problem of representation. In a handwritten text recognition

problem, for instance, choosing the pixel values of the text image as features is not

a useful strategy. While the set of pixel values marks a complete representation, in

the sense that any other representation can be derived from it, it is not a convenient

representation to deal with. Variations in the samples of a handwritten pattern would

cause a wide scale correlation among the features which, consequently, complicates the

design and analysis of the classifier. We make the observation that the representation

problem should be approached through an analysis of the noise source. By noise we

mean the disturbance or inaccuracy incurred on the text during the text generation

process, in either the handwritten or the machine-printed case.
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1.5.3 Proposed Approach

Since we have reduced the problem of feature extraction to that of noise analysis, the

analogy with signal transmission theory becomes apparent. This analogy, however,

is not complete. While most of the signals studied in signal transmission theory are

functions of one time variable t, a character is a function of two space variables x

and y. Moreover, while in most signal applications, the interesting noise is amplitude

noise (except in array signal processing), the most interesting noise in text is domain

noise. Consequently, the theory of Bayesian detection and estimation that relies on

an additive noise model does not carry over trivially to the case of text recognition.

Nevertheless, we argue that several fundamental principles apply. The following is a

non exhaustive list of these principles:

1. The recognition problem is best approached through a study of deformations of

characters rather than through a study of the characters themselves. In other

words, instead of searching the characters for features that are robust to noise,

we propose to investigate the noise itself and see how it affects the various

characters. This principle is explored in Chapter 3.

2. A hierarchy of abstractions is a useful tool to avoid computational complexity

without severely degrading performance. This tool was used in coding the-

ory when abstracting the triplet modulator/channel/demodulator as a discrete

channel with certain transition probabilities. The abstraction principle is ex-

plored in Appendix Al.

We note, however, that the hierarchy of abstractions is more than just a com-

plexity management tool. It is an inherent component of the recognition process

itself. Recognition, when viewed properly, is nothing but a representation at a

suitably abstract level.

3. In coding theory, a major step in improving the decoder design was accom-

plished by merging the digital data demodulator with the channel decoder.

This means that the whole waveform of bits is decoded directly into a set of
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bits, whereas previously, the common strategy was to decode individual bits

first, and then correct the erroneous ones by using information in other bits.

The same concept is adopted in Chapter 4 where we try to decode the character

from the set of pixels directly, i.e., without decomposing it into primitives, such

as strokes or bays.

The ultimate performance would be achieved by decoding words directly from

pixels. However, the number of words we have in the dictionary is usually very

large, signaling the necessity of an abstraction at the level of the characters.

4. If the information to be transmitted is higher than the capacity of the channel,

error free recognition is impossible. An illustrative example of this principle in

the context of text recognition is cited at the end of this chapter.

1.5.4 A Note on the Literature

By reviewing the literature, we find that more than 900 papers were published in

the last decade only(1983-1992). An additional 550 articles were published in the

period before 1965[29]. By simple interpolation, we estimate that around 550 articles

were published in the period (1966-1982). This makes the estimated overall number

of articles above 2,000. However, the mass of publications is plagued by the fact

that authors usually concentrate on only a few aspects of the text recognition system

and often name their approach after the aspects on which they concentrated. This

habit of researchers may lead the reader to think that the morphological approach,

for instance, is necessarily different than the neural network approach. Careful study

reveals that morphology is used in the preprocessing and the feature extraction phase,

whereas neural networks are used in the classification phase. In that respect, they are

clearly not mutually exclusive. Hence, a framework for comparative analysis becomes,

not only a helpful tool, but also a vital necessity. In the following sections, we will

attempt to establish that framework, and use it to survey the relevant literature.
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1.6 The Big Picture

1.6.1 Description

Our main idea is to view the task of text recognition as part of a larger system: a

system consisting of a source, a channel, and a destination. The source is the entity

that generates the text, which could be a human mind or an electronic storage device.

The channel is a combination of the medium that disturbs the text (such as the human

hand or the printer) and the input device (such as the scanner or the digitizer). The

destination is usually a storage device, receiving the text for further processing.

Casting the character recognition problem in the above framework helps us evalu-

ate critically previous work on character recognition. The information theory frame-

work also points to us that it is important to define what the channel is in the

character recognition problem and how we should model the uncertainties present in

the channel.

1. 6.2 Survey

Although not new, the above idea has been commented on by only a few researchers,

and their analyses have been very brief. In the context of handwriting recognition,

Mermelstein and Eden say[29]:

We assume that the handwriting generating system of the hand and arm

acts as a transducer, receiving by means of the nerve fibers a description

of the graphical pattern to be executed. The system is noisy in that it in-

troduces variations in the outputs corresponding to input signals thought

to carry the same information.

Other authors came close to the same idea. J.Kulikowski[27] drew a block diagram of

the same flavor as the one we have in Figure 1-2. M. J. Usher[46] dedicated a complete

section for OCR as an application of information theory. Recently, P. A. Chu wrote

a PhD thesis on the "Applications of Information Theory to Pattern Recognition" [6].

Several articles (e.g., Casey[41) used some elements of information theory, such as
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entropy and mutual information, in their course of analysis. Finally, an extensive

literature on pattern recognition can be found in journals dealing with information

theory such as _TEEE Transactions on Information Theory.'

1.6.3 Missing Link

However, in all of the above references, with the exception of Chu[6], the observations

made regarding the relation between information theory and text recognition were not

supported with the detailed analysis they deserve. Some authors (e.g., Vossler[47],

Hull[21], Forney[9], and Neuhoff[35]), for instance, attribute the noise to the optical

character recognizer! without any mention of the role of the hand or the printer.

Nowhere could we find a conceptual view and detailed undertaking of the total text

recognition problem in the light of information theory.

Concerning the work of Chu[61, it is mostly concerned with the design of classi-

fication trees for general pattern recognition problems. It does not make use of the

aspects peculiar to the text recognition problem, such as the modeling of uncertainties

present in the generated text.

1.7 Framework Overview

1.7.1 Concepts and Sources

Usually, text is generated to convey information about a certain concept. When a

person writes a check, he writes some text that indicates the amount to be paid. When

a person wants to send a letter, he writes some text that describes the destination to

which this letter should be delivered. When a computer prints an english sentence,

the text is used to describe a particular idea. In each of the above, we expect the

source output to be a concept drawn from a class of concepts, e.g., a check amount

3The reader should observe that in his mathematical theory of communication, Shannon was
using the channel to model the transmission media, be it wires or air. He was not using the channel
to model the vocal tract, for speech recognition, or the hand, for text recognition. That is why we
have not cited his work in this section.
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between $1 and $10,000-00, an address out of 118 million delivery points in the US,

or a collection of english words subject to certain grammatical rules.

1.7.2 Characters and Source Encoding

The generated text consists of characters laid out on the page. A character can be a

letter, a digit, a blank space, or a punctuation mark. The same collection of characters

is used to describe different concepts. In information theory, this idea is called source

encoding', and it helps in representing a very large set, e.g., the set of US addresses,

using strings of relatively few symbols, e.g., the english alphanumerics. Note that

characters need not be written on the same baseline, and characters that have different

size should not be treated the same as the normal size characters (imagine a small

print on a bank check). However, no information about the geometric layout was used

in the literature in a structured way, other than using few heuristics in preprocessing

to eliminate these undesirable cases. In short, text was viewed simply as a string of

characters.

1.7.3 Feature Selection and Channel Encoding

Each character is described, not necessarily uniquely, as a geometrical shape in the

plane. These clean geometrical shapes are not observed on paper, except in cases of

neat printing or handwriting. What is observed usually is a noisy version of these

shapes. Ideally, one should deal with these shapes directly, applying - if we may

call it - geometric information theory. However, little is known in the theory of two

dimensional vector noise, i.e., noise having two components', both functions of x and

y. Because of that, researchers have attempted to transform the problem into a one-

dimensional problem, and to apply classical pattern recognition techniques (effectively

dealing now with t instead of x and y). They argued that, despite the noisy variations,

there seems to be certain aspects of these geometrical shapes that are invariant to

'More precisely, it is called outer channel encoding. See Forney[IO].
5This noise should not be confused with the amplitude noise studied in image processing, which

has one component only.
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noise, like having an ascender in the letters b, d, or t, or a descender in p, q, or

g. These aspects were considered very useful, and were usually called features. The

problem of feature selection is still an open one, except in the case of selection from

a predetermined, finite set of features. The process of identifying the character as a

string of features is equivalent, in information theory, to channel encoding.

1.7.4 Writing, Digital Data Modulation, and Channel

We emphasize here that researchers in this field were not really formalizing the prob-

lem as we are doing now, but they merely proposed reducing the problem to deter-

mining the feature space and classification. Our attempt to formalize their work in

the context of information theory is only to show the weak parts of the classical argu-

ments. One weak part has already been exposed twice, namely the "serialization" of

a two dimensional problem at two levels. However, we will continue in what follows

along this path, for the purpose of surveying the literature in an organized manner.

To proceed, the input to the channel was not viewed as a geometrical shape, but

rather as a vector of features. The features (and not the geometrical shape) were

considered translated into paper by the motion of either a pen or a printer head,

a process equivalent to digital data modulation in information theory. During this

process, inaccuracies are observed. In the case of handwriting, these inaccuracies

are due, to a certain extent, to the coordination inaccuracies of the muscle system

involved. The more degrees of freedom involved, the larger the departure from the

planned trajectory[37]. In the case of machine printing, the inaccuracies are due to

the imperfect response of the printer head to sudden changes in speed, bad ribbons,

bent keys, etc.'

1.7.5 Feature Extraction and Digital Data Demodulation

At this stage, the character in consideration is deformed. To recognize the character,

the classical approach was to start by feature extraction, i.e., measuring from the

'Even though these accuracies may not be even detected by the human eye.
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Figure 1-2: Mathematical model for text generation and interpretation

deformed geometrical shape those attributes that were identified as being noise in-

variant. This step was done in a module equivalent to the one known, in information

theory, as a digital data demodulator. By inspecting the extracted features, a decision

was made as to what character they belong. The set of rules used in the decision

process constituted a classifier, which was equivalent to a channel decoder.

1.7.6 Postprocessing and Source Decoding

Consecutive characters are, generally, not independent. This contextual dependence

was exploited to improve recognition, by correcting for characters that were erro-

neously deleted, inserted, or substituted. This postprocessing phase was carried by

what is equivalent, in information theory, to a source decoder7.

7More precisely, to an outer channel decoder.
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1.7.7 Destination

The resulting concept from the output of the source decoder is sent to a destination,

which is usually a storage device (such as in data entry applications) I a control device

(such as in mail sorting), or a processing device (such as in banking applications).

The previous discussion is summarized in Figure 1-2. In the next chapter, the

various modules of our framework will be discussed in more detail.

1.8 Consequences of the Framework

1.8.1 Intelligibility: Definition

Quite a few intuitive facts can be explained within our framework of analysis. Con-

sider , for instance, intelligibility of people writings. This is, traditionally, considered

to be a subjective concept that cannot be quantified. In our framework, it is natural

to associate this concept with hand capacity. More precisely, we could define intelligi-

bility to be C - H(X), where C is the hand capacity and H(X) is the source entropy

per concept.

1.8.2 Illustration 1: Doctor Example

To illustrate this association, we will consider three cases:

1. By virtue of the converse to the coding theorem[13], if the channel capacity

is less than the source entropy, it is impossible to correctly decode the source

message. Consider a random person trying to read (i.e., decode) a prescription

written by a doctor. Because the doctor's hand capacity is less than I bit/char,

8the entropy of the english language , it will be impossible for a general person

to understand the prescription.

2. On the other hand, when a pharmacist attempts to read the same prescription,

the source will be the english language constrained in the medical context.

8See Shannon and Weaver[43] for a series of experiments to estimate the entropy of english text.
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This constraint decreases the source entropy below the doctor's hand capacity.

Hence, it becomes possible for the pharmacist to decrypt the prescription.

3. Finally, when the doctor's secretary tries to read his writing, the source for

her will be the english language, the same as for the random person. However,

she has the advantage of partial information about the noise correlation in the

doctor's writings (she has seen a lot of his prescriptions). Hence, for her, the

capacity of the doctor's hand model will be higher, which results in a higher

intelligibility.

Therefore, it is meaningful to define the intelligibility of handwriting as the ca-

pacity of the hand that generated the writing minus the source entropy. Further

justification of this definition results if we note that trying to write faster produces

a less intelligible writing. This is again a consequence of the converse to the coding

theorem.

1.8.3 Illustration 2: On-Line vs Off-Line Performance

Another intuitive fact that can be explained in our framework is the fact that system

performance in on-line text recognition should be higher than the performance in the

corresponding off-line version. Since in an off-line context, the dynamic information

is lost, the capacity of the combined channel (hand/page) is less than the capacity of

the combined channel (hand/tablet). Using the noisy channel theorem, we conclude

that this decrease in the channel capacity leads to a deterioration in the recognition

performance.

1.9 Conclusions

Information theory is a powerful tool. When used as a framework for investigating

the field of text recognition, the benefits are: conceptual understanding and a unified

language. The next chapters confirm this assertion.
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1.10 Thesis Outline and Contributions

The character recognition problem as formulated earlier in the thesis, is viewed as a

hierarchical problem in two levels of abstraction. The first level is classification of ob-

served data into characters. The second level is the contextual analysis of consecutive

characters to correct for errors and determine the true words.

We believe that the second level problem has been handled somewhat better in

the literature than the first level problem. The difficulty in the character recognition

problem arises - in our view - from two fundamental issues:

1. How should one model the uncertainties in the channel (the hand/printer)?

2. How should one measure similarity and dissimilarity between characters?

It is these two issues that we discuss in depth in the thesis. In the process we

conclude that the standard paradigm of pattern recognition viz. feature extraction

and subsequent partitioning of the space in which the characters live (classification) is

not the correct one for this problem. For example, the segmentation problem may well

be ill-posed. We develop a new paradigm in the form of certain principles (laws) which

should govern the design of pattern recognition problems and which appear to have

certain affinities to ways human beings recognize patterns. Our view is an internalist

one (in the Chomskean sense) where primary emphasis is given to the representation

of ideal characters (templates) and their deformations, representing uncertainties in

the channel, which are in some sense universal. We try to understand the data on

the basis of our knowledge (templates) and their deformations, which may be data

dependent. Indeed, we attempt to avoid any processing of the observed data other

than filtering the amplitude noise. We expect that pattern recognition systems built

according to the principles enunciated in this thesis would require much less training

than existing systems.

The thesis has five chapters. We have chosen to present the thesis as it developed

historically during the past three years. Chapter 2 is a literature understanding in

the light of information theory, while pointing out some of the weaknesses in the
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field. We explore the metric idea (in the mathematical sense), the backbone of most

similarity measures, in Chapter 3 for the case of time signals when both domain and

amplitude deformations are present. We discuss the problem of detection for these

models and present a theorem on the appropriate choice of a metric on the signal

space. In subsequent chapters, we - in effect - abandon the Metric philosophy, be-

cause one of the important contributions of this thesis is that a measure of similarity

does not necessarily correspond to a metric. Indeed, there is essential asymmetry in

the recognition process which needs to be captured in the similarity measure. This

asymmetry is probably closely tied to the internalist view. Namely, one should work

with templates and their deformations to look for patterns in the data rather than the

other way around. We view recognition as a process of searching for patterns rather

than complete matching between the observed data (samples) and the prior knowl-

edge (templates). Nevertheless, the developments in Chapter 3 were instrumental in

directing us to the view of pattern recognition as developed in Chapter 4, and that

is why we have chosen to present the material in its historical order.

In Chapter 5 we describe the tools used in the recognition algorithm and report

the results of implementation. Finally, in the appendix we describe a contextual

analysis algorithm for detecting addresses (in the classical framework) from individual

characters available as output of the classifier, by correcting replacement errors as well

as erasures and insertions.
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Chapter 2

Literature Review

2.1 Introduction

The framework of information theory suggests two levels of abstractions, with possi-

ble feedback between them. At the lower level, each character is identified individ-

ually. At the higher level, contextual information (in the form of acceptable groups

of characters) is used to correct the errors. The advantage of the divide-and-conquer

approach in managing the complexity has been recognized in several fields, including

data networks and operating systems. The field of pattern recognition is no excep-

tion. More importantly, as we pointed out earlier, the recognition process is itself an

abstraction at a suitable level. The following sections elaborate on this hierarchy of

abstractions in reading text.

2.2 Contextual Analysis

In advanced optical text-recognition systems, the performance of a recognition system

which consists only of a single-character recognition unit is not sufficient. Linguistic,

contextual, or statistical information can be used to resolve ambiguities of characters

- which have similar shapes - to detect errors or even correct them[241.

To focus on the source decoder or the contextual analysis module, all the blocks

between the source encoder and the source decoder are lumped into one discrete

20



Source Source Encoder I CIC2,---

Discrete
Channel
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Figure 2-1: Block diagram of a system for contextual analysis

channel (see Figure 2-1). The source encoder maps each concept to a variable-length

string of characters CI, C2, - - -, which then forms an input to the channel. The source

decoder collects the channel output �1, �2.... and guesses the transmitted concept.

2.3 Source Encoder Models

A concept pi is encoded as a string of characters CI ,C21 ... I CL(i), of variable length

(L is a function of i). The characters are elements of the union set of the english

alphabet, the numerals, hyphenation marks and the space mark. For convenience, we

add an End-Of-String (EOS) marker and denote the size of the resulting set by K.

Assume the concepts to be statistically independent. The source can be merged

with the source encoder to obtain a new module. This module would be a ran-

dom source generating statistically independent strings from a dictionary. Note that

although the consecutive strings might be modeled statistically independent, the con-

secutive characters cannot. Such being the case with the new source, it is not rea-

sonable to model it as a memoryless source. A more appropriate model would be a

Markov process.

The great advantage of using a Markov model for the source is that the amount

of computation needed in the postprocessing phase is independent of the size of the

dictionary. On the other hand, the reported correction accuracy is only around 50

percent[35]. This accuracy can be improved by increasing the order of the model.
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However, the number of states needed grows exponentially with the order of the

model.

In the light of the above discussion, it was well understood by researchers[32] that

to improve the correction accuracy, one had to use the entire input dictionary and

not merely its statistical model. In other words, one had to represent the source as a

stochastic tree.

2.3.1 Other Source Encoder Models

The attentive reader would note that, along the trip from the discrete memoryless

model to the dictionary Markov model, error performance was traded for storage re-

quirements. While using a large dictionary of concepts "as is" resulted in the best

error performance, the required storage was excessive, hence the need for reducing

complexity. While a Markovian representation is the mostly used compression tech-

nique in the field of text recognition, other techniques also exist, and they all come

under the title of Hashing techniques

Before proceeding, it is worth mentioning that what is known in the literature as a

binary n-gram representation is only a simplified Markov model, where all permissible

transitions are assumed equiprobable. The real advantage of this representation is

that it is extremely compact, and can be handled efficiently. On the other hand,

what is known as a positional binary n-gram representation is a simplified dictionary

model, where all permissible transitions are assumed equiprobable. It is more efficient

to handle than the dictionary model, at the expense of higher error rates (and not

larger storage as claimed in Riseman[40]), unless non-consecutive indices are being

handled as well. Figure 2-2 displays the various speed-storage-accuracy tradeoffs

between the different source encoder models.

'Note that hashing is actually a form of compression since it represents the dictionary using a
smaller table, the hash table.
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Speed

Binary n-grams
(high)

Positional binary n-gram

(medium)

Dictionary Markov
(low)

First-order Markov
(high)

k-th order Markov
(medium)

Storage

(error rates between parentheses)

Figure 2-2: Speed-storage-accuracy tradeoffs between the different source encoder
models

2.4 Channel Models

2.4.1 Hand/Printer =Channel

The media (hand/printer) involved in the transmission of characters are not perfect.

Even in the case of the best artist or the best printer, inaccuracies are incurred.

What is obtained on paper (or on a digitizer) is not the character, but rather a

deformed version of it. The uncertainty of deformation results in some detection

errors (� :7� c). Therefore, it is reasonable to model the (hand/printer+character

recognition algorithm) as a discrete channel in the information-theoretic sense.

In what follows, we follow the classical path of thought, and we assume that the

channel input is the string C1, C2, and the channel output is the string �1, �2....
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2.4.2 DMC Channel

The simplest channel model, at the level of contextual analaysis, is the discrete mem-

oryless channel. A DMC channel is characterized by the transition probabilities

P(cilcj), Vi, j. The main reason for using a DMC channel model is simplicity.

2.4.3 DSC Channel

If the writing is constrained, e.g., all the characters we are attempting to read are

written inside boxes, the channel can be modeled as a discrete Synchronous channel

(DSC). In that case, �j corresponds to cl, �2 corresponds to C2, and so on. Such a

situation occurs partially in the french mail, where envelopes have five boxes in which

to write the ZIP Code. It also occurs in reading most questionnaires and data entry

forms.

Synchronous channels are completely described by specifying the set of possible inputs

to the channel, the set of possible outputs and, for each input and output history,

a probability measure on the set of outputs. Using our notation, a DSC channel is

characterized by

P(EIC) __ Hi'=JP(�i/Cl, C2, Cii �1) �2) i �i-l)

2.4.4 EIC Channel

a
b b

Z 0

Figure 2-3: Erasure-insertion channel

On the other hand, US addresses are handwritten without constraints. Similarly,

banks refuse to put any constraints on where and how to write the check amount.
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This results in segmentation problems in both of the above applications. In that case,

asynchronism might occur, and the channel may add or delete characters.' A standard

example is the misinterpretation of the touching pair `rn" as "m", and vice versa. To

account for this behavior, we have to alter the classical channel model as follows: We

add to the output alphabet a special symbol 0 called the empty symbol, together with

all the possible pairs of characters. The probability of incorrectly deleting a character

c is represented as P(Olc), and the probability of incorrectly reading a character k as

the pair ij is represented as P(ijlk). The resulting erasure-insertion channel (EIC)

is shown in Figure 2-3. A major difference between the erasure in this case and the

erasure in classical binary-erasure channel (BEC) is that, in the EIC case, the channel

output gives no indication as to which letters were deleted or inserted.

Note that our version of an EIC channel (first presented by Gallager[12]) is better than

the one provided in Kashyap[25]. In his model, Kashyap uses an empty symbol at the

input of the channel to describe insertions. This approach, however, causes difficulty

in estimating the insertion probabilities. Furthermore, it does not map naturally the

cases encountered in practice, such as recognizing "m" as "rn" (printed), or "m" as

"nn" (handwritten), or "w" as "vv", etc. Each such case will be counted in his model

as two errors, whereas we count it only as one.

2.4.5 Conclusion

At the level of concept recognition, richer channel models arise. Examples include:

discrete memoryless channels suitable for simplicity; discrete synchronous channels

suitable for machine print, questionnaires, and data forms- and finally, erasure-

insertion channels suitable for cursive writing and touching characters.

2A third kind of error, the transpose of characters, commonly encountered in typing, is not
accounted for in this model.
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2.5 Source Decoder/Postprocessor

In what follows , we discuss the classical decoding strategies for various choices of

source encoders and channels. We consider dictionary sources, i.e., those represented

as trees, and Markov sources, i.e., those represented as trellises. Together with these

sources we consider DMC channels and EIC channels.

2.5.1 Dictionary Source and DMC channel: Top-Down De-

coding

An example of such a case is reading a string whose characters are printed inside

boxes. The observed string may or may not be in the dictionary. In the latter case,

we want to find the closest string in the dictionary according to some prechosen

measure. Consider the tree representation of the dictionary. We can imagine laying

the given string along every possible path through the tree to find the best agreement,

as follows:

1. Let the observed string be 8, = ClC2 ... CL-

2. Consider only the subdictionary of strings having same length as the observed

one. Let M be the number of such strings.

3. For every string 8d = 1112 ... IL in the subdictionary, calculate the distance from

s,. The distance is defined as:

L

d(s, SO 109(P(8,18d) - 109(P(Cilli))

4. Select the string with the smallest distance.

Traditionally, any function that satisfies the distance properties could be used as a

candidate for d. The above function, however, results in a maximum likelihood de-

coding rule.

The complexity of the algorithm is O (ML). It is possible that M, the dictionary size,
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be exponential in L (i.e., M - 0((aK)L), where K is the size of the alphabet). In

this case, sequential algorithms, which are fast algorithms to find the minimum cost

path in a tree, become a better alternative.

Sequential algorithms are strategies for searching only the likely paths through a

tree (or a trellis). They usually leave pending most decisions to drop paths perma-

nently. Occasionally, a sequential algorithm will decide to back up and extend a path

previously ignored. There are two classes of sequential algorithms in use, the stack

algorithm and the Fano algorithm. We will not describe any of them in this section,

partly because we will discuss the Fano algorithm later, and also because there is

enough literature about them, especially in the theory of convolutional coding. The

interested reader should consult Gallager[131 for a rigorous analysis, or Blahut[2] for

a readable introduction.

Finally, if we assume that all transitions are equiprobable (i.e., a positional binary

n-gram representation), then an efficient decoding scheme as explained by Hull[21]

can be used. To determine the error location we check which positional n-grams re-

jected the string, since they must contain the location(s) of the error(s) among their

position indexes. To correct the error is simple if there is only one index. If there is

more than one index, we assume a single error and check for consistency in the table.

The procedure can be generalized for more than single errors.

2.5.2 Markov Source and DMC channel: Bottom-Up De-

coding

If the source is represented as a Markov model and the channel as a DMC, the

observed string hides some Markov properties in it, hence the term Hidden Markov

model.

A kind of graph called a trellis can usefully describe the output sequence of any

finite-state machine. In general, a trellis is a graph whose nodes are in a rectangular

grid, semi-infinite to the right- the number of nodes in each colomn is finite. The

configuration of the branches connecting each column of nodes to the next column of
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nodes on the right is the same for each column of nodes. Figure 2-4 shows a Trellis

corresponding to a 3 state Markov process.

\/V

ID 0

Figure 2-4: A trellis that corresponds to a 3 state Markov process

We can imagine simply laying the observed word along every possible path through

the trellis. This procedure has complexity exponential in L, the length of the word. In

particular, if K is the number of states in the Markov model, the procedure requires

O(K L) computations. The Viterbi algorithm, which we describe next, will efficiently

search the trellis in O(K 2L).

The Viterbi algorithm, proposed in 1967, uses forward dynamic programming to

find a running set of candidates for the best path through a trellis[2]. In particular,

it can be viewed as a solution to the problem of maximum a posteriori probability

(MAP) estimation of the state sequence of a finite-state discrete-time Markov process

observed in memoryless noise[9]. A tutorial description of the Viterbi algorithm can

be found in Forney[9]. According to Blahut[2], it may be helpful to think of the Viterbi

algorithm as a window through which a portion of the trellis may be viewed. One

can see only a finite-length section of the trellis, and on this is marked the surviving

paths, each labeled with a cost. As time goes by, the trellis slides to the left. As new

nodes appear on the right, some paths are extended to them, other paths disappear,

and an old column of nodes is lost on the left side.

The Viterbi algorithm has become the de facto decoding strategy in the case of

Markov source and DMC channel. Neuhoff[35] investigated its ability and commented

favorably on its simplicity and accuracy. While the optimal algorithm is exponential,

suboptimal versions of it are reasonably fast. One suboptimal version is the beam

search Viterbi algorithm (Shinghal and Toussaint[44]), in which d paths - at most -

are kept at every stage.
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2.5.3 Summary for DMC

The attentive reader would have noted that a tree can be viewed as a trellis. So, when

should we use the Viterbi algorithm instead of the Fano algorithm? The answer de-

pends on K, the size of the alphabet, L, the length of the word, and M, the size of

the dictionary. Viterbi requires, roughly, 2LK 2 additions and LK 2 comparisons[35],

irrespective of the noise introduced by the channel. On the other hand, the Fano

algorithm is very fast when there are no errors, and is slow when there are numerous

errors. Furthermore, its optimality is asymptotic, i.e., when long sequences are in-

volved. These characteristics suggest that the Viterbi algorithm should be used with

dictionaries consisting of short words, or with Markov sources - with limited number

of states - whose output is transmitted through a high noise channel. On the other

hand, the Fano algorithm should be used with a dictionary consisting of long strings

(e.g., the dictionary of US addresses), or with Markov sources transmitting through

a near noiseless channel.

2.5.4 Dictionary Source and EIC Channel

The Levenshtein distance (LD) between two strings is defined as the minimum num-

ber of edit operations on the individual symbols needed to convert one string into

the other. The edit operations are insertion, deletion and substitution[25]. By using

different weights for the three different edit operations, we get the weighted Leven-

shtein distance. Okuda (1976) reports in [36] several experiments using Levenshtein

distance, and Masek (1980) presents a fast algorithm for computing the distance.

The Levenshtein distance is used as a criteria for decoding when we have a dictionary

source transmitting through an EIC channel, a situation that ideally models mail

interpretation.

The Levenshtein distance requires a dynamic programming type of algorithm to

minimize. This means that even in the case of no errors, lots of computations are

to be made. We ask: is there a Fano decoding type of algorithm which decodes

quickly when there is no errors but takes longer when errors are present? Indeed,
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Appendix Al describes a modification of Fano to accomadate this situation. We see

here another advantage of using the information-theoretic framework. We were able

to quickly spot areas in the field that haven't been completely studied.

2.6 Summary

Table 2.1 summarizes the natural decoding mechanism for several encoder-channel

pairs.

Channel/Encoder Dictionary(Tree) k-Markov(Trellis)
DMC Fano Viterbi
EIC M. Fano, LD Uninvestigated

Table 2.1: The decoder choice for several encoder-channel pairs

2.7 Feature Selection and Classification

C . Channel Encoder X IX Channel Y Y Channel Decoder

Figure 2-5: Block diagram of a system for feature selection and classification

To understand how -classically- the features were selected, it is better to lump together

all the blocks that are between the channel encoder and the channel decoder into

one discrete channel (see Figure 2-5). The channel encoder maps each character to

1 2a collection of features x , X , . . ., which is then input to the channel. The source

decoder collects the channel output YI, y2, ... , and guesses the transmitted character.

The major problem here is synchronization or segmentation. Later in the thesis, we

discuss better ways of dealing with the segmentation problem.
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2.8 Channel Encoder Models

The characters of any alphabet contain attributes (features) that are resistant to

channel noise (i.e., hand or printer inaccuracies). Researchers thought of the text

generation process as sending these particular features only over the channel. They

argued that this is a sensible approach since these features are the only information

used by the decoder (i.e., the recognition algorithm).

Later in the thesis, we will adopt the view that features are the aspects of the

character that are hit by the noise. Since the noise is mostly domain noise, we will

take for features the (x, y) positions of the black pixels.

2.8.1 Features Definition

But, what is a feature formally? In the literature, a feature is defined to be a mapping

f from S, the set of planar patterns, to R, the set of real numbers. Mathematically,

Definition 2.1 Let D be a bounded subset of the plane. Let S be a surface defined

over D such that the height of S over D is strictly positive. Then, S is a geometric

planar pattern whose domain is D. Let RD be the smallest rectangle (with sides

parallel to the axis) containing D. Then, RD is the rectangular domain of S.

Definition 2.2 Let S be the set of geometric planar patterns. Furthermore, let f' be

a real mapping defined over S, i.e.,

f S R

C P H

Then, f' is a feature.

Note that if the functional f' is a feature, then the value of that functional at c,

X' _- f'(c), is sent across the channel. Given N features, c is encoded as a feature-word

1 2 Nof length N, x x x (denoted x), and transmitted over the channel. This block

encoding technique is the one used in the statistical recognition school. It usually
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assumes that there is no inherent relation among the features. This assumption is

valid if the features are conditionally independent, which is almost never the case.

To exploit the dependence among the features, relations of various sorts, such as

Markovian property, were assumed by the linguistic recognition school,

2.8.2 Historical Survey

Despite the historically huge list of proposals for a suitable feature set, i.e., channel

encoding, it is possible to group the proposed feature sets into two major categories:

global and local. A feature is called global if it is extracted from every point of

the planar geometric shape. Examples of global features are moments, transforms,

number of cusps, loops, bays, etc. A feature is called local if it is defined in terms

of local elementary geometrical or topological shapes. Examples of local features are

morphological features, strokes, T-junctions, X-junctions, etc., and their positions in

the frame bounding the character[24].

2.8.3 Desired Properties

What are the properties of a good feature set? Researchers have sought two main

properties: discrimination and invariance. Discrimination indicates that, in the fea-

ture space, samples of different characters are far from each other. Invariance in-

dicates that, in the feature space, samples of the same character are close to each

other.

2.9 Channel Models

The channel at this level encompasses three modules: the ideal image features gen-

eration module, the hand/printer, and the feature extraction module. While in the

contextual analysis layer, the channel models were exclusively discrete in amplitude

(e.g., DMC, EIC, DSC), this restriction does not apply to the classification layer. Ad-

ditional important channel models that arise at this stage are additive white Gaussian
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noise channels (for primitive analysis), additive white noise channels (for simplified

analysis), and fading channels (for hand fatigue). Note that these models were not

used for the hand/printer. They were used (or at least some of them) for the com-

bined feature generation-hand/printer-feature extraction channel. We are not aware

of any models of the hand/printer that were incorporated in a recognition system.

2.9.1 The Hand/Printer

Later in the thesis, we envision the hand/printer as incurring three types of deforma-

tions: Global, local and point deformation. Global deformations include: slanting,

translation, scaling, etc. with the deformation parameter confined to a certain range.

Global deformations can be described as deformations preserving the topology of the

character. Local deformations include: displacement of a stroke in the character A,

scaling of a stroke in the character 4, etc. Local deformations are global deformations

operating only on predefined subsets of the character called primitives. Point defor-

mations are slight disturbances of te individual points. Point deformations makes the

difference between a line drawn by hand and a line drawn by a ruler.

2.9.2 Feature Extraction

To extract the features, one necessary prerequisite is to estimate the boundaries of

the character. This is a direct consequence of the requirement that a metric should be

used to measure the similarity between the template and the sample. This classical

view of similarity forces us to treat the template and the sample equally. It does

not handle in any structured manner the problem of blobs, scratches, or touching

characters. In the case of neat handprinting, this problem does not pop up. On the

other hand, if the characters are touching or have scratches or blobs, isolating them

from the noisy surroundings becomes a challenging task.

The above argument leads us later in the thesis to simply abandon the metric

approach, and to search in the noisy observation for the template we propose. In

effect, we want to put more confidence in our knowledge (template processing) rather
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than dividing this confidence equally between our knowledge and the observed data

(samples) as suggested by the metric approach.

2.10 Channel Decoder/Classifier

Back to the classical view of character recognition. A Bayesian, or maximum a poste-

riori rule (MAP) is the optimum rule for classification assuming a certain stochastic

model. Given an observed feature-word y, we choose the character cj that maximizes

P(xjly), where xj is the feature vector corresponding to cj. If the characters are

assumed equiprobable, MAP reduces to the maximum likelihood rule: choose cj that

maximizes P(ylxj).

Unfortunately, it is simply intractable to estimate the joint pdf P(ylxj). O(K N)

samples are needed to estimate the joint histogram in N dimensions when using K

bins per dimension. There are three ways to get out of this problem: either (1) as-

sume independence of features, which means P(ylxj) = rV'1P(y'/x') or, (2) assume

the features are Gaussian, in which case there are efficient means of estimating the

required parameters of the joint Gaussian pdf or, (3) settle for less and use suboptimal

procedures that make use of the marginal pdfs (which can be easily estimated) 3. CoM_

monly used classifiers in the literature are: K-nearest mean, K-nearest neighbor[ll],

Fisher pairwise, and neural networks[201.

A major step in information theory was to realize that by merging the digital

data demodulator and the channel decoder in one module, better performance can

be achieved. Later, we resort to the same technique and we attempt to recognize the

character directly from the (x, y) positions of the observed black pixels. Instead of

detecting primitives and then detecting characters, we do the opposite. We deform

the character template globally until maximum matching is achieved with a subset

of the data, then we deform the template locally until better matching is attained.

Finally, we deform the points to get exact matching. All the above deformations have

to be within the permissible range, otherwise we consider the template not to exist

3The techniques in (3) are the same as in (1). Only the point of view is different.
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in the observed data.

2.11 Summary and Conclusions

Handwritten character recognition is an old field of research, where various approaches

have resulted in a vast literature. Yet, no solid line of research has emerged. It

seems that a framework is needed. Under this framework, the weak points can be

highlighted, the important questions can be formulated, and the achievable limits can

be found. In the previous chapters, we have attempted to develop such a framework

using information theory as a backbone. We pointed at certain flaws governing the

classical approach, such as the "serialzation" of an inherently geometric problem, and

the insistence to use a metric as a measure of similarity. In the next chapter, we will

explore the traditional viewpoint of using a metric to see how much we can push

it. We will consider the simple case of one dimensional signals corrupted with both

amplitude and domain noise, and we will state a theorem on an appropriate metric

to deal with this situation.
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Chapter 3

Simplification: The Case in One

Dimension

3.1 Introduction

In what follows, we will be discussing the problem of recognizing single dimensional,

real-valued, functions. While this might seem, at first glance , a distraction from the

course of the thesis, it is actually very instrumental in pointing out the kind of diffi-

culties that one faces when dealing with both domain and amplitude deformation. We

will assume that the functions under consideration are of bounded support (actually

defined on the unit interval), and we will work out the problem of determining the

proper metric.

To proceed, let H be the space of functions of bounded variations, defined over

the unit interval I. Let hi, h2, - -. , hm be elements of H called hypotheses. Let g E H

be the received signal. Determine a plausible detection rule to determine the most

likely hi that was transmitted.

The traditional approach, in signal transmission theory, is to assume that g was

obtained from one of the hi's through amplitude deformation (additive or multiplica-

tive). In other words, we make M hypothesis HI, H2, HM, where under hypothesis
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Hi (assuming additive noise):

g(t) = hi(t) + n(t) 0 < t < I

and n(t) denotes the amplitude noise, lying in some suitable space. Next, we assume

as cost a functional of n(t). Finally, we select the hypothesis that minimizes the cost.

If the L2 metric was used as a cost on H, for instance, the detection rule would

be to choose hi that minimizes f (g(t) - hi (t))2 dt. To use a probabilistic interpreta-

tion, this is the rule that corresponds to maximum likelihood detection when n(t) is

modeled as Gaussian white noise.

Unfortunately, comparing signals based on their amplitude difference only does

not satisfy our intuition. Consider, for instance, the following example:

hi(t) = 0.125 for 0.1 < t < 0.99 and 0 otherwise

h2 (t) = I for 0. 5 < t < 0.51 and 0 otherwise

g (t) = I for 0.52 < t < 0.53 and 0 otherwise

In this example, g is closer to hi in the L 2-sense, whereas it is closer to h2 in any

intuitive sense (see Figure 3-1).

A
I h2

9

0.12 5 hi

0 0.1 0.9 1

Figure 3-1: Counter example showing weakness of L2 metric

Where is the catch? L 2 metric assigns a large cost for domain deformation. So,

it seems that we should formulate the problem in a way that accounts for domain

deformation in addition to amplitude deformation.

Let us concentrate for the moment on domain deformation only. Later, we see how
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both deformations can be brought together. A naive attempt to solve the problem is

to say: under hypothesis Hi we have

g(t) - hi(t + w(t)) (3.1)

and then use the cost function f W(t)2 dt as a criteria for similarity. However, this

function has annoying asymmetry. The reason is, if we write g(t) -_ hi(t + wi(t)),

and alternatively, hi (t) = g (t + &(t)), then it is not true that f W,(t)2 dt - f w' (t)2 dt.

Furthermore, if we decide later to shift our interest to functions having infinite sup-

port, it is possible for a small domain shift to cause a blow-up in the cost function

(consider cos(t) and cos(t +,e)), which means it is not translation invariant. A more

convenient relation than Equation 3.1 is

g(t) -_ hi(x(t)) or hi(t) -_ g(x-'(t)) (3.2)

assuming x is invertible. Using Equation 3.2 we can immediately see that for a cost

functional to be symmetric, it has to remain the same if x is replaced by x-'. These

ideas will be made more concrete in the following section.

3.2 Domain Deformation : Theory

Assume that under hypothesis Hi:

g (t) - hi (x (t)) - (hi 0 X) M

where x(t) is an order-preserving homeomorphism of the unit interval I onto itself.

We will show later that a solution x for the above equation exists if and only if g and

hi have the same sequence of extrema.

The reader should note that, throughout the coming discussion, we will be dealing

with three different spaces: X, H, and W. First, we will define X, and then we will

present a few lemmas to gain some understanding about the space X.
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Let X be the space of all order-preserving homeomorphisms of the unit interval I

onto itself. Then, the following two lemmas are well known.

Lemma 3.1 A Junction x is an element of X if and only if it can be represented

as a continuous, strictly increasing, Junction joining the origin to the point (1,1) of

I x I (see Figure 3-2). The horizontal axis in Figure 3-2 (also called the t-axis) Z's

the domain of g, and the vertical axis (also called the x-axis) Z's the domain of hi.

x A..............................................

x

hi

(0,O) t

Figure 3-2: Domain deformation shown as a curve in the product domain of g and hi

Note that the functions g and hi are to be visualized normal to the plane of Figure

3-2.

Lemma 3.2 The pair (X, 0) ,is a group.

Note that the inverse x-I is a reflection of x around the diagonal of I x 1.

Lemma 3.3 The space X, viewed as a set, is convex.

Proof: By convex we mean, if xi and X2 belong to X, then so do ax, + (1 - a)X2 for

all a in [0, 1]. Let x = ax, + (I - a)X2. Then x is continuous, being a weighted sum

of continuous functions. Letting t, < t2, we get

X(t2) = aXl(t2) + (I - a)X2(t2)

> OZXI(tl) + (1 - Ce)X2(tl)

X(ti)
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Finally, x(O) - 0, and x(l) - 1. Hence, x is in X.

Next, we define the second space of interest, H, and its subspace, Hg:

Definition 3.4 Let H be the space of real functions of bounded variations defined

over 1. Let g be an element of H. Hg is defined to be the set of all functions in

H which can be obtained from g through order-preserving, homeomorphic, domain

deformation. In other words,

Hg - f f : g - f 0 X, X G XI

Note that we already have an onto mapping from X to Hg, mapping x to g o x-'.

However, this mapping is not one-to-one in general. Consider, for instance, the con-

stant function g(t) -_ 1. Then, Hg is the singleton f gj, since I o x-' - I for all x in

X. By removing from X the "redundant" x's, the onto mapping becomes a bisection.

For the case g = 1, the redundant deformations are all the deformations except x -_ i.

The following lemmas characterize the redundant domain deformations for a general

function g.

Lemma 3.5 Let f and g be both strictly increasing (decreasing) functions. Assume

that the relation 9 = f o x has a solution in X. Then, that solution is unique.

Proof: Assume the contrary. Let xi and X2 be two different solutions of the equation

g - f ox. Then, there exists a point a at which they differ. Let x (a) - bi, X2 (a) = b2 -

However, g(a) -_ f [xi (a)] = f [X2(a)]. Therefore, g(bl) =: g(b2) for b, :� b2. This is a

contradiction, since g is strictly monotonic. Hence, the solution x is unique.

Lemma 3.6 Let f , g G H . Let 9 - f ox has a solution in X. Then, x Z's a bisection

between the local maxima(minima) of g and the local maxima(minima) of f.

Proof: Let a be a point at which g has a local maximum. Then, there is an open

nbhd of a, B(a) C 1, such that g(t) < g(a) for all t in B(a)' Consider x[B(a)]. It is

'To handle the extreme points 0 and 1, view I as a subspace of R, where the topology is inherited
by taking the intersections of open sets of R with 1.
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open since x is a homeomorphism, and contains x(a). For all u in x[B(a)], we have

f (u) < f [x(a)], otherwise x-'(u) would be a point in B(a) such that 9[x-'(u)] > g(a).

Hence, x (a) is a local maximum of f . Similarly, if b is a local maximum of f , we can

prove that x-'(b) is a local maximum of g. Finally, the minima can be treated in an

analogous way.

Theorem 3.7 Suppose that g is not constant on any subinterval of 1, and that the

relation g = f o x has a solution in X. Then, the solution is unique on the whole

interval.

Proof: Let a, < a2 < ... be the points at which g has extrema. Let b, < b2 < ... be

the points at which f has extrema. Let 9 = f ox has a solution. Then x in Figure 3-2

should pass through the points (0, 0), (a,, bi), (a2, b2), - - -, (1, 1), otherwise x would not

be increasing. Furthermore, between any two consecutive points (ai, bi), (ai+,, bi+,),

f and g are either both increasing or decreasing. As a consequence of Lemma 3.5, the

solution is unique in lai, aj+j]. Therefore, the solution is unique on the whole interval.

Corollary 3.8 Suppose that g Z's not constant on any subinterval of 1. Then there

exists a bisection between Hg and X, mapping f in Hg to the unique x in X, satisfying

g - f o X-

Corollary 3.9 Let g be constant on the ordered intervals (CI, C2), (C3, C4), Let f be

constant on the ordered intervals (dj, d2), (d3, d4) .... Then,

1. Any valid solution of f - g o x should map (ci, ci+,) to (di, di+,) for all i.

2. Outside these subintervals, x is uniquely determined.

Throughout the work, we will choose the solution x that maps (ci, ci+,) to (di, di+,)

linearly. As a consequence of this, the solution to g -- f o x becomes unique. We

denote by Xg, the subset of X obtained after deleting every x which is not linear in

the constant subintervals of g.

Our goal has been to define a distinction function d* over Hg x Hg, which handle

41



domain deformation in a way analogous to the way L2 or other metrics handle ampli-

tude deformation. The direct consequence is that d* becomes a metric over H. The

second consequence is that d* (f , f o x) becomes a function of x only.

The second consequence implies that d* (fl, f2) should not change if we deform

both domains by the same deformation (invariance to composition). The equivalent

assumption in the classical case is to say the amplitude noise cost is dependent on

the difference g(t) - hi(t) only (invariance to translation).

Let us denote d* (f , f ox) by < x >. Then, a more compact way to write the properties

of a distinction function is:

1. x E X is the identity function if and only if < x > = 0.

2. If x G X, then < x >=< x-I >-

3. If XI and X2 are in X, then < XI > + < X2 >>-< XI 0 X2 >-

Clearly, if < x >- d*(f, f o x) is a distinction function, then so is A < x > for any

positive constant A.

Note that the distinction function d* defined on Hg induces a metric on Xg. In other

words, if XI and X2 are in Xg, then dX, (XI, X2) =< XI 0 X- I > is a metric on Xg.

Furthermore, the two metric spaces Hg and Xg become very similar in the sense of

the following theorem:

Theorem 3.10 Let d* be a function over Hg x Hg. let d be a function over Xg x Xg

defined as follows:

d(xi, X2) -- d* (fl, f2) such that 9 - fl 0 XI = f2 0 X2

Then, d* Z's a distinction function if and only if d is a composition invariant metric.

Furthermore, if d is a composition invariant metric on X, the mapping

b : (Hg, d*) (X, d)

f xEXg:g-f ox
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is an isometric imbedding of Hg in X.

Proof: The mapping b is well defined since X is uniquely determined (see Corollary

3.9 and the following remark). Furthermore,

d* (fl, f2) - dx (b (fi), b (f2))
H9

Hence, b is an isometric imbedding of Hg in X, or an isometry between Hg and Xg.

Since b is a bisection between H. and Xg, then d is a metric if and only if d* is a

metric. Furthermore, let g - fi o xi f2 0 X2, then d* (fi, f2) - d* (g, g o X-' o xi) if
1and only if d(xI, X2) - d(i, X- 0 XI

Isometry has important consequences since isometric spaces are identical in all re-

spects except for the nature of their elements, which is inessential[26].

The question is: "Does there exist a valid distinction function?". Happily, the answer

is "Yes!". Later in the discussion we will present several examples. For now, the

reader can verify that the following is one such function

d*(f, f o X) - sup jx(t) - tj
tEI

Before proceeding, it is time to define the third space of interest, W.

Definition 3.11 Let X be the space of order-preserving homeomorphisms defined

earlier. Define W to be the noise part of the domain deformation. In other words:

W - fw(t) : W(t) = X(t) - t, X G XI

The bisection between W and X is immediate, and the convexity of (X, +) implies

the convexity of (W, +). However, (W, o) is not a group any more. Also, (W, +) is

not a linear space, so we cannot define a norm over it. However, if we extend W by

including all continuous functions w satisfying w(O) - w(l) - 0, then the extended

space becomes a linear space. Any norm on the extended space may be inherited by

W. Alternatively, any metric on the extended space can also be used to metrize W.
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Theorem 3.12 Let d' be a metric over W, induced by defining a norm over the

extended W. Let d be a function over X x X defined as follows:

d(xi, X2) = d'(xi - i, X2 - ')Z

Let xi and X2 be two points in X. Then, the following mapping

r': [0, 1] X

a ax, + (I - a)X2

Zs a shortest path J'o'n'n ing

z % _q xi to X2 in (X, d). Furthermore, the mapp'

b : X W

X W = X - i

is an isometry between (X, d) and (W, d').

Proof: b is a bisection that preserves distances, hence it is an isometry. Let d' be a

norm in W. Consider the mapping

r, : [0, 1] W

a awl + a)W2

Then V is a shortest path in W, since

d'(wi, awl + (I - a)W2) + d'(awl + (1 a)W2, W2)

= 11(i - a)wl - (1 - a)W211 + IlaWl aW211

= (1 - a) I jWl - W211 + ajjWl - W211

= I IWI - W211

Cl'(Wl, W2)
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Since (X, d) and (W, d') are isometric, shortest paths in one space are also shortest

paths in the other. Therefore, aXI + (I - a)X2 is a shortest path in (X, d), joining X,

to X2. Note that the converse is not true. In other words, ax, + (1 - a)X2 can be a

shortest path in a metric space (X, d) without d being a norm. An example of this is

X - I with the metric d(xi, X2) = I fxx�2vl�i+ 4-t2dtI.

To summarize what has been done so far, consider the three spaces:

1. H., the space of observations, when only domain deformation is involved.

2. X., the space of domain deformations, constructed in a way to make a bijection

with H-,.

3. Wg, the space of domain noise.

Then the following theorem illustrates the links between the various spaces.

Theorem 3.13 Let d' be a norm metric over W, i.e., d'(wl, W2) - II W1 - W21 1. Let

d be the corresponding metric over X, i.e., d(xi, X2) d'(xi - i, X2 - i). Assume

further that d Z's composition invariant, i. e., d(xi, X2) d(i, xi o X-'). Let d* be the

corresponding metric over Hg, i.e.,

d* (fl, f2) - d(xi, X2) such that 9 - fl 0 XI - f2 0 X2

Then, d* Z's a distinction function over Hg. Furthermore, the following mapping

I' : [a, b] --- � Hg

a 1-4 F(Ce) = f : 9 = f 0 (aXI + a)X2)

is a shortest path in (Hg, d*) joining f, to f2.

Let us list some examples of distinction functions over Hg:

Supremum d*(fl, f, o X) -< X >- supt Jx(t) - tj

Maxmax d* (fi, f, o X) - maxt (X (t) - t) + maxt (t - X (t))
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Variation d*(fl, f, o x) = total variation of (x - t) = V(x - t). Note that if x is

differentiable,

V(X - O - f 1.-� - Ildt

3.3 Domain Deformation : Application

Given M functions hi, h2, --,.hm in Hg and a specific choice of the distinction func-

tion. The recognition rule is: Choose hi that minimizes < xi >, where g - hi o xi.

Example 1: Let hl(t) -_ sin(Ft) for 0 < t < 1. Let h2(t) = 2t for 0 < t < 1/2 and

h2(t) - 2(1 - t) for 1/2 < t < 1. Let g(t) - 4t2 for 0 < t < 1/2 and g(t) - 4(1 _ t)2

for 1/2 < t < I. Decide whether 9 is closer to hi or to h2 in all of the above metrics.

Solution 1: Let 9 = hi o xi. Solving, we get xi (t) -_ sin-' (4t2) /,F for 0 < t < 1/2 with

symmetry w.r.t. (1/2,1/2). To find the supremum distance we set -�j -_ 1 to obtain

(using Maple)

< xi >_ 0.187

Let g - h2 0 X2 - Solving, we get X2 (t) = 2t2 for 0 < t < 1/2 with symmetry w.r.t.

hi

10

9

0 1

Figure 3-3: Binary hypothesis of Example 1

(1/2,1/2). Similarly, we set '�2 = I and we obtain the supremum distance

< X2 >_ 0.125
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Since < xi >>< X2 >, we say that g resembles h2 more than hi in the supre-

mum metric. The maxmax metric gives the same answer in this particular case since

max(x(t) - t) = max(t - x(t)) (see Figure 3-4). Finally, the total variation metric

also gives the same result since it is equal to twice the maxmax metric in this case.

In practice, one can view the various solutions of the equation g(t) hi(x(t)) by

XI

hihi
h2

X2

9 9

Kernel for g - hi from Domain deformations
Figure 3-1 from example 2

Figure 3-4: Calculation of Deformation

drawing the contour plot of the surface Jg(t) - hi(x) I in the plane of Figure 3-2. The

kernel of the surface (i.e., the regions where it is zero) contains all the solutions. This

kernel can be viewed using a mathematical package like Matlab. Out of that kernel

we choose the curve x that connects the origin (0,O) to the opposite corner (1,I) with

minimum < x >. Note that unless g is constant for some interval (a, b) C 1, the

kernel will be a finite collection of curves. However, only one of them will connect

the origin to the opposite corner. If g is constant for some interval, the corresponding

part of the kernel will be a rectangle (see Figure3-4). In all of the defined metrics,

the reader can verify that taking the diagonal of that rectangle only and dropping

the rest results in the minimum < x >, which justifies the criteria made earlier in

this chapter.
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3.4 Domain and Amplitude Deformation : The-

ory

In the following theorem, which the reader is welcome to verify, we make a slight

generalization:

Theorem 3.14 Let H be the space of all functions of bounded variations whose do-

main Z's 1. Let X be the space of homeomorphisms over 1. Let d be a function over

H x H defined as follows:

d(fi, f2) < x > if there exists x in X such that f, - f2 o x

d(fl, f2) oo otherwise

Then, d is a generalized metric over H. Furthermore, we call d a domain metric.

One can visualize H as a collection of disjoint slices where the distance d between

any two slices is oo. In fact, these slices are called path components in the topological

sense, since any pair of points belonging to the same slice are path connected, and no

two points belonging to different slices can be connected.

On the other hand, we can define over H an amplitude metric as follows:

Definition 3.15 Let d be a metric over H such that for any pair of points f, and f2

M H, d(fl, f2) Z's a function of f, - f2 only. Then, d is called an amplitude 'Metric.

Note that d is a pseudonorm but not necessarily a norm (hint: consider the discrete

metric). The most widely used examples of amplitude metrics are the so-called Lp

metrics, where for p > 1,

I/P
d2 (fl, f2) If, (t) - f2 (t) IP dt

Having defined suitable metrics for domain-only and amplitude-only deformations,

how can we use these results to develop a suitable metric for mixed amplitude and

domain deformations?
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One way to do that is to note that the obtained metrics are also path metrics. In

other words, they are defined over path connected spaces in such a way that d(p, q) is

equal to the length of the shortest path connecting p to q [3 I]. Now, envision the space

H with two metrics: di, an amplitude metric, and d2, a domain metric. We can view

H with these two metrics as a city with two modes of transportation, e.g., walking

and train. di (A, B) can be thought of as the time needed to walk from A to B, while

d2 (A, B) is the time needed to travel by train. Note that unless A and B are train

stations for the same train line, d2 (A, B) - oo. When both means of transportation

are possible, we can define the travel time between A and B as that time spent when

the optimum use of both means is made. Along the same lines, we can define the cost

of deforming a function fi to another function f2 as the cost of optimum combination

of amplitude and domain deformation. The recognition problem becomes that of

finding the hypothesis that requires the least such cost. In what follows, we present

the above analysis in a more precise way.

Let 17 : [a, b] -� (H, di) be a path in (H, di) joining f, to f2. For any partition of [a, b]

given by

P = fto, ti,..., tl

the points F(to), r(ti),. . ., r(tn) are the vertices of an inscribed polygon. The length

of this polygon is denoted Ar(P) and is defined to be the sum

(P) - E min (di (r (tk - 1), F (tk)), d2 (F (4 - 1), IP (tk)))
k=1

Definition 3.16 The distance between f, and f2 M the least upper bound of Ar(P)

over all partitions P of [a, b], i. e.,

d(fi, f2) - suplAr(P) : P E 'P[a, b]J

Theorem 3.17 The distance function of Definition 3.16 Z's a metric.

The fact that d is a metric comes from its very definition. The reader can refer to

Shreider[45] for a discussion on this approach for defining distances. Nevertheless, we
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will include the proof here for integrity.

Proof:

1. (Identity) If f, = f2, then the constant function F(a) is continuous and

defines a path of zero length. Therefore, d(fl, f2) -- 0. To prove the converse,

assume that d(fl, f2) -- 0. Then, For any partition of the shortest path , we

have to have either d1(r(tk-1),F(tk)) - 0 or d2(r(tk-1)J(tk)) = 0). However,

if one of the distances is zero the two points are coincident, hence the other

distance should be zero as well. Therefore, all point of the partition are the

same. Consequently, f, = f2-

2. (Symmetry) follows from the symmetry of d, and d2-

3. (Triangle Inequality) is the easiest to prove. For if there exists a point f such

that d(fi, f ) + d(f , f2) < d(fl, f2), it means we can obtain a shorter path joining

f, to f2 by having the path pass through f, a contradiction.

The question becomes, given f, and f2, how would we find the shortest path between

them? This is not an easy question. Assume that the shortest path is an alternate

sequence of domain and amplitude deformations such that, starting from f, we have:

+ n, 54 (f, + n1) o x, 4 (f, + ni) o x, + n2 -4 f2

where all ni's, except possibly n1, are different from 0. Similarly, all xi's are different

from the identity. Then, we can describe any path emanating from f, in the following

recursive form:

pi = f, + ni

pi+1 = Pi 0 Xi + ni

The path length would be

Ar < xi > +11nill
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Our problem becomes: Find xi and ni, for i -_ 1, 2.... that minimizes

< Xi > +IIniII

subject to

jiM Pi = f2
Z-400

However, the problem can be simplified remarkably if we choose the amplitude norm

I I I I also to be composition invariant. In that case, we can prove the following theorem:

Theorem 3.18 Let f, and f2 be two functions defined over the unit Interval 1. As-

sume that f2 was obtained from f, by an alternate sequence of domain and amplitude

deformation, JxiJ and Inil. Assume that the path length corresponding to a domain

deformation Z'S < Xi > and that corresponding to an amplitude deformation is I Ini II.

Let I be the length of the shortest path joining f, to f2. Assume that the amplitude

norm I I I I is composition invariant. Then, 1 does not increase if we restrict the number

of deformations of each kind to be at most one. In other words, we can write

f2 flox+n

1 Min(<X>+IIf2-f10XII)X

Finally, d(fl, f2) - 1 defines a metric.

To prove it, however, we need one lemma:

Lemma 3.19 Let H be the space of functions defined over 1. Let f, and f2 be 2

elements of H. Let d, be a composition invariant amplitude metric over H. Let d2

be a domain metric over H. Let (xi, n1) be the shortest pair of domain-amplitude

deformation taking f, to f2, i.e., if we let

DI (x, n) : f2 = f, o x + nj

then

< XI > +IIniII << x > +IInII V(xn) C Di
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Similarly, let (n2, X2) be the shortest pair of amplitude-domain deformation taking f,

to f2, i- e-, if We let

D2 - f (n, X) : f2= (f, + n) o XI

then

IIn2I I + < X2 >-<I InI I+ < x > V(n, x) E D2

Then

IIn1II+ < xi >= 11n,21 I+ < X2 > V(n, x) G D2

Proof: From the definition of xi andX2we can write

xi = argmin < x > +1 If2 - h 0 XI I
X

X2 = argmin < x > +1 If2 OX-, - f, II
X

However, the amplitude metric II II is composition invariant. Hence,

I f2 0 X_' - fl I I I (f2 0 X-1 - fl) 0 XI I

I f2 - fl 0 X I I

Therefore,

min < x > +1 I f2 - fl 0 X I I - Min I I f2 0 X-1 - fi I I
X X

< xi > +IIn1II _< X2> +IIn2II

Note that ni need not be the same as n2, only the norm is the same. Now, we are in

a position to prove Theorem 3.18.

Proof: Let fxil and Inil be the sequence of deformations corresponding to the short-

est path joining f, to f2. Consider a particular domain-amplitude deformation pair

(Xk, nk), joiningl'(tk-1) to F(tk) . Then, using Lemma 3.19, we can replace (Xk, nk) by

another amplitude-domain deformation pair (n 'X') without increasing the length.
Finally, n' can be added to nk d x' can be composed withXk+l thereby reducing

k -1, an
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the number of points on the partition by 1. Repeating the process, we end up with

one pair of amplitude-domain, or domain-amplitude, deformation without increasing

the length. Obtaining one pair is equivalent to obtaining the other (see Lemma 3.19).

Since every partition of the shortest path results in a polygon having the same length

as one pair of domain-amplitude deformation, so is the supremum of all partition

lengths. QED.

3.5 Domain and Amplitude Deformation Ap-

plication

To illustrate the consequences of Theorem 3.18, assume that we are using the supre-

mum metric for both amplitude and domain deformations. Given two functions f,

and f2, Theorem 3.18 implies that the following is also a metric over H,

d(fJ2) - inf Aisup jx(t) - tj + A2SUP jh(t) - fl(X(t))l (3-3)
X t t

where Al and A2 are positive weights included for convenience.

h2

9

0.12 j h,

0 0.1 0.9 1

Figure 3-5: Counter example showing weakness of L2 metric

In the literature on probability metrics, the above discovered metric is called

the Skorokhod metric[39]. Using it to solve the recognition problem of Figure 3-1

(redrawn in Figure 3-5), we find after some thought that

d(ghi) - 0.875A2
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d(g, h2) - min(O.02A,, A2)

which implies that g is closer to h2 (in agreement with the human sense) unless

A,/A2 > 43.75. If the last inequality is true, it means that we are assuming a huge

cost for domain deformation, and in that case only it is reasonable to say that g is

closer to hl.

Note that we have used the supremum norm in Equation 3.3, since it is easier

to deal with analytically. However, when running computer minimization algorithms

that use gradient descent type techniques, it is more convenient to use the total

variation norm instead.

3.5.1 Implementation on Matlab

When the functions under consideration cannot be expressed in analytic forms, we

can discretize them as follows, and then use MATLAB to find the solution.

Let f and g be given waveforms. The distance between f and g is defined, in

terms of the total variation metric, as :

d - inf 0.1 f 1.,� - Ildt + II d (f((f I 9) " X dt X) - g(t))

where the parameters Al and A2 have been chosen heuristically. Discretizing t and x

into column vectors of length N, the distance d(f , g) is approximated with

d(fg) = inf 0.1 I(xi - xi-1) - (ti - ti-01 + Kg(ti) - f (xi)) - (g(ti-1) - f (xi-MlX

where f (xi) is obtained using interpolation.

In MATLAB notation, the distance to be minimized over x becomes

d=0.1*norm(diff(x-t),l)+norm(diff(g(t)-f(x)),l);

To improve the convergence and speed, a multiresolution approach was adopted. First

t and x are discretized into N -_ 5 samples. Then, a non-linear optimization algorithm

is run. When the termination tolerances for x and d are met, the number of sampling
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points is doubled (N=2N-1). The algorithm terminates when N - 33.

The following is a MATLAB program, used to generate Figures 3-6 thru 3-8.

N=5;

xO=EO 0 0.5 1 11; % starting guess

options(13)=2; % 2 equality constraints x(O)=O, x(l)-1=0

while N<34,

Ex,optionsl=constr(Ifunl,xO,options);

t=linspace(0,1,N); th=linspace(0,1,2*N-1);

xO=interp1(txth)I;

keyboard; % return control to user to draw plots

N=2*N-1;

end

-----------------------------------------

function [dcl=fun(x)

N=length (x) ;

t=linspace(0,1,N);

d=0.1*norm(diff(x-t),l)+norm(diff(g(t)-f(x)),l);

c=[x(l) (x(N)-l) -diff(x)]; % constraints: x is increasing

3.5.2 Parameter Selection

How do we choose Al and A2 in general? In the following, we describe a trick for

estimating Al and A2-

Consider the following detection problem: Let si, i -_ 0, 1, M be the transmit-

ted 2xl vector. Let n - (ni, n2)' be an added Gaussian noise vector, with mean 0

and covariance matrix A. Let y be the received vector. Under hypothesis Hi, we have

y - si + n

The Bayesian detection rule would be to choose the hypothesis Hi that minimizes
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Figure 3-6: f (t) - - + 1 - - 6 and g(t) = sin(7rt)
(x-3)2+0.01 (X-9)2+0.04

(y - si)A-'(y - si). When the noise components ni and n2 are independent with

variances o, 2 and a', the detection rule simplifies to: Choose i that minimizes1 2

(y, 8,,1)2 + (Y2 Si,2 )2

2 2
1 2

The attentive reader would recognize the similarity between the above equation and

Equation 3.3. Indeed, if we let < x > = (y, - si, 1)' and I I n I I - (Y2 - Si,2 )2' then Al and

A2 become synonymous to the inverse of the variances and can be estimated using

known techniques.

More precisely, let h', h?, . . . , h' be N observed samples of the function hi - As-
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0.1 f 1,-� - Ildt + f I d (f (x) - g(t))J)

Figure 3-7: Multiresolution to find inf,,( dt

sume the domain noise on hi to be square-Gaussian. Clearly, this assumption is not

fully justified, since the distinction function is bounded in several interesting cases.

However, we will assume that a Gaussian approximation is good enough for our anal-

ysis. Assume also that the amplitude noise on hi is square-Gaussian, independent

1 2 Nfrom domain noise. Let the domain deformations for the samples be x , X , . . . , X

2 N(determined empirically). Let the amplitude deformations be n',n ... ,n . The

57



0 .8 .. .... ... ..... . . .... ... I .. .. .. .. ...... 0 .8

...........................0 .6 ............ 0 .6 -

0 .4 .. .. .. .. .... ... .. . ..................... 0 .4

f W
.............................0.2 ........ 0.2

glx(t)
0 0

0 0.5 1 0 0.5
t d(fg)=0.315

1

0 .8 .... .... .. .. .... .. . . ................. .... 0 .8

0 .6 .. .... .... .. . .............. ............ 0 .6

x
0 .4 .... .. .. ... ..... . ... .. .. .. .... ........ 0 .4

f (t)
..........0 .2 ....... ..................... 0 .2

glx(t)
0 0

0 0.5 1 0 0.5
t d(fg)=0.312

Figure 3-8: Amplitude noise appears as a difference between g(x(t)) and f (t)

non-biased estimators for Al and A2 would be

N < x i > N I In'l I
=EAl j=1 N -I A -':N-12 i=1

3.6 Observations and Conclusions

Clearly, a great deal had to be done in this chapter to handle the problem of combined

amplitude and domain deformations. Part of the complication was that we were

trying to find a metric that "commutes" between the two types of deformation. The
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reason is that we wanted a cost function that was invariant with respect to the order

of the two different types of noise occurrence, that is, invariant with respect to the

incremental deformations: dxi for domain, and dni for amplitude, at time ti. Note

that in the classical amplitude-only deformation case, the invariance was guaranteed

by choosing a metric which is a function of the sum of differential amplitudes, or,

alternatively, a function of the difference between the transmitted and the received

signal. This choice guarantees invariance because, obviously, the sum is invariant

with respect to the order of the elements being added. Similarly, in the domain-only

deformation case, the invariance was guaranteed by choosing a metric that depends on

the overall deformation x(t), regardless of the individual domain deformations. Also,

by forcing an isometric embedding with the space W, we were able to guarantee

that the shortest path of differential deformations dxi, is actually the line segment

connecting the transmitted and received signals in the space W.

When both types of deformations were considered, special care was needed to

make sure that, when the different types of deformation intermix, the cost function

is not affected. The main result of the last chapter is that this can be guaranteed if

the amplitude metric was a composition invariant function of f - g, and the domain

metric was a composition invariant metric of x(t) - t. Examples of such metrics were

also given.
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Chapter 4

The Principles of Recognition

4.1 Discussion

In the last chapter, we addressed the problem of finding the proper metric for com-

bined amplitude and domain deformation in the single dimensional case. In this

chapter, several changes are made:

1. First, the objects of interest are not one dimensional signals but two dimensional

signals. These signals are subject to domain deformation in both the x and y

direction, as well as amplitude deformation turning pixels on and off in a random

manner.

2. Second, as we will shortly argue, we will not be looking for a metric to measure

similarity.

3. Third, we need not struggle with the coupling between the two types of defor-

mations. This is because in the on-line recognition case, there is no amplitude

deformation that is worth analyzing. On the other hand, in the off-line recog-

nition case, the deformations come from different types of channels that do not

interfere with each other. In particular, the domain deformation is due to the

hand or printer, and the amplitude deformation is due to ink fading, paper ag-

ing, scanner dirty lenses, video camera blurring, or the facsimile machine that

was used to transmit the document. In all these interesting cases, amplitude
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deformation occurs after domain deformation, and the channels can be viewed

as consecutive.

Before proceeding, some discussion is needed regarding the representation issue.

Should we represent the characters as surfaces over the plane, where the height of

the surface corresponds to the grey level of the pixel underneath it? or, should we

represent them as regions in the plane, i.e., binary images? or, should we represent

them as a collection of (XI y) coordinates in the plane?

Here, we go back to the information-theoretic framework to find that the best

representation is the one on which the noise operates directly. When we discuss

amplitude noise, the best representation is a surface over the complex plane. In

discrete terms (for computer purposes), the character is a matrix whose (i, j) entry

contains the grey level at the (i, j) pixel.

When we discuss domain noise, the best representation is the one that describes

the domain. For this purpose, a character is a region in the plane. For programming

purposes, a character is a finite set of (XI Y) coordinates (or complex numbers z).

4.2 Domain Deformation

Clearly, the character templates are binary images, having a value of I (foreground)

along the trace of the character and 0 (background) outside. For convenience, we

define the character domain to be the foreground region only. The consequence is

that character templates are constant functions having the value I but over different

domains.

If we assume for the time being that there is no amplitude noise, the deformed

samples will also be constant over their domain. This situation arises in on-line

character recognition, where the pen position is sampled whenever it touches the

digitizer tablet. All patterns of interest will hence be represented using their domains,

i.e., the template Tj is a set of complex numbers denoted f zT, 1, and the sample S is

a set of complex numbers denoted f zs 1.

If we were to use a metric to measure the similarity between S and Ti, then the
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Hausdorff metric' would be the natural choice. First, it is a supnorm type metric and

we have seen in the last chapter that a supnorm metric has desirable properties in the

case of domain deformation. Second, it is one of the mathematically tractable metrics

for sets, and can be easily computed using tools from computational geometry.

However, the Hausdorff metric expresses in the clearest fashion the problems that

arise from using a metric. A small blob close to the sample can ruin the distance,

even if there is - otherwise - a complete matching (see Figure 4-1(d)).

Researchers have attempted to fix the problem by looking for various alternatives.

One variation is to define the distance between two sets as

HI (A, B) = max Y� inf d(a, b), 1: inf d(a, b)
aEA bEB bEB ac-A

effectively converting Hausdorff, which is an L,, metric, to an LI metric. While

this distance also has its own problems, such as confusing 5 and S, or 2 and Z, the

problem is more profound. The difficulty lies in the insistence on using a metric,

thereby assigning equal weights to the "clean" knowledge (template) and the "noisy"

observation (data).

In the following discussion, we present several principles that - we believe - are in

close affinity with the human process of recognition. We conclude that a much better

measure to use than the Hausdorff metric is the single sided Hausdorff demi-metric

(i.e., satisfies triangle inequality) defined from a set A to a set B as:

h(A, B) = sup inf d(a, b)
aEA bCB

'The Hausdorff distance between two bounded sets A and B in a metric space (X, d) is defined

as
H(A, B) = max(sup inf d(a, b), sup inf d(a, b))

aEAbEB bGB aEA
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4.3 Recognition = Search for patterns

We start by citing an established principle in the text recognition field: the layering

principle. We follow it by a fundamental principle: the searching principle.

Principle 1 (Layering Principle) The recognition process Z's a layered hierarchical

process representing different levels of abstraction. Sets of points are recognized as

characters, and sets of characters as words, and sets of words as concepts.

This principle is actually a natural byproduct of the information theoretic framework.

What we would like to emphasize, however, is that all the recognition principles that

follow apply to each level of the hierarchy exhibited by the layering principle.

Principle 2 (Searching Principle) The recognition process is not a complete match-

ing between what we know and what we observe. Rather, it is a search for what we

know in what we observe.

In other words, when we recognize we do not try to make sense out of everything.

Rather, we look for things that make sense to us. Consider the picture of a scratched

A in Figure 4-1a. We were able to find an A in the picture. We were not able to

identify the scratch as a character, so we simply rejected the scratch and decided that

this is an A. Similarly, consider in Figure 4-1b the picture of H with serifs, presented

to someone who has only seen H without serif. Since an H was found in the pattern

having serifs, the serifs - which did not make sense to the new observer - were ignored.

Figure 4-1c shows a standard problem in optical character recognition, that of

touching. Indeed, the right idea to handle that problem is not to segment the picture

before recognition. On the contrary, we look in the whole shape for something we

know, we find an F, we also find an E, so we say it is a FE. The final example in

Figure 4-1d illustrates how one should deal with yet another challenging problem in

OCR, namely that of blobs. Again, we look for the letter M and we find it. We

cannot make sense of the blob, and therefore we ignore it.
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(a) (b)

(c) (d)

Figure 4-1: Searching over the Space of Defined Templates

4.3.1 Recognition is Asymmetric: Internalist View

All the above examples demonstrate also another concept, that of asymmetry. While

we may find our known object (template) in the environment (sample/observed data),

the opposite is almost never true. When we look at a tableau, we rarely find that

same tableau in our memoirs. On the contrary we search that tableau for objects we

have learned, and then we try to make sense out of these found objects.

An important consequence of asymmetry is that templates are given more empha-

sis than the observed data. Furthermore, and contrary to the prevalent view in the

OCR field, the design of templates does not require a huge training set. Starting with

a particular set of templates such as the definition of letters, recognition is readily

possible. By looking at more and more samples of characters, the parameters of al-
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lowable deformations can be updated. Note that the deformations themselves do not

have to be determined since they are already built in the system. It is only needed to

determine the extent to which these deformations are applied. This view is very much

in line with the internalist view of linguistics proposed by Chomsky. The internalist

view suggests that humans already have an established universal grammar. Through

interaction with the environment, the grammar parameters (and not the grammar

rules) are adjusted. The consequence is that the size of the required training set is

tremendously reduced. After all, why should we need 5 million samples to train an

OCR algorithm when probably no human was ever exposed to this large a set in his

lifetime?!

If the recognition process is so asymmetrical, it means that a metric is indeed

not the right way to measure similarities. Despite its mathematical tractability and

the nice properties that are possessed by a metric space, it is - unfortunately - very

restrictive.

4.3.2 Supporting Experiments

This anti-metric view is also supported by a set of experiments performed by Mumford

and described in[34]. In these experiments, a set of new planar patterns were taught to

pigeons and humans, and were later presented for recognition. The confusion matrix 2

turned out to be highly asymmetrical, i.e., object A was confused for B much more

than B was confused for A. Mumford also reports additional experiments made by

Amos Trevsky that only drives the point home: a similarity measure Z's not necessarily

obtained from a metric!

However, the fact that d(f, g) - 0 does not imply that f - g raises another

question. What if several objects were found in the picture at the same location,

which object do we choose? In Figure 4-1c, for instance, we see an F and E, but there

is also a I (the vertical stroke in either E or F) and another F (the one in 0). This

question is related to the third principle of recognition:

2 The confusion matrix for M patterns is an M x M matrix, where entry (i, j) contains the
probability of deciding j when i is observed.
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Principle 3 (Maximum Understanding) The recognition process is a process of

maximum understanding obtainable from knowledge about the space of templates.

In more fancy terms, ambiguities in recognition are resolved by minimizing the de-

scription length of the observed data. To see this, let us consider Figure 4-2. We find

in this figure the words LAB, LABOR, ORATORY, and LABORATORY. Why did

we choose the last word? simply because it is the maximum we can understand from

the figure.

Figure 4-2: Maximize Understanding

To show the equivalence between maximum understanding and minimum descrip-

tion length, imagine you want to encode Figure 4-3, which contains the shape of the

letter E using 10 points. Encoding it as such will cost 20K bits', where K bits are

used to represent a real number. Let N be the size of the alphabet, and hence any

character be represented in logN bits. To say that there is a I in the picture allows

us to encode 5 points (forming the 1) into log N bits (plus K bits for the position)

and the other 5 points using 10K bits, i.e., a total of logN + 11K bits. To say

that there is an F in the picture allows us to encode it in log N + 5K bits. Finally,

to say there is an E in the picture allows us to encode it in log N + K bits. Hence,

maximum understanding of the observed data has resulted in the shortest description.

Consequently, if several templates were found close to the sample, we simply pick

the template that has the maximum length of strokeS4 . The sum of the strokes

length is in this case taken as a complexity measure of the character. If a word is

being recognized, we choose the dictionary word that has the largest complexity sum

of its characters.

3or slightly less if efficient encoding is being used
4or the maximum area in the case of off-line
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Figure 4-3: Minimum Description Length

We will now break for a moment to see how does amplitude deformation fit in this

whole paradigm.

4.4 Amplitude Deformation

As discussed earlier, in almost all the interesting practical cases, the amplitude de-

formation occurs after the domain deformation.

Repeating the definition of a geometric planar pattern from Chapter 2.

Definition 4.1 Let D be a bounded subset of the plane. Let S be a surface defined

over D such that the height of S over D is strictly positive. Then, S is a geometric

planar pattern whose domain is D. Let RD be the smallest rectangle (with sides

parallel to the axis) containing D. Then, RD is the rectangular domain of S.

5If the amplitude noise is not restricted to operate in the character domain , we

need to extend the domain of the character to include - possibly - the whole page,

by assigning a surface height of zero over the extended region.

In that case, we have

P(z) = S(z) + N(z) z G C

5an exception of that case is ink fading
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Ti S P
Domain Channel Amplitude Channel

Figure 4-4: Amplitude noise following domain noise

where N(z) corresponds to amplitude noise.

There are several techniques to deal with amplitude noise. Which technique is

best depends on the noise distribution. Linear lo-pass filtering does reduce noise, but

- unfortunately - at the expense of softening character edges, making (5 and S) or

(Z and 2) closer to each other.

To reduce the high frequency noise while preserving edges, two non-linear tech-

niques - among others - are known in the literature[28]: (a) separable median filtering,

and (b) out of range smoothing.

The techniques are presented in [28] for restoration from grey level images to grey

level images. In what follows, we present a modification of the out of range smoothing

to handle restoration from grey level images to binary images, since the templates

(and their domain deformed version) are binary images.

4.4.1 Out of Range Smoothing

Let P(z) be the amplitude deformed image that we want to restore. We determine

S, an estimate of S, as follows:

1. Let RD be the rectangular domain of P.

2. Slide a k x k window over RD, calculating the average of the pixel values,

excluding the middle pixel.

3. If the difference between the average and the value of the pixel in the middle

of the window is above a certain threshold 71, replace the middle pixel value by

the obtained average value. Otherwise, nothing is affected.

4. Every pixel value higher than some other threshold 72 is converted to one.

Otherwise, it is converted to zero.
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One may try to combine single sided Hausdorff and Amplitude Smoothing to do de-

tection for the combined channels. However, we will not discuss that issue in our

thesis.

4.5 Emergence of Shape

Finally, we cite the last principle of recognition:

Principle 4 (Allowable Deformations) We recognize a shape if we can reach it

by deforming a template using some chain of allowable rules of deformation, that

could be - possibly - template dependent.

More precisely, a shape from a higher level of abstraction emerges from a collection

of shapes from a lower level, if the span of allowable deformations at the higher level

intersects the collection of shapes from the lower level.

To grasp the consequence of the last principle, we need to describe the represen-

tation at various levels of abstraction.

1. At the pixels level: A point is a complex number.

2. Character: A character is a triplet (label, size, position) associated with a collec-

tion of points. Predefined subsets of the character points are called primitives.

3. Word: A word is a triplet (label, size, position) associated with a collection of

characters.

4. Concept: A concept is a label associated with a collection of words.

Hence, what the allowable deformations principle says is that a character shape S

emerges from a collection of points if there are certain allowable deformations (e.g.,

slanting by 30 degrees, disturbance of points by % I of the character size, etc.) of

the character S that makes it match a subset of the collection of points. Similarly,

a word shape W emerges from a collection of points (characters) if there are certain

allowable deformations of W that makes it match a subset of the collection of points

(characters).
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4.6 Measure of Similarity

From the previous discussion, we conclude that we need a measure with the properties:

1. It checks if Tj is in S, not if Tj matches S.

2. It is mathematically tractable to minimize over the allowable deformations, such

as scaling, slanting, etc.

One candidate for this measure is the single sided Hausdorff distance defined

earlier. In that measure, if d(Ti, S) = 0, we conclude that Tj is in S. Furthermore,

there are algorithms to minimize the single sided Hausdorff distance over translation

in O(N) operations, where N is the maximum number of points in either domain.

The distance itself can be calculated in O(NlogN) operations. On the other hand,

we will discuss in Chapter 5 how to minimize the single sided Hausdorff distance, over

translation and allowable linear deformations.

4.7 Putting it All Together

In this chapter we discussed four principles that - we believe - governs any recogni-

tion process. We pointed out the usefulness of the single sided Hausdorff distance in

implementing these principles. Figure 4-5 summarizes the information theory frame-

work as we view it at this stage for the text recognition problem. The channel is a

sequence of five blocks:

1. The first block operates on the word as a whole, with slanting, translation,

scaling, etc.

2. The second block operates on individual characters in a word. In this block,

touching is manifested through relative displacement of characters. Also, any

character slanting different from the word slanting is accounted for in this block.

3. The third block operates on primitives. The horizontal stroke of an A, or the

vertical stroke of a 4 is displaced or scaled (or in general deformed) with respect

to the character in this block.
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4. The fourth block operates on points. The deformation in this block is assumed

to be constrained to a small translation in the point position.

5. The fifth block introduces amplitude noise, especially in the form of blobs,

scratches or pepper and salt.

The first four blocks combined make the domain channel, which when combined with

the amplitude channel constitutes "the channel".

To decode the output of the channel, we start by eliminating the "pepper and

salt" amplitude noise. Other types of amplitude noise are handled by the inclusive

property of the distance.

If primitive segmentation information is available, the direct decoding strategy

would be to go over every possible primitive, checking if block 4 allows such a primitive

to look like a subset of the observed data. We continue by inverting the domain

channel blocks one by one, effectively estimating characters followed by words.

If primitive segmentation information is not available but character segmentation

information is, one decoding strategy would be to go over every character of the

alphabet checking if blocks 3 and 4 allows such a character to look like a subset of

the observed data. Based on the collection of estimated characters we estimate the

word (effectively inverting block 1).

If only word segmentation information is available, the brute force strategy would

be to go over every possible dictionary word, checking if the channel allows such a

word to look like a subset of the observed data. The trouble is that the dictionary

size could be enormous, ruling out the practicality of this approach. Besides, it does

not seem that we humans actually go over every dictionary word we know whenever

we attempt to read a sequence of characters.

A way around this is to do a combination of top-down and bottom up decoding.

In other words, we start at the interface between blocks 1 and 2. We try to detect

as many characters in a word as we can. We use this information to select the set of

candidate words (effectively sending information from the inner decoder to the outer

decoder). From that set of candidate words, we try to look for certain characters in
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certain positions (effectively sending information from the outer decoder to the inner

decoder) until a decision is made.

The next chapter is devoted to the description of tools required for the implemen-

tation of the above algorithm.
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Figure 4-5: Information theory framework revisited
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Chapter 5

Implementation and Results

5.1 Required Tools

In this chapter, we will start by presenting few tools. The first tool is the computation

of the single sided Hausdorff distance for two sets. The second tool is the minimization

of the distance over translation. The third tool is the minimization of the distance,

over the space of allowable deformations in several interesting cases. Finally, we

present the results of the implementation.

5.1.1 Single Sided Hausdorff

Definition 5. 1 Let T - f al, OZ2, am I and S = f 01,02.... ONJ be two finite sets

of points in R2 . Let d be the euclidean metric in R 2. Let h(T, S) be calculated as

follows:

h(T, S) = max min d(ai, Oj)
i i

Then, h(T, S) Z's the single sided Hausdorff distance from T to S.

Hence, we match to each point ai G T, the closest point Oj E S. h(T, S) becomes the

largest distance between matched pairs

'Using the minmax theorem, we can also get h by minimizing the maximum distance.
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Computing the closest point is a classical problem in computational geometry. The

direct approach is to go over every pair of points in T and S, an O(MN) algorithm.

However, a better approach is to find the Voronoi diagram of the set S, which takes

O(NlogN) operations. Then, for every point in T, we can find the closest point in

S in O(logN) operations. While this might look like an O(MN log2 N) algorithm,

it is not. The reason is that the Voronoi diagram is calculated for S only once. All

the deformations are performed later on T and any calculation of the single sided

Hausdorff distance becomes actually an 0 (M log N) operation (compared to 0 (MN)

in the direct approach).

Details on computing the Voronoi diagram and the list of closest points can be

found in references such as Preparata[38] and Edelsbrunner[7].

5.1.2 Minimize over Translation

2 2Definition 5.2 Let T = fal) a2, aMj C R . A translation of T by t G R Zs

denoted T (D t and is defined as the set:

fal +ta2 +t, CVM +tI

The problem becomes: Given T and S, find t that minimizes h (T ED t, S)

This problem can be solved elegantly using the following observation, which will

be referred to again and again. First, without loss of generality, sort the points of

S in such a way that the i-th point in S is the closest to the i-th point in T, listing

certain points in S more than once if needed. Second, consider only the first M points

of S, and call them Sm. Third, view the sets T and Sm as complex row vectors (or

as 2 x M matrices). Let Z - Sm - T, then h(T, S) becomes the magnitude of

the largest entry of Z (or the largest column norm). Note that we have taken the

liberty in moving between the complex vector representation of Z and the real matrix

representation. These two representations are obviously equivalent, and which one

we are using should be clear from the context.
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Definition 5.3 Z, as described above, is called the matching vector (Or matrix) from

T to S.

Let us now draw the entries of the complex vector Z in the plane. The distance h(T, S)

becomes the radius of the minimum enclosing circle of the points of Z, centered at the

origin. When we translate T by t, this results in translating the points of Z by -t.

Alternatively, this is equivalent to translating the axis of the plane of Z by t. Since

we commented that h(T, S) is actually the radius of the smallest enclosing circle of

Z centered at the origin, we get the the following theorem:

Theorem 5.4 Let T and S be two sets in R'. Let Z be the matching vector from T

to S. Let c be the center of the smallest enclosing circle of the entries in Z (regarded

as points in R 2) . Then, h(T, S) decreases if we translate T by c.

The next step is to recalculate Z, since the matching between T and S might have

been disturbed. If the new calculated Z has a center at the origin we stop, a minima

is found. Otherwise, we recalculate the smallest enclosing circle.

Note that the radius of the smallest enclosing circle is guaranteed not to increase

at each iteration. The reason is because, for every point in T we can only find a

closer neighbor from S than before. Hence, the algorithm converges to a minimum

in a finite number of steps.

The question is: is this a global minimum? The answer is: No, it is a local

minimum! While this might seem at first a disadvantage of the technique, it is not.

Consider, for instance, a line of connected characters containing several versions of the

character A, where some are more neatly written than others. Globally minimizing

techniques, will find for us only the best written A. Other A's will not be detected.

With this technique, however, we can search for local minima, and any minimum that

is less than a threshold c is accepted. This way, we guarantee the detection of all the

A's that are close enough to the template.
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5.1.3 Smallest Enclosing Circle

We have not yet settled the problem of efficiently finding the smallest enclosing circle

of M points. This is also a very old problem in Geometry dating back 200 years ago.

Making the observation that the smallest enclosing circle is determined by either two

or three points out of M, the brute force approach takes O(M4) operations in the

worst case.

However, refinements to the algorithm were made by researchers. O(M2) algo-

rithm was proposed in 1972 by Elzinga and Hearn[8]. In 1978, Shamos[38] presented

an O(MlogM) algorithm using Voronoi diagrams. Finally, in 1982, Megiddo[30]

discovered an exciting approach to find the smallest enclosing circle using O(M) op-

erations! We refer the reader to the cited references for more detail on the various

algorithms.

5.2 Allowable Deformations

The human eye can easily translate, scale, rotate, scale in one direction or the other,

slant, or even do strange non-linear deformations. How can we minimize the single

sided Hausdorff distance, over all these deformations?

5.2.1 Scaling

Assume for the moment that the space of allowable deformations contain only the

scaling operation, defined as follows:

Definition 5.5 Let T - f al) a2, - - -, aMj C R 2. Let a be a Positive real number. Let

P (' 0). A scaling of T by P, denoted PT, is the set0 a

f Pal, Pa2, PaMj

The problem is to find minpt h(PT & t, S). The direct approach for finding the

nearest local minimum already involves searching in a three dimensional space (two
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dimensions for t and one for P). However, a more elegant strategy emerges if we go

back to our observation made earlier regarding the matching vector Z, which is now

equal to Sm - PT (see Section 5.1.2).

As we vary a, the location of points of Z moves in the plane on straight lines of

different slopes. Starting from a _- 1, we can either increase oz or decrease it, and this

process is equivalent to moving on each line in one direction or the other. What we

care about is not the locations of the Z points, but rather the radius of the smallest

enclosing circle. Hence, we check in which direction the radius is increasing, and we

move along that direction.

This looks like a tedious computation, recalculating the radius every time. How-

ever, a small trick saves a lot. Look only at the point on the boundary of the circle.

Most of the times, there are 2 or three points there only, and the radius of the circle

formed by these points can be calculated in constant time!

Obviously, when a changes considerably, Z has to be recalculated. However, there

is a vast computational savings between this optimized approach and the brute force

approach that was used by other researchers[22].

An important remark is that there is an interval that we allow the scaling pa-

rameter a to move in. Without this restriction, h can be made zero by arbitrarily

decreasing a, for example. The same remark applies to other deformations also. Note

however, that the allowable intervals of the parameter deformations need not be the

same for every template.

5.2.2 Slanting and Rotation

Assume that the space of allowable deformations X constitutes of slanting instead of

scaling. Then, the same procedure that we just followed applies in this case. The only
- I tan a Z = S - PT, and

exception is that the deformation matrix is now P - ( 0 1 ). M

the points of Z move also along a line. We can easily determine the best direction

for a, and the rate of change of mint h(PT (D t, S) along that direction.

In the case of rotation, P = cos a sin a However, by varying a, the points of Z
(- sin a cos a) -

will move on circles instead of straight lines. One might wonder: what determines the
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shape of the curves along which the Z points move? This question will be resolved

later. For the time being, our priority is to minimize h, over a richer space of allowable

deformations. In the next section, we will consider constrained affine transformations,

and we will describe how to compute

minAh (AT, S)

where A belongs to a subset of the space of affine deformations A. However, since

A is not a vector space, we will decouple the translation from this space and handle

it separately.

5.2.3 Linear Deformations

We begin by making the following definition:

Definition 5.6 Let T be a template. A deformation P of T Z's called linear if it

can be represented as premultiplication of T by a 2 x 2 matrix P. P is called the

representative matrix of the deformation 'P.

Examples of linear deformations include: rotation, slanting, scaling, etc. Note

that translation is not a linear deformation since it cannot be represented by a matrix

premultiplication.

If a deformation 'P is linear, then there is a bisection between the deformation and

its representative matrix P, and the two can be discussed interchangeably.

Let Y be the space of all linear deformations, then a sequence of linear deforma-

tions can be viewed as a path in Y. Corresponding to a template T, let XT be the

space of allowable linear deformations, then XT C Y is a path connected subspace.

The problem of recognition boils down to finding a path in XT that, with appropriate

translation, matches T to a subset of the observed data S.

Note that Y is a four dimensional vector space, whose basis is the matrices i 0),(O 0
O 1), and
0 0 1 0 0 1(O 0) 0 '). X is a path-connected subset of Y. For every point P in Y (and

consequently for every point in XT), there corresponds a cost equal to mint h(PT (D
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t, S). We want to find if the cost function attains a minimum less than E anywhere

in XT-

Definition 5.7 A deformation path is a sequence of deformations P, where the

index a varies of a subset of the reals. If the deformations are linear, the corresponding

sequence of representative matrices Z's denoted P,.

Definition 5.8 A linear deformation path P, has degree n, if all the 4 entries of the

matrix P, are polynomials - of some function of a - of degree at most n.

For example, slanting paths and scaling paths have degree one, while rotation paths

do not have an integer degree.

Lemma 5.9 When the index a of a deformation path P, varies, the Z points move

on straight lines if and only if P, is linear of degree 1.

The preceding lemma can be proved by using tools from differential geometry. The

reader can refer to Do Carmo[3] for details.

5.2.4 Shape Emergence

Based on the previous discussion, a template T emerges from an observed data S if

min min h (PT et, S) <
PEXT t

Clearly, the space X might have several local minima of h. The problem is: how to

determine if there is at least one minima which is less than 0 The direct approach

is to do a gradient-like algorithm, searching for a local minimum, and repeating the

process using several starting points in X (which corresponds to deformations learned

from the training set)-

Starting from a certain point in X (e.g., the identity), which direction should we

move in to reduce the single sided Hausdorff distance? Since we are dealing with a

four dimensional space, we can essentially consider only 8 directions of motion along
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the axis, and check which directions reduce the distance. With each good direction,

we associate a vector whose norm is equal to the rate of change of the distance in that

direction. Finally, we move in the direction of the sum of these vectors. We iterate

the process until no movement is possible in any direction. Since the matching vector

Z may change after each deformation, it is necessary to update it on a regular basis.

But then, how do we determine if a certain direction increases the distance or

decreases it? We go back to the observation made about the matching vector Z in

Section 5.1.2. We look at the points of Z lying on the boundary of the smallest

enclosing circle (usually two or three). We deform these points in the direction of

interset, i.e., by evaluating (Sm - (P + 6P)T) for 6P corresponding to a certain

direction. Finally, we compute M16P in that direction.

Whenever we get to the boundary of X, the number of allowable directions of

deformations decreases, so as not to leave X.

The above ideas can be generalized to general spaces of operators that include

nonlinear deformations. However, this is beyond the scope of this thesis.

5.3 Experimental Results

Instead of testing the previous ideas on a handwriting database such as NIST, we

tested them on specific examples to illustrate the cases we can deal with. The follow-

ing is a sequence of images that were recognized successfully, followed by the sequence

of template images. Note that the following samples were recognized successfully de-

spite their peculiar properties, and without any preprocessing of the observed data: a

dotted T, a W with serif, a highly distorted A, a w with curved strokes, a 5 where the

horizontal stroke is disconnected from the rest of the character. All these characters

can also be recognized in the presence of blobs or scratches, etc.

Note how small the training set is. Some characters have only one template. For

some characters, such as W and A, we could have also used one template only, but

we have used more templates to increase reliability.
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Figure 5-1: Samples of handwritten characters that were recognized correctly.

5.4 When Does it Fail?

The question is: are there cases where the above approach for recognition fail? The

answer is: A failure will actually happen if the space X is does not fully imitate X*,

the "human" space of allowable deformations. In other words, if a certain deformation

such as slanting was not included in X, the algorithm may fail to recognize italics.

If local deformations are not included, the algorithm may fail to recognize multifont.

The various types of deformations that one can include in X is constrained by the time

limit imposed on real life applications. Currently, we can handle linear deformations,

including slanting, rotation, scaling in x and y direction, total scaling, together with

local deformation in a reasonable time. The combination of top-down and bottom-up

recognition makes the program considerably faster. Finally, the algorithm itself is
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Figure 5-2: Templates used for recognition.

intrinsically parallel, with the consequence that the time needed to recognize a page

is almost the same as the time needed to recognize one word.

5.5 Related Research Directions

Before concluding, we would like to select and comment on two research directions

that we feel are related to our work in one way or another.

5.5.1 Statistical Geometry

Statistical geometry deals with geometric patterns and probabilistic measures on the

space of geometric transformations. It provides tools for image restoration and detec-

tion reminiscent of the tools provided by statistics for the field of signal estimation
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and detection.

Motivated by this paradigm, Grenander at Brown started a theoretical line of

research in pattern analysis since the late sixties[15, 16, 17, 5, 18, 1]. He started

by laying down a general framework or language for recognition, which he required

to be general, precise, descriptive, structured, and deformation based[15] (see also

Mumford[33]). Continuous changes and improvements in the framework were made

and updates were published in 1970[161 and 1989[18]. One successful application of

his framework was in the recognition of biological hands[5, 1].

However, Grenander emphasized in[16] that pattern theory "will not solve the

problem in special cases, but only help in expressing them clearly and concisely". In

particular, while the assumptions made and the tools presented and used in[5, 1] may

work well for hand recognition, we have several reasons to believe that they are not

suitable for text recognition.

1. For instance, when restoring hand images, the domain deformation was assumed

continuous. This restriction seems valid in the case of hands (we rarely view a

finger at a distance from a hand!), but is not justified in the case of characters.

For example, the loop in a handwritten 0 often becomes disconnected, which

is a discontinuous deformation.

2. In addition, the described scheme was designed to handle restoration and recog-

nition of one template only (in that case, the hand) - It is not clear how to extend

the scheme when more than one template is involved. For instance, allowing

arbitrary continuous domain deformations may cause a certain observed data to

be described as both K and X, since each character is a continuous deformation

of the other. Interaction between templates is a serious problem when large

alphabets are considered, e.g., the alphanumeric alphabet.

3. The hand template representation was a connected polygon, describing the

boundary of the hand. Characters cannot be represented conveniently as con-

nected polygons.

Regarding the relation between the information theory framework and Grenander
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framework for pattern recognition, they have several points in common. Both em-

phasize the importance of studying deformations. Both allow for integration of prob-

ability in the analysis. Both are mathematically sound. However, the information

theory framework has two main advantages over Grenander's:

1. It has a well established and standard language.

2. It provides a unified framework for viewing evaluating pattern recognition as

developed in this thesis as well as isolating the weaknesses of previous field in

this field.

5.5.2 Choice of Hausdorff Metric for Measuring Similarity

A group at Cornell has worked on object recognition and tracking using the Hausdorff

distance as a measure of similarity[22, 23]. Since the Hausdorff metric is sensitive to

outliers, they modified the metric into a K-th order Hausdorff metric (rather than just

abandoning symmetry).The new metric HK (A, B) is defined as the distance between

the K-th furthest matching pairs of A and B as opposed to the furthest matching

pairs. A problem arises when computing the reverse distance, i.e., the single sided

Hausdorff distance from the data to the template. It was not clear what part of the

observed data should be counted in the distance computation. A heuristic fix was

to choose the observed points that lie under the rectangular domain of the template.

However, another problem arises when attempting to recognize circles in drawings.

Since these circles may have lines passing through them, the reverse distance may be

large even when there is - otherwise - a complete matching. An additional uncom-

fortable consequence of using HK (A, B) instead of the usual H (A, B) is doubling the

computational time (or quadrupling the computational time over single sided Haus-

dorff distance h(A, B)). All these problems and others could have been avoided by

just dismissing the metric principle from the beginning, instead of viewing it at one

point as a kludge to handle scratches. Furthermore, the group attempted to do a

complete search of the space of deformations. Even when using multiresolution, this

brute force search is time consuming and cannot be generalized to handle more than
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a four dimensional space of deformations (translation and scaling in two directions).

Searching for one template ( a computer system) in an observed image (a room) took

90-250 seconds on a SPARC2 machine.
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Appendix A

T\4odified Fano Algorithm

Let a - Cl� C29 ... 9 CN be the transmitted address. Similarly, let r = d, 9 d29 ... 9 dm

be the received string. Due to the nature of the channel, M, the number of non-empty

characters received, can be larger or smaller than N.

Given r, the problem is to determine the closest a, in a distance measure to be

defined later, bearing in mind that this measure should tend to reduce the number of

insertions, deletions and substitutions.

Due to the special structure of mail addresses, we can organize them in a tree

format with each character represented by a branch. Specifically, the states ( assumed

2 letters) all stem from the root, followed by cities, ZIP Codes, street names and

numbers. Note that the number of different addresses (i.e. delivery points) in U.S.

is 118 million, and hence the tree of addresses just described can easily fit on a few

CD-ROM disks.

On the other hand, consider the received string r. Construct a graph representa-

tion of r. It is a linked list having M + I nodes and M branches corresponding to

dl, . . . , dm. In order to handle incorrect deletions, add to every node starting from

the root, a loop labeled 0. To handle incorrect insertions, join the node i to node %'+ 2

with an arc labeled didi+,, and do this for i -_ 1, . . . , M - 1. Finally, expand the graph

into a tree structure, rooted at node 1, by recursively copying the nodes. The result-

ing tree is infinite, but can be limited to length 2M for all practical purposes. What

we ended up with are two trees, one corresponding to the set of addresses, another
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for the received address, modified to allow for incorrect deletions and insertions. The

problem becomes - formally - that of finding the best match between the paths of the

two trees, where matching is being performed over paths of equal lengths.

The algorithm we will be using is a modification of the well-known Fano decoding

algorithm for convolutional codes. The idea is to start with 2 pointers at the root

of both trees. These pointers will move -together- forward or backward', until both

pointers reach a leaf.

To explain in more detail. Assume that we are at level 1 in both trees. Let a, and

r, be the sequences corresponding to the paths traversed so far in both trees. Define

the distance measure between a, and r, to be

1 P(a(')/r('))1 1 -IF (a,; ri) - In W B (A. 1)
w(al+,)

In this expression B is an arbitrary bias term to be selected later and w(j) is the

nominal probability of the jth letter of the channel output alphabet.

N+1

W(j) QWPUMZ

where Q(i) is the relative frequency of the character ci.

Note that, to make sure that only equal-level paths are considered, infinite cost

can be assigned for bypassing a leaf.

At this point, the algorithm proceeds in a fashion similar to Fano. We will adopt

the algorithm description from Gallager[13]. We shall allow only three kinds of moves:

forward, lateral, and backward. On a forward move, both pointers go one branch

to the right in both trees from the previously hypothesized node. Since the new

sequences a,+, and rj+, differ from the old only in the last position, the new value,

F(al+,.;,rl+,-) can be found from r(al;,rl) by adding one more term to the summation

'Lateral move may be performed by only one of them
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in Equation A. I.

1+ 1+1IF(al+l; r,+I) = r(al; ri) + In B
1bu (a(i)1+1

A lateral move is a move of only one pointer from one node to another node differing

only in the last branch of the tree. A backward move is a move one branch to the left

of both tree pointers. The new value is calculated from the old value by subtracting

the last term in the summation over i in A. 1. The rules of motion involve the value

171 of the current node being hypothesized, the value 171-1 of the node one branch

to the left of the current node, and a threshold T. The value of the threshold T

is constrained to change in increments of some fixed number A, the changes being

determined by the algorithm.

The initial conditions at the beginning are : both pointers at root, I'O -_ 0,

r'-1 = -oc. The algorithm follows rule I with the final threshold set at 0.

A forward move could take place by the pointers to any pair of nodes. We assume

a predetermined ordering among the nodes. A forward move always occurring at the

first node in both trees, and a lateral move occurring by the pointer in the a tree.

When the current node in the a tree is the last one, the pointer is reset to the first

node, and the r pointer is moved to next node. When both pointers reach the last

node, they are moved backward. In other words, we use dictionary order on the nodes

of the two trees.

Clearly, rule I is the rule that normally applies when the noise is not severe,

reaching a final decision in O(M) steps. When the noise is more severe, however, the

behavior will be considerably more complicated. It is interesting to observe however,

that if M is long enough, this algorithm is guaranteed to provide the correct decoding,

i.e., the closest match.

While the constructed tree for the received address relatively simplifies the anal-

ysis, their storage requirements are huge. Practically, we can use the graph represen-

tation which is more compact. Then, the algorithm can keep 2 stacks, each of width

2L to keep track of the path traversed so far. This stack will store the index of the
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Rule Conditions on Node Action to be Taken
Previous move Comparison Final Threshold Move

I F or L r',_1 < T +A; ri >A Raise F
2 F or L I'l-I > T +A; I', > A No change F
3 F or L any 171-1; r, < T No change L or B
4 B 171-1 < T; any r', Lower by A F
5 B Fjj �: T ;anyr, No change L or B

Table A.I: Rules of Motion for the recognition algorithm

a

0
C

Figure A-1: Modified Tree

branch chosen at every node so that, when the algorithm backtracks, it can simply

increment this index and move to next branch, thereby avoiding the possibility of the

algorithm falling in an infinite loop. One final word regarding B. For reasons outside

the scope of this article, B is to be chosen such that B -_ Eo (1, Q) (see Gallager[13]).

Note that this decoding scheme tends to best decode the beginning of the sequence

based on the redundancy available in the tail. Hence, the resulting decoded address

will have the correct "state name" with very high probability. This is precisely what

is needed in an application such as mail sorting. For the less the errors are in the

state and the city name the less are the costs, in time and money, of redirecting the

mail back to the proper destination.

Another advantage of this approach is that it decodes correct addresses in no time.

This results in a real-time overall average processing, compared to the query-based

techniques or n-gram statistics. Abbreviations can be handled in two ways. Either

include all possible abbreviations in the tree, e.g. street, st., road, rd, etc... Or, assign
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a low cost for dropping subsequent characters from the original address.
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