
May 1993 LIDS-TH-2177

Sponsor Acknowledgments

Anny Research Office
ARO DAAL03-86-K-0171

Anny Research Office
ARO DAAL03-92-G-01 15

Complexity Issues dealing with Networks that
Compute Boolean Functions

Upendra Vasant Chaudhari

This report is based on the unaltered thesis of Upendra Vasant Chaudhari submitted to the Department of
Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree
of Master of Science at the Massachusetts Institute of Technology in May 1993.

This research was conducted at the M.I.T. Laboratory for Information and Decision Systems
with research support gratefully acknowledged by the above mentioned sponsors.

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Complexity Issues dealing with Networks that

Compute Boolean Functions

by

Upendra Vasant Chaudhari

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1993

Upendra Vasant Chaudhari, MCMXCIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute copies

of this thesis document in whole or in part, and to grant others the
right to do so.

Author
Department of Electrical Engineering and Computer Science

May 11, 1993

C ertified by
Sanjoy K. Mitter

Professor of Electrical Engineering
Thesis Supervisor

A ccepted by ...
Campbell L. Searle

Chairman, Departmental Committee on Graduate Students

Complexity Issues dealing with Networks that Compute

Boolean Functions

by

Upendra Vasant Chaudhari

Submitted to the Department of Electrical Engineering and Computer Science
on May 11, 1993, in partial fufillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis will analyze Linear Threshold Functions as well as the complexity of
constructing minimal network structures composed of those functions for the task of
classification. The main contributions of this Thesis fall into two categories. The first
deals with Linear Threshold Functions. Here a novel methodology is presented to
determine the linear separability of Boolean functions which makes use of a matrix
formulation of the problem and reduces it to a vector formulation. The second part of
the thesis will show that the problem of finding a network with the fewest functional
elements, of the SAF class, which computes a specified Boolean function is intractable
in that this procedure implicitly solves an NP-complete problem.

Thesis Supervisor: Sanjoy K. Mitter
Title: Professor of Electrical Engineering

Acknowledgments

First and foremost I would like to thank Professor Sanjoy Mitter for his considerable

and significant contributions toward the direction, scope, and content of this thesis.

I have learned a great deal in this endeavor.

I very much appreciate the help that the LIDS staff has given me over the course

of my work. I have also found talking with the students in LIDS to be very valuable.

And of course I would like to thank my family for their support.

This work was supported by the Army Research Office under contracts DAAL03-

86-K-0171 and DAAL03-92-C-0115 (Center for Intelligent Control Systems).

3

Contents

1 Introduction 7

1.1 Contributions of the Thesis . 12

2 Transformation Between an MLP and a Decision Tree 13

2.1 MLPs to Decision Trees . 13

2.1.1 Decision Trees to MLPs . 16

2.2 Relevance . 16

3 Some Results for Perceptrons (of order 1) 17

3.1 A Formalism for Discussion . 17

3.2 A Different Approach . 18

3.3 A Linear Algebraic Formulation . 19

3.3.1 An Example of the use of Theorem 1 22

4 Some Results for Multi-Layered Perceptrons (of order 1) 23

4.1 Changing the Perceptron Function 23

4.2 Novel Complexity Measures . 26

4.3 Finding A Minimal Representation 28

4.4 A Second Method to Find A Minimal Representation 29

4.5 More Than Two Layers . 29

4.6 Complexity of Reduction . 30

4.6.1 Judd's Definitions and Results 30

4.7 Extensions . 31

4.7.1 Further Extensions . 39

4

5 Conclusions 40

5

List of Figures

1-1 A Decision Tree . 8

1-2 A Multi-Layered Perceptron . 10

4-1 A Directed Graph Representation of a Boolean Function 24

4-2 An MLP Layer . 25

4-3 Operation of One MLP Layer . 26

4-4 A minimal specification . 37

4-5 Judd's Architecture (computes the constructed task) 38

6

Chapter 1

Introduction

The area of classification is heavily studied. In the literature, two prominent clas-

sification schemes, Decision Trees and Neural Networks, get a significant amount of

the attention. The basic problem is simple: Given some data, there are various ways

that they can be arranged in an abstract data structure. For example, if A is a set

of n cars, then A can be partitioned into two sets Al- and A2 such that Al contains

all the cars in A will less than 50,000 miles on their odometers, and A2 has the rest.

The mileage on the odometer is a property of the elements of A, which may have

many more properties of interest. As more properties (color, age, etc.) are used, the

partition of A can be made finer and finer grained, i.e. more and more subsets are

created. Each element of any given subset that constitutes the partition is associated

with a label corresponding to that subset. Once this abstract partition is specified in

terms of properties, the relevant question is, how can one determine the appropriate

classification label of an observed object if its properties are known?

To answer this question, again abstractly, one can think pictorially in terms of

trees and networks. A Decision Tree is one such visualization and it can be thought of

as a succession of dependent decisions. That is, every decision made can be, though

it need not be, dependent on all the prior decisions made. A graphical way to view

such a partition is to think of a binary tree each node of which represents a decision

testing for the presence or absence of some given property. See figure 1-1. An object

is classified by traversing the tree starting at the root. Since the test at each node

7

is binary, either the left branch or the right branch of the tree is followed after the

decision at any given node. When a leaf is reached, the object is classified with the

label at the leaf.

f I

f

0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 M

Inputs

Figure 1-1: A Decision Tree

But a decision tree inherently specifies an order of importance on the properties,

i.e. some properties are checked before others, which can make the classification

independent of certain properties. Another structure, the feedforward network in

8

figure 1-2, can be used as a classifier where many decisions can be made in parallel.

This structure is best viewed as a succession of layers, with each layer consisting of

a set of nodes which make binary decisions. Here, in general, only nodes in the first

layer make decisions similar "in meaning" to those in the Decision Tree whereas the

rest make decisions about the previous layer's decisions. i.e. only the first layer nodes

test for properties of the observation. The output of the first, which is the input to

the next layer, is a binary vector representing decisions. Thus the layers after the

first make decisions about these initial property decisions.

Given these different structures, it is natural to ask if an optimal classifier can

be constructed. This involves, first of all, defining what "optimal" means. Then,

the question of whether it is practical to construct or "find" this structure becomes

important.

Breiman et al. give a procedure, the CART method (described in [1]), for growing

and pruning a Decision Tree based on certain classification error rates. In effect an

overly large tree is grown and then, using what is referred to as an honest estimate of

the error rate, the most favorable pruned tree is selected out of a given parameterized

set of possible trees. In [1] an analysis of a "hybrid" classifier is presented. The

structure studied can be thought of as a composition of Decision Trees with Multi-

Layered Perceptrons.

However, there are other ways to define and choose an optimal tree. Quinlan and

Rivest [2] use the Minimum Description Length Principle (MDLP) in order to pick, of

infer, their optimal, "best," tree. The use of the MDLP is elucidated when considering

a communication game [2]. Given a set of data and the properties and classification

label of each element in the set, the game is to transmit the classification information

using the fewest number of bits. This is of course dependent on the encoding scheme,

but given this, the MDLP can be thought of as choosing the tree that allows the

most compact representation of all of the classification information. A particular

tree has within its structure, information about the relationship of property values

to classification. The MDLP requires choosing a tree which captures the most useful

information.

9

f

f

MM

Intermediate Layers

r f f

1 2 3 4 3 6 7 0 0 0 n

Laputs

Figure 1-2: A Multi-Layered Perceptron

10

However, it is quite clear from the current research that Multi-Layered Percep-

trons (MLPs), a class of feedforward networks, are important classifiers which have a

significant relationship to Decision Trees. Sethi [3] has given a transformation from

Decision Trees to MLPs. In this thesis, a proof that a transformation in the reverse

direction exists is given. Hyafil and Rivest [4] have shown that the problem of find-

ing an optimal, based on external path length, Decision Tree is NP-complete. This

suggests that it is worthwhile studying the properties of MLPs to verify the educated

guess that an analogous problem for MLPs is intractable as well.

The questions that this thesis will address have to do with determining how hard,

in terms of computation, it is to find a minimal or in some sense "optimal" MLP

classification structure. This thesis will approach the problem of defining and finding

a minimal classifier by starting with Linear Threshold Functions. The capabilities of

the non-linear version of such functions have been examined by Minsky and Papert

[5]. (It must be noted that throughout most of this thesis, Perceptron win mean

Linear Threshold Function, and not the generally more powerful structure presented

in [5]) This thesis will present a different framework in which to study these functions

that will allow the proof of some lower bounds on their capabilities.

Then, the linear threshold functions will be used as the building blocks of a classi-

fication structure called a Multi-Layered Perceptron. Various properties of the MLP

will be defined. In particular minimality will be defined as the number of functions,

or graph nodes, required to classify a given set of objects. For purposes of clar-

ity, a boolean classification problem will be considered. Judd [6] has worked on the

problem of learnability in networks and has shown that the general problem of de-

ciding whether or not a given network architecture is consistent with a particular

input-output task is NP-complete. One goal of this thesis is to extend this work to

considerably reduce the architecture specification. In this way the thesis will deal

with arbitrary architectures of a given size rather than any specific architecture.

1.1 Contributions of the Thesis

The main contributions of this Thesis fall into two categories.

Linear Separability The first category deals with Linear Threshold Functions.

Here, a novel methodology is presented for determining the linear separability of

Boolean functions. Dertouzos has, quite a while back, looked at this problem. The

method presented here represents a different approach in that it makes use of a matrix

formulation of the original problem and reduces it to a vector formulation.

Minimization of Networks The second part of the thesis will address the problem

of finding a network with the fewest functional elements, of the SAF class, which

computes a specified Boolean function. In particular it will be shown that finding a

structure with this characteristic is intractable in that this procedure implicitly solves

an NP-complete problem.

12

Chapter 2

Transformation Between an 1\4LP

and a Decision Tree

In studying to the issue of network classifiers it is informative to make a connection

between the MLP and Decision Tree structures. -It is shown that, under circumstances

to be stated, any MLP structure can be Transformed into a Decision Tree. These

results in conjunction with those of Sethi [3], who has given a construction in the

reverse direction, establish a constructive equivalence between Decision Trees and

MLPs. This is important because any results that a ply to one structure may be

applicable to the other.

2.1 MLPs to Decision 'D-ees

Let the MLP have k layers.

Let layer i have mi perceptrons.

Let v denote a vertex of a hypercube.

Let b(v) be the binary coordinates of v.

Furthermore, let all Perceptrons have unlimited fanin.

A Decision Tree is a structure of the form given in Figure 1-1. The inputs can go

to all of the perceptrons, but the process starts at the root node, and the output of

the Perceptron at each node determines which of the two paths to take in traversing

. 9 13

the tree. Computation ends at a leaf, which classifies the input. In the computation

of a boolean function, this classification is an element of f 0, 11.

Any MLP computing a Boolean function can be transformed into one with a par-

titioning layer, an AND layer, and an OR layer as follows:

The output of layer i, 0j, is an m component binary vector which takes on the values

of the coordinates for the vertices of a unit hypercube, i.e. one that has coordinates

given by a binary vector, in R': Ojeb(vj).

The input to layer i = 1, the partition layer, is a vector in R'. Each subsequent

layer has an input that is the output of a Perceptron, described above.

The partition layer, P1, then can be viewed as giving information about where

the input lies in relation to a partition of the input space, with each Perceptron in

the layer providing a boolean answer indicating the placement of the input vector in

relation to its defining hyperplane.

Every perceptron in layers after the first, Pi, with i > 1, describes a set Si, of

vertices, those on one side of a hyperplane, of the unit hypercube in Rni-1. If the

inequality of the perceptron is satisfied then 0j-jESi,.

Let SVj-jj(S,) be a set of vertices in R"ni-1 described by a set of vertices S,, in

Rmi. Each binary vector in S,,, also to be referred to as a vertex, represents the

output of each Perceptron in the 1'h layer. If the output of Pi, is 1 then this j1h

Perceptron allows the set of vertices in Rj-, that satisfy its inequality. Similarly,

a 0 output means that the allowed set consists of the vertices in Rmj-� that do not

satisfy the inequality. This set will be referred to as the complement of the allowed

set when the output was 1. If a particular vector is at the output of layer i, then the

allowed set for that vector is the intersection of the allowed sets for each constituent

Perceptron determined by whether its output is 1 or 0 in the vector. And SVj-jj(S11)

is the union over all the vectors in S, of each vectors allowed set. Thus SVj-jj(S,)

= u I- 52, 11 nm.il f (Si,) where (letting v,,ES, be treated as a binary number, bin., where

Pi'i specifies the MSB) f (Si,) = Si, if the integer part of 2-1+1 * bin, is odd, and

f (Si,) = --,Si, if the integer part of 2-1+' * binq is even.

14

Layer k can be considered the classification layer. Each Pk, will describe a set of

vertices in Rm' , i.e. a set of outputs of the partitioning layer:

S Totj = Skj
k-i

S Totj = S Vk - 2,k - I (S'o'k-2 k-1)

S Totj = SVk-3,k-2 (STol
k-3 k-2

S Totj = SV1,2(sTot)1 2

1Totj is a set of outputs from the partitioning layer of the perceptron. Each of these

outputs constitutes a certain ANDing of the decisions of the constituent perceptrons.

PI,, in effect makes a decision as to whether a given input vector satisfies one of the
Totj

AND conditions in Si Since all that the output perceptron does is to test whether
Tot -an output of the partitioning layer is in its specified S; .7 , the MLP can be reduced to

a perceptron with only two layers above the partitioning layer. The layer immediately

above the partitioning layer will perform each of the AND operations in S Totj and1

the output layer above it will OR these together, which is what Pk, does[:]

It is important to note that this structural formulation is only possible if the fanin

of the Perceptrons is not a priori restricted. If a restriction were to be put on the fa in

of the constituent Perceptrons of the MLP, then it will not be possible for every MLP

to have this structure. For example, consider the case where the satisfying vertices

are in the intersection of 3 hyperplanes. If the restriction on the fanin is 2, then the

function cannot be represented in this way because 3 hyperplanes must be ANDed

together in the layer following the partitioning layer.

Once the MLP is in this structure, each of the ANDing layer nodes can be thought

of as a leaf of a degenerate Decision Tree constructed as a long chain: Arrange the

ANDing layer nodes in some way. Then start with the first node. If it is satisfied,

then output TRUE or 1. If not, then check the next node in the order, and repeat.

If all are unsatisfied, then output FALSE or 0.

2.1.1 Decision Trees to MLPs

As established previously a Decision Tree of the form in Figure 1-1 and a Multi-

Layered Perceptron of the form in Figure 1-2 are equivalent in the sense that one

can be transformed into the other in a straightforward manner. In these two figures

n is the number of inputs and m represents the fanin of the computations. The

illustrations take m = 2. Figure 1-2 has an arbitrary number of layers, but every node

in each layer has fanin m. In general, as Sethi points out, when a Decision Tree is

transformed into an MLP, the resulting structure will have 3 layers. The partitioning,

ANDing, and OIUng layers. In this case, all the nodes in the partitioning layer have

a fanin of m, but the ANDing and ORing layers can have greater fanin.

In Sethi's mapping, the nodes in the partitioning layer have a special relationship

to the nodes in the ANDing layer. In particular, each one of the partitioning Percep-

trons has to be an input to every ANDing Perceptron corresponding to the leaves in

the subtree when it is taken as the root.

2.2 Relevance

Much work [1] [2] has been devoted to the study of Decision Trees. And the results of

this section together with [3] suggest a concrete relationship between Decision Trees

and MLPs. This thesis then will be concerned with studying MLPs in the sequel.

16

Chapter 3

Some Results for Pereeptrons of

order 1

3.1 A Formalism for Discussion

A Perceptron [5] can be defined as a function

n

fin(�Pl, �02, IP3i ... I �On) 9(E aj�Oj),Rn �-4 fO, 11

j=1

where the function g(x) = I if x > 0 otherwise g(x) = 0. The action of a Perceptron

is to determine on which side of a given hyperplane its input, which can be viewed

as a vertex of a hypercube in n dimensions when the �pi are boolean, resides. The

Perceptron partitions the vertices of the hypercube into two linearly separable sets.

Call the number of such partitions pn. The equation of the hyperplane is Ei aivi =

0. Since there are a finite number of boolean functions of n variables, there is an

infinite number of hyperplanes which yield a single function. In the definition of the

Perceptron, i > 0 and i <- Pn, thus it is an index to a particular linear separation in

n dimensions and not to a particular hyperplane.

Let F be a boolean function of n variables , fo'lln �-, f 0, 11, and Fn,, be the

"Disjunctive Normal Form," or the unique reduced OR of ANDs representation of F,

17

i.e.

OR(maski, mask2, mask3,..., mask,)

where a group of variables ANDed together is referred to as a mask. Let

f -order = max

rnef set of masks in FJcardinality of the support of mask,)

measure of the com'lexity of the function F is the concept of order developed

by Minsky and Papert [5]. It is a property of the function F which is elucidated by

a Perceptron representation. F can be represented in terms of Perceptrons, e.g.

Fk = fim(masklmask2,mask3,...,maskn)

where the subscript k is used to indicate that the set of masks and function fim are

not unique. The order of a function F is

min(max (cardinality of the support of mask,))
k 'nef set of masks in Fi 1

3.2 A Different Approach

Presented here is a Linear Algebraic formulation of the problem of determining the

separation capability of a single Linear Threshold Function (LTF). As mentioned

previously, these are special cases of the Perceptrons, those of order 1. The result of

this section will be a precise methodology for determining whether a single LTF can

compute a given boolean function.

18

3.3 A Linear Algebraic Formulation

Consider a Boolean function of n variables and let:

A Ui 2n7U,,Ejo, 11n

L J
n

and Ui jallsequence-9{0, 11n}, further, let the first n rows of A In

Y ... Yi ... 2nspanjyj = 77(A'G')

2�-n

and Y is chosen such that all the elements are either -1, 0, or 1.

±1 0 0 0 ... 0
i.

0 ±1 0 0 ... 0

G 2n

0 ... 0 ±1

G is a premultiplier for A, where a - I in the i1h row indicates that the vertex

given by the binary vector ui is "chosen." Thus G describes the group of vertices, or

assignment of boolean variables, that should satisfy a given boolean equation.

If there are two groups G, and G2, possibly choosing some of the same vertices,

then the premultiplier becomes:

G (Gi - G2)]' + (Gi + G2)
2 2

19

This process can be iterated for more groups.

If, on the other hand, the Gi are restricted to choose different vertices, then:

G=HGj

Let T = [11 ... 11T
I- " .'

2n

Definition A Boolean function of n bits is linearly separable if the vertices of the

binary hypercube where it evaluates to TRUE are separated by an n - 1 dimensional

plane from those that evaluate to FALSE. i.e. if it is computable by an LTF.

Lemma 1 The Boolean function described by G, n z n, is linearly separable iff.- 3

iu, and 0 such that:

GAT > s9n(O) 101 G-f

Proof: Each row of the above inequality is an LTF constraint, one for each binary

vertex in n dimensions. A -1 in the i" row of G simply reverses the inequality in the

LTF constraint.

(==�>) If the matrix inequality can be satisfied withT and 0, then the hyperplane that

separates the vertices is given by 7 - T = 0.

Let T - �7 = O' be the hyperplane that separates the Boolean function. Then

�7 and O' will satisfy the matrix inequality C:1

Theorem 1 The Boolean function given by G, n z n, is linearly separable iff.-

3 W, and 0 such that:
(9)yT yTy,--sgn GI > 1

for some �Fi > 0. Y' and W, are the top n rows of Y and �U respectively.

20

Proof:

From Lemma 1 the Boolean function given by G, n x n, is linearly separable iff:

GAw' = sgn(O)GI +'F

for some:U > 0, which by the Theorem of the Alterna tive, has a solution iff:

yT (sgn(O)GI + 0, f or some F > 0 (3.1)

Since A has the special structure described previously, Y = [YrTII2--n]T where all

the elements are either -1, 0, or 1. Then equation 3.1 becomes:

yT (sgn(O)GI + F) = 0

yT-�U -sgn(O)yT GI

[y1T)yT
112--nlf = -sgn(O GI (3.2)

[F1-T:57TjT ;U7T :U2-TLet:U where 1 [Vi, Vn1, [VN+1 9 ... 9 V2-1, and:U 1V1, V2n I

Then from equation 3.2,

YIT O)yT
Tj- + 12n-nT2 = -sgn(Gf

O)yT yT-V7
I2--n�U-2 = -(sgn(GI + 1)

O)yTG-1 + yTV--(sgn(1)

choose �Uj- to some positive vector, then the solution is appropriate if �U-2 > 0, or if

(O)yT yT:U--sgn GI > 1

21

3.3.1 An]Example of the use of Theorem 1

Consider the vector U and define H(1) vectors of Hamming distance I from U1.

Claim Any Boolean Function that evaluates to TRUE for U and every vi E h(l),

where h(l) C H(1), and to FALSE otherwise is computable by an LTF.

Proof:

Condition from Theorem 1

(0)yTG-1 > yIT-V7-sgn

for some :U-1 > 0.

With G restricted as above, yTG = a constant matrix: (GA)T can have negative

components only in the first n columns, which pick out only values of magnitude

I from Y. These multiply Y' in the null space expression. Since the rest of Y only

chooses a -value of 1 from GA all that is necessary is that every row in Y corresponding

to a chosen vertex should have the opposite sign of that row in G =#, GY = a constant

matrix =#- yT G = a constant matrix.

In particular, 1,T G = [G IT JI2--n], where G IT has only O's and -1's in an rows. So

it can be deduced that yT GI is a vector with all negative components. So in the

equation

(9)yT yT�F-sgn Gf > 1

sgn(O) and Vj- can always be chosen so that the equation is satisfied ===> all G's

restricted as above are separable.

22

C hapt er 4

Soxne Results for A4ulti'-Layered

Perceptrons of order 1

A Multi-Layer Perceptron (MLP) will be defined as a structure that has an arbitrary

number of layers, each layer being composed of an arbitrary number of Perceptrons.

To expand the previous notation, the expression

F = f3(fl' (cti, ... , a,,), fi(f8' (ctl, ct.), f7' (cel, ... , a,,,,)))

describes an MLP.

Let GF be directed graph representation of F where the operations are the nodes,

and where each of the node operation's operands specify an edge from that operand,

which may be another node or a variable, to the node. e.g. if

F = f3(fl' (a,, ... , a,-.), fi(f8' (cti, .--, ci,.), f7' (a,, . _., a,-.)))

as before, then G is the directed graph of Figure 4-1.

4.1 Changing the Perceptron]Function

The threshold function for each Perceptron need not always be the step function.

When sigmoid type thresholds are used instead of the step function, the propagation

23

2
f

3

f
5

f
I

m
f

7

f
8

* 0

0 * 0

1 2 .3 4 5 6 7 0 0 * m

Inputs

I
Figure 4-1: A Directed Graph Representation of a Boolean Function

24

of output values through a network created with these functions will result in different

output values even when those structures were equivalent with the step threshold.

One way to think about the threshold function is to view it as a convolution of the

step discontinuity with a smoothing function, e.g. a sigmoid is the convolution of a

step with a Gaussian (7]. Denote the step function by u(x) and the smoothing funct ion

by g(x). Then the threshold, centered around zero, is given by t(x) u(x) * g(x).

X j+1 Xj+1 X j+1
2 N

t2 tj3
................

S S j
2 S

X X X

Figure 4-2: An MLP Layer

The output of a perceptron can be described as a sample of the above convolution

sum taken at x = Fj-aj�oi - 0. Figure 4-2 is a schematic representation of layer j
j1h j+1in a given MLP. The x4 are the inputs to the layer and the x are its outputs.

sit = Ek a iX' is the weighted sum of the perceptron inputs. Si tj is the value

where the convolution sum is sampled to get the output of the i1h perceptron in the

jth layer.

Figure 4-3 is a description of the propagation of inputs to one layer, the jth,

through a perceptron in the next layer,'the i + 18t. The ith impulse in i(x) is located

25

U(X) 0)

lim S X g(X) X t
s->O C

X X X X
X 1 27 N

Figure 4-3: Operation of One MLP Layer

at the combination of inputs and threshold for the i" perceptron in the j" layer, and

its height is equal to the coefficient multiplier for the i" input in the perceptron in the

next layer. Figure 4-3 makes use of the Final Value Theorem for Laplace Transforms:

the final value of the x domain operations shown is the output of the perceptron in

the j + 1" layer.

4.2 Novel Complexity Measures

To gain a better understanding of the computation processes, it is necessary to look

at the complexity of the structure, or the directed graph GF, as well as that of the

boolean function itself.

As stated earlier, the representation of F in terms of nested Perceptrons is not

unique. And in fact, one measure of the complexity of the boolean function F is the

number of ways that it can be represented as an MLP. This idea can be connected to

that of weight space volume described in [8]. One way to view weight space volume is

to think of it as the size of the set of weight specifications that compute a particular

function on a particular MLP architecture. The idea presented here measures the

number of architectures rather than the particular weight specifications. In this way

it is hoped that a more informative notion will emerge.

But perhaps a more informative measure of this structural complexity, which will

be called the path complexity, is given by analyzing the number of paths over which

a particular input node has influence. The idea is more clearly seen from GF- In

26

Figure 4-1, every input takes three paths to the output node. This information is

also present in the representation of F as an expression of nested Perceptrons.

Cpath = min max (# of paths to output))
MLPj(F) input nodes

This is a measure of the distributedness of the computation process in that it

gives an idea of the flow of information in a computation. It is hoped that in this

formalism will be captured the salient features of local computation.

The complexity measure of interest in this thesis, however, is size. The size of an

MLP will be taken to be the number of nodes in its directed graph representation.

This choice is motivated by [41, where the number of decisions was an important

measure. In the MLP context, the number of nodes is a fundamental quantity because

it is equal to the number of partition tests (hyperplane tests) plus the number of

decisions that need to be made on the results of those tests to compute a given

function.

Here the relevant question will be: "How easy is it to determine the minimum size

MLP for a boolean classification task?" And, the structure of interest is the MLP

with LTFs in the nodes.

27

4.3 Finding A Minimal Representation

Having established the results on linear separability, it is now possible to provide a

method, albeit brute force, to enumerate the possible MLP structures for any given

boolean function. Also if the number of layers > 2 is specified in advance, it is possible

to find the minimal MLP for a given boolean function. An MLP will be said to be

minimal if it has the fewest number of linear separation operations.

Given a boolean function F of n variables, the first step is to find the linearly

separable (l.s.) sets of vertices for an n dimensional hypercube. LS(n) = the

number of linearly separable sets of vertices of an n dimensional hypercube. This is

the critical step that is made possible by the approach outlined earlier. Call the set

of Ls. sets for n dimensions SI (the subscript signifies the layer) and let IS11 = ns,.

Then s, E SI can be separated in the partition layer.

Define S2 to be a set of sets such that S2 1E S2 is a set of vertices separated by

performing an Ls. operation on an arbitrary number of outputs of the I.s. functions

described by SI. Then

ns, Si

I S21 LS(i)

This counts all of the possibilities, possibly with repetition due to degeneracies. Note

that for this step the I.s. sets of a IS, I dimensional hypercube are required, but these

can be obtained as stated earlier. Then S3, S4, etc. can be defined in the same way:

nSh_l (ns,,-,
I Sk I LS(i)

Each function in any of the sets, e.g Sk f Sk, describes a boolean function by giving

a set of hypercube vertices, in the input space, that are "accepted." The minimal

MLP for a given boolean function is the first function found that accepts the right set

where the search is started with the function that has the smallest number of units

in SI. When SI is used up, the search is continued in S2 starting with the function

that uses the fewest elements, or linear separations, total (counting the elements in

28

all the previous layers). This process is continued until the result is obtained. If a

restriction is placed on the number of layers ahead of time, then the search can be

terminated after all of the structures in that many layers are tested.

4.4 A Second Method to Find A Minimal Re-pre-

sentation

If the minimal representation is desired, without a restriction on the number of layers,

then one can simply consider in succession all MLP's with 1 unit, then 2 units, then

3 ... until a structure is found that represents the Boolean function of interest. A

minimal representation is thus guaranteed.

4.5 More Than Two Layers

Since every function' can be computed in two layers, given the structures described

here, adding more layers does not broaden the class of boolean functions that are

computable. Each addition of a layer though, does increase the number of structures

that are possible. So the density of structures for computing any particular boolean

function is increasing with the number of layers beyond two. This is relevant in

the case where boolean functions are being learned by a net. It suggests that using

a greater number of layers will increase the probability that the right function will

be learned on the correct architecture. Also robustness and generalization may be

increased.

29

4.6 Complexity of Reduction

In this section the tractability, or computational complexity, of finding minimal MLPs

will be studied. In [6] Judd has looked at the problem of determining whether or not

a specific architecture can compute a given task. Here, his results are extended to

reduce the specification of the architecture.

4.6.1 Judd's Definitions and Results

AlPERF(SAF,,.) < A, T > : 3 F e SAF,,, : T is consistent with MF

A is an architecture which is a 5-tuple A = (P, V, S, R, E) where
P is a set of posts,
V is a set of n nodes, into which the functions will be loaded,
S is a set of a input posts = P - V,
R is a set of r output posts: a subset of P, and
E is a set of directed edges: a subset of (vi, vj) : viEP, vjeV, i < j
Also , let the set of input posts to node Vk be denoted p(Vk) = Vj : (Vj, Vk),eE.

A task T is a set of pairs of binary inputs and responses, where some
bits in the response may not be significant.

F is a function configuration of SAF, that is loaded in the
architecture.

SAFn, are single-AND functions where inverters can be placed on
any number of the inputs or output.

MF' is a mapping defined when the architecture A is loaded
with the functions in configuration F.

T is consistent with f = MFA if it is a subset of f (a, p) f (o) agrees
with p on the significant bitsi.

Theorem 2 PERF(SAFn.) is NP-complete.

A proof can be found in [6].

30

4.7 Extensions

In this section, by extending Judd's work, it is shown that the more general language

COMP(SAF,,.) is NP-complete, which suggests that the problem of finding minimal

architectures is intractable.

COMP(SAF,,.) S, f lij, T > : 3 an architecture A and
Fe SAF,,. where A has S function nodes with
li nodes in layer i and where the inputs to layer i = the
outputs of layer i - 1, such that T is contained in MFAj

Theorem 3 COMP(SAF,,.) is NP-c6mplete.

Issues in Proof:

Judd shows that SAT can be "easily" (i.e. in polynomial time) transformed to

PERF(SAF,,.). However, he has knowledge of the connections between nodes in the

architecture. In transforming SAT to COMP(SAF,,,) no architecture connections

can be specified. To account for this lack of connection specification, T is augmented

with i/o pairs that enforce independence.

Proof

1. COMP(SAF,,.) e NP:

Non-deterministically guess an architecture of size S (there are a finite number) and

then resort to the fact that PERFSAF,,,,. is NP-complete.

2. SAT <p COMP(SAF,.) (:!�p means polynomial time reducible to):

Let 4� = an instance of SAT with w variables and m clauses

Construct T and choose S, and flij in polynomial time as follows:

Let -y = U where the length of y = w and each bit in -/ corresponds to a variable in

4� arranged in some order.

For each clause, i, in (b construct:

+ Ei: ith variable e clause vector with i" bit set if complemented in clause

-yijo = -yi with j1h clause bit flipped

31

,yijl -yj with jt' clause bit and all non - clause bits f lipped

Zyf -yj U -yj with all non - clause bits f lipped

ago {Oi-l O - OW-iI
{ji-1 0. jW-ij

alo {Oi-l i OW-i
S

all {ii-1 i 1W-iZ

From the construction, let V V1 U V2 where V, are the w nodes that correspond to

the first w bits of the output in T, and V2 are the last m nodes in that output. VI

and V2 are layers 1 and 2 respectively. Then let the functions assigned to the nodes

be referenced as fij for the jt' node in Vi = Vij.

Tj I(O aik, *jl j *w+m-i):i < i < W, and j, k E 10, 111

T2a {(O *W 0 *M-i): yi',E -yf for each clause ij

T2b j(O -Yijk, *W i-l *M-i): < j < Iclause il and ke 10, 11 for each clause

ij

T2 = T2 a U T2 b

T3 = j(1 - 0 W t *W - IM)l

T T, U T2 U T3

S w + M

11 w and 12 = M

The task given here is an augmented version of the task used by Judd to show

NP-completeness of PERF(SAF,.). The extension allows the exclusion of a specific

architecture and permits the question: "Can this function be computed on an archi-

tecture with L layers and of size ST' rather than "Can this architecture compute this

function?"

It must now be shown that 3 Q is satisfied < S, 111, 121, T > c COMP(SAF,,,)

32

where Q is the string of O's and 1's corresponding to a satisfying assignment for 'C

3 11 : 4� is satisfied =#- < S, 111, 121, T > e COMP(SAF,,)

This is evident from Judd"s construction: The idea is to let the first layer nodes

represent the variables of (b and the second layer nodes, the clauses of 1. Then load

the it' node in the first layer with the SAF

AX-Y) Y if 0
11<i> if X = 1

The it' node in the second row should be loaded with the SAF

0 if T = the concatenation of the bits of yi that correspond

f 09) to variables in clause i,

1 otherwise.

The nodes in the first layer will have two inputs, a variable input and a solution

input. When the solution input, x above, is set to 0 the output of the first layer nodes

will be the variable value. So, T, will be consistent with the mapping induced by the

above functions.

This being the case, bi definition the nodes in the second layer, whose inputs

will be taken to be the first layer outputs that correspond to the variables in the

corresponding clause, will have output equal to 0 when the solution bit is set to 0 and

the other inputs(variables) are set such that the corresponding clause is not satisfied.

And so, T2 is consistent with the induced mapping.

Since there exists an Q that satisfies (b, then there must exist outputs of the first

layer such that the second layer nodes all have I as their output. Thus T3 is consistent.

Note that the satisfying assignment is in no way specified because the first layer nodes

could be either in the AND or the OR configuration.

< S, 111, 121, T > E COMP(SAF,,.) ==:� 3 il : 4� is satisf ied

This is true because the basic idea behind the extension is that now T, and T2= T2.

U T2b actually check that the architecture is correct, thus eliminating the need for its

33

complete specification.

b b V 'd

a AX

b C1 qe r

I 0 1 X

A 1 output should A 0 output should
stay 1 if any stay 0 if any
noninput bits noninput bits
are flipped. are flipped.

Figure 4.7 shows the two possible configurations for an SAF. In the AND config-

uration, if the output of the node is a 1, then flipping any combination of bits which

are not inputs to the node will keep the output at 1. And flipping any combination of

bits which include inputs to the node will change the output to 1. A similar argument

can be made for the OR configuration with a 0 output initially.

So if it is enforced in the task that given the output of a certain node in layer i

is a 1, it should remain a 1 when certain output bits in layer i - 1 are flipped and

also that given the output is a 0 it should remain a 0 when the same bits are flipped,

then the output of that node is independent of those bits and they are not inputs to

the node. This is the fundamental idea that allows the reduction in specification of

the architecture.

Using this idea T, makes sure that the first layer nodes are properly connected

such that when a particular "solution" bit in the input string, not corresponding to

a variable in 4�, is set to 0, then the output of the ih node in the first layer is exactly

the i1h input variable. When the solution bit is set to 1, the outputs of the first layer

are unspecified.

34

Using this information then, T2 completely specifies the behavior of each clause in

4,: T2. checks that the inputs �OTresponding to variables in clause i are the only ones

that affect the output of V2,j. If a clause is not satisfied, flipping a variable value in it

will make it so. So T2. checks that flipping bits corresponding to variables not in the

i" clause keeps the output of V2,j 0 given that it was initially 0. T2b checks that the

inputs to node V2,j have the correct complementation according to clause i, i.e. given

that the output of V2,j is 0, it checks that flipping a bit corresponding to a variable

in clause i changes the output of V2,j to 1.

T3 3 assignment of inputs of the layer 2 nodes that set all the outputs to 1

==:�- 3 11 because from the definition of COMP(SAF,,.) only.the first layer outputs

affect the second layer

Note The fanin of the nodes in the MLP may be restricted, in the above language,

to be equal to either 2 or the maximum number of variables in a clause, whichever

is greater, without affecting the validity of the theorem. In fact, since 3SAT in

NP-complete, the theorem will hold even if the fanin were restricted to 3.

The following example, adapted from Judd [6], illustrates the idea of the proof.

Let 4� = (Vi- V U2 V U3) A (U2 V U3- V U-4) be a candidate element of the SAT

language. Then construct an instance �f COMP(SAF,,.) as follows:

Let -y = 0 0 0 0 where each bit in -y corresponds to U1 U2 U3 and U4 respectively.

'Yj = 1000

-12 = 0 0 1 1

-Y110 = 0 0 0 0

-f120 = 1 1 0 0

'/130 = 1 0 1 0

'1210 = 0 1 1 1

'7220 = 0 0 0 1

-Y230 = 0 0 1 0

-f1j, 0 0 0 1

7121 1 1 0 1

35

'fl3l I 0 1 1

7211

-1221 1 0 0 1

7231 1 0 1 0

{1 0 0 0, 1 0 0 11

2 10 0 1 1, 1 0 1 11

ago = {Oi-1 0 ow-ij
I

agi = Iii-I o iw-ii
t

alo = {Oi-1 1 ow-ij
I

all = {ji-1 1 jw-ij

T, {(O 0 0 0 0, 0 (O 0 1 1 1, 0 (o 1 o o o, 1
(O 1 1 1 1, 1 (O 0 0 0 0, 0 (O 1 0 1 1, 0
(O 0 1 0 0, 1 (O 1 1 1 1, I (O 0 0 0 0, 0
(O 1 1 0 1, 0 (O 0 0 1 0, 1 (O 1 1 1 1,
(O 0 0 0 0, *0 (O 1 1 1 0, 0 (O 0 0 0 1, 1
(O 1 1 1 1, 1

T24 I(O 1 0 0 0, 0 *), (O 1 0 0 1, 0 (O 0 0 1 1, 0),

(O 1 0 1 1, O)j

T2b {(O 0 0 0 0, 1 *), (O 1 1 0 0, 1 (O 1 0 1 0,

(O 0 1 1 1, * 0), (0000 1� * 0), (O 0 0 1 0, 0),

(O 0 0 0 1, 1 *), (O 1 1 0 1, 1 *), (O 1 0 1 1, *),

(O I 1 1 1, 0), (O 1 0 0 1, 0), (O 1 0 1 0, O)j

T2 T2. U T2 b

36

T3 I 0 0 0 0,

T T, U T2 U T3

The instance of COMP(SAF,,,) is < 6,2,14,21, T > which only specifies what is

shown in figure 4-4 for the architecture. No inter-layer connections are given, with

the result that the significant specification is the size.

V2, 1 V2, 2

f2 , 1

V V V V1, 2 1, 3 1, 4

f, f, , 3

VO, 0 VO, 1 VO, 2 VO, 3 VO, 4

Figure 4-4: A Minimal specification

3 11 4� is satisfied ==:,-. < 6,2, f 4,2}, T > e COMP(SAF,.)

That this is true can be seen from figure 4-5, where the first and second layer

functions are as defined previously in Judd's construction.

< S7 L7 f lij, T > e- COMP(SAF,,.) ==#- I Q : 4� is satisf ied

37

v v2, 1 2 2

vif 1 11 1, 2 v 1 3 V1 4

2 3 f

vo, 1 VO, 2 VO, 3 VO, 4

v 0, 0

Figure 4-5: Judd's Architecture (computes the constructed task)

38

Studying the task reveals this to be true. T:3 ===* 3 an assignment to the outputs

of layer 1 such that all the layer 2 nodes, i.e. all the clauses, have value 1.

4.7.1 Further Extensions

COMPS(SAF,,.) = {< S, 11ij, T > : 3 an architecture A and
F e SAF,",. where A has < S function nodes with
< Ii nodes in a layer and where the inputs to layer i = the
outputs of layer i - 1, such that T, possibly with some completely

A}unspecified outputs removed, is contained in MF

Theorem COMPS(SAF,,,) is NP-complete.

Idea:

Given < S, (Iij, T > construct < S, 11ij, T >, Le the transformation

is the identity function.

< S, 11ij, T > e COMP(SAF,,.) =:�, < S, {Iij, T > e COMPS(SAF,,,)

Directly.

< S, {41, T > E COMPS(SAF,,.) =#, < S, 141, T > e COMP(SAF,,,)

Assume the first can be done with a < S nodes then it can be

done with S nodes by adding trivial nodes.

Consider the problem of determining the I-layer minimal architecture that com-

putes a particular Boolean function (a Task). If this could be solved easily, i.e. in

polynomial time, then this would imply that COMPS(SAF,,.) could be tractably

decided. However, COMPS(SAF,,.) is NP-complete and is considered intractable

which implies that the minimization problem is intractable as well.

39

-Chapter 5

Conclusions

The results of this thesis fall into two categories. Those that deal with linear threshold

functions and those that deal with Multi-Layered Perceptrons. First, A constructive

relationship was demonstrated between Decision Trees and Multi-Layered Perceptrons

as justification for the study of MLPs.

The main interest in this thesis however, was the minimization problem that dealt

with finding the mi nimal, in terms of functional nodes, MLP architecture of a given

number of layers that computes a specified Boolean input/output task. Extension of

Judd's work gives justification to believe that finding minimal MLP structures where

SAF,,, are the functional units is intractable.

The Linear Algebraic framework de'�eloped reduces a problem using matrix in-

equalities to one that uses vector inequalities. If one is interested in a Boolean func-

tion of n bits then the computation involved in determining linear separability uses

exponentially sized structures. However, the framework is useful conceptually, as was

demonstrated in the example.

Further research needs to be done to extend the result to the general LTF case.

In particular, it must be determined whether or not the Linear Algebraic framework

will allow for the specification of an appropriate polynomial size task in the proof of

the NP-completeness theorem.

40

Bibliography

[1] Saul B. Gelfand, C. IS. Ravishankar, and Edward J. Delp. An iterative growing and

pruning algorithm for classification tree design. IEEE Trans. on Pattern Analysis

and Machine Intelligence, 13(2):163-174, February 1991.

[2] J. Ross Quinlan and Ronald L. Rivest. Inferring decision trees using the minimum

description length principle. Technical report, September 1987.

[31 Ishwar K. Sethi. Entropy nets: From decision trees to neural networks. In Proc.

IEEE, volume 78, pages 1605-1613, October 1990.

[41 Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees

is np-complete. Information Processing Letters, 5(l):15-17, May 1976.

[5] Marvin L. Minsky and Seymour A. Papert. Perceptrons. The MIT Press, Cam-

bridge, MA, 1969.

[6] J. Stephen Judd. Complexity of connectionist learning with various node func-

tions. Technical Report 87-60, COINS, July 1987.

[7] Tom Richardson. Private communication t o Prof. Mitter.

[8] D. B. Schwartz, V. K. Samalam, Sara A. Solla, and J. S. Denker. Exhaustive

learning. Neural Computation, (2):374-385, 1990.

41

