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ABSTRACT

The problem of filtering for bilinear systems is considered. Because
the optimal filter cannot be realized, suboptimal filters are considered.
The optimal Tinear filter is derived, and asymptotic behavior of this
filter is discussed.

Unconditional moments of the state of a bilinear system can be cal-
culated by solving a finite set of ordinary differential equations. This
property makes these systems suitable for the application of various
tensor methods, among them the creation of various pseudo-observables to
improve linear filter performance, and nonlinear post-processing of
optimal linear estimates. These methods result in suboptimal nonlinear
filters that can outperform the optimal linear filter. The nonlinear
filters considered in this research share a highly desirable property
with the Tinear filter: the gains do not depend on the observation and
thus may be calculated off-l1ine, which greatly reduces the computational
burden associated with filter implementation.

The performance of a nonlinear post-processor type filter is evaluated
for a phase tracking problem and the cubic sensor probiem. Performance
for the phase tracking problem is poor. However, in a problem of estima-
tion for rotational processes inherent in the phase tracking problem,
the nonlinear post-processor provides up to nine percent reduction in
mean square error (relative to the optimal Tinear filter). A reduction
in filtering mean square error is also obtained by nonlinear post-processing
in the cubic sensor problem.
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CHAPTER 1
INTRODUCTIGN

A significant feature of the well-known Kalman filtering problem
js that the conditional probability density of the state Xy given the re-

lTated observation

Yi = {ys, t0<s<t} : : (1.1)

is a Gaussian density. Thus, in.order to determine the minimum variance
state estimate and its performance, the filtering algorithm needs only to
propagate the conditional mean and conditional covariance. These two
parameters completely characterize the conditional prdbabi1ity density.

However, in the general nonlinear filtering problem

dx, f(xe>t)dt +G(x,,t)d8, : - (1.2)

dyt = h(xt,t)dt-i-M(xt,'f)dnt

this fortuitous situation does not exist. The conditional density
p(xt,tlYt) cannot, in‘general, be characterized.by a finite parameter
set. Thus, in most nonlinear problems of practical intérest, one is
forced to consider suboptima] filters.

The particular problem to be considered in this thesis is filtering
for bilinear systems. The term "bilinear" refers to the fact that systems
of this form are linear in the state, and linear in the driving term,

but not jointly linear. Bilinear systems are sometimes referred to as
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linear systems with state dependent (or state multiplicative) noise.
The exact model to be considered can be found in Chapter 2.

Due to the presence of state-multiplicative noise in the bilinear
estimation problem, the conditional density of interest is not Gaussian. '
Thus the optimal nonlinear filter is infinite dimensional, which leads
to the study bf suboptimal filters. An approach that can be used is to
obtain the minimum variancé filter within some limited class. For..7
example, one might try to determine the optimal linear filter. This
filter is deriéed in Chaptef 2. Another approach might be to obtain the
optimal filter within some particular class of nonlinear filters. Be-

cause the unconditional moments of bilinear $ystems are easily calculated,

this approach is particularly useful for these systems. Several nonlinear

filters that make use of both the above noted property and the linear

- minimum variance filter are considered in Chapter 3.

One might ask "Why are we so interested in f11terihg for'bi1inear
systems?" The answer is that models for many real world problems are
naturally bilinear, among them being models for lossless electrical net-
works, population dynamics, nuclear reactors, and some bib]ogica] processes.
Furthermofe, recent work has indicated that arbitrarily good bilinear
approximations to deterministic nonlinear systems can bg obtained. A
problem of current research interest is the extension of these ideas to
stochastic nonlinear systems. Significant results in this area couid
lead to increased interest in thg performance of nonlinear filters for
bilinear systems.

 Two app1ications of nonlinear filters for bilinear systems are con-

sidered in this theéis. In Chapter 4, the methods'developed here are



applied to the well-known phase tracking problem. Another nonlinear
estimation problem, the cubic sensor, is considered in Chapter 5.
Quantitative results are giveh for both of the applications. Finally,
comments and conclusions motivated by this research are presented in

Chapter 6.
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CHAPTER 2

OPTIMAL LINEAR FILTERING FOR BILINEAR SYSTEMS

In this chapter, the optimal linear filter for bilinear stochastic'
systems is derived and certain properties of the filter are discussed.
The Tinear filter discussed here will play an essential role 1p the
nonlinear fi1térs to be discuésed in Chapter 3. |

Section 2.1 reviews elements of stochastic calculus, specifically
mean square convergence and the definition of the Ito stochastic inte-
gral. Following this brief review, the optimal 1inear filter is derived.
The derivation is based on the orthogonal projections theorem, and fol-
Tows Kailath's innovations derivation of the Kalman filter [1]. It
shouid be noted that this filter has been derived previously by seVéra]
others, among them Gustafson [2]Awho obtained the continuous filter
from the discrete fi1ter'by a careful limiting argument. Section 2.3

discusses asymptotic behavior and stability of the optimal linear filter.

2.1 Properties of the Ito Integral

In order to discuss certain properties of the.Ito integral which
are needed in the linear fi1ter derivation, a brief ré&iew will be
given. A more detailed exposition of various elements of stochastic
calculus can be found in Jazwinski [3].

Before a stochastic integral can be defined, some type of con-

vergence concept is necessary. The foT]owing definition will be used.
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Given a sequence of approximations Xq to a random variable x, with
2
E[xn ] < » for all n (2.1)
and

E[x%] < : (2.2)

we say that X, converges to x in the mean square sense if

Tim E[(x - xn)z] = 0 | (2.3)

N=>
In this case we call x the mean square 1limit of'{xn}, and write

1.im. x. = x o ‘254)

where 1.i.m. stands for "limit in the mean."
The Ito stochastic integral is one way to define integrals of the

form‘
b .
EROEN » (2.5)
a

where 8, is a Brownian motion process and the function gt(m) is random.
Suppose that {gt"(w)} is a sequence of step functions that converges to

‘ gt(m) in the sense that

b
[a E0(g (0) - 9,"(w)%dt » 0 as n»= (2.6)

12




Then the Ito integral is defined by

b b N
J gt(m)dst = 1.1i.m. J 94 (w)dst
a - a

n-+ow
(2.7)
T g, ") ) |
= 1.1.m. g w)(B -B
o0 420 i RIS

where p =max (t1+1-ti). It is shown in Doob [4] that the c]ass'o?
; .

functions gt(w) which satisfy

1) g,(w) independent of {8, -8, : tst <t
t tk t

b 2
2) | ellg, et < = (2.9)
a

can be approximatéd in the sense of (2.6).

With the definition of the Ito integral as given in (2.7), it is

easy to show that
b _
E[J g, (w)dg,] = 0 (2.10)
a

and

b b 2 b
L EROIN RN OEA [ Lo (wry oot (2.11)

with c? being the variance parameter of the Brownian motion_st, and

gt(m) and ft(w) being random functions which satisfy (2.8) and (2.9).
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These propérties will prove useful in the linear filter derivation to

follow in Section 2.2.

Stochastic Differential Equations

At this stage we will briefly discuss stochastic differential equa-
tions and the Ito differential rule. By a stochastic differentiél equa-

tion we mean equations of the form

dxt = f(xt,t)dt-l-G(xt,t)dBt (%.12)

where By is a Brownian motion process independent of Xy - By (2.12)
0
we really mean that

t

f(xs,S)ds-+J G(x¢»s)d8

Xy = xto*-f s (2.13)

t

) 0

with the first integra]vbeing a mean square Riemann integral énd the

second an Ito stochastic integral. In [5] Wong discusses the existence

and uniqueness of solutions to (2.12). Wong also discusses the modeling
problem, that is, the question of how well (2.12) models stochastic dynami-

cal systems driven by white noise, such as
d _ . -
r i f(xt,t)-i-G(xt,t)wt (2.14)

where &t can be considered to be the formal derivative of the Brownién
motion Bt’ Further digcussion of the modeling'prob]em can be found in
Clark [6].

We are now in a position to state one of the more useful results of

stochastic calculus, that being the Ito differential rule: The rule is

14



stated here as given in Jazwinski [3].
Let the random process Xt be the unique solution of the vector

Ito equation

dx, = Flxt)dt +Gx,,t)d8,, t>t, | ~ (2.15)

where X4 and f(xt,t) are n-vectors, G(xt,t) is nxm, and B is an m-ve;tor
Brownian motion process with E[dstd8%1;= Q(t)dt. Let ¢(x£,t) be § scalar

va]ugd real function which is continuously differentiable in t and having

continuous second mixed partial derivatives with respect to the elements

of x. Then ¢ satisfies the stochastic differential equation

do = ¢tdt+¢;(dxt+l§ tr GQG'¢,,dt ' (2.16)
where
= -ag I = d ) '
=22, o [E%I s 32;4 (2.17)
and
.2 2 ]
3¢ -
axi axlaxn
¢xx =1 . . . | - (2.18)
2% 2%
3%9%, E;E'

This rule provides a stochastic analog of the chain rule of ordinary

15



calculus. It will prove useful in the following linear filter deriva-

tion and in all of the nonlinear filters to be discussed in Chapter 3.

2.2 Derivation of the Optimal Linear Filter -

The bilinear system to be considered here is

q . .
dx, = F(t)xdt+ Z Gi(t)xtdwi t>0 (2.19)
i=1 t
with the observation
r _
dyt = H(t)xtdt+iZIMi(t)xtdvit t20 (2.20)

We assume that the wi's and vi's are all standard Brownian motions
independent of Xg> and that the process noises W i=1,...,q are fnde-
pendent of the measurement noises vj, j=1l,...,r.

As an aside, note that there is no loss of generality here in terms
of the lack of additive noisé in the model; we can always augment the
original state vector with the constant state "one" and thus account for
additive noise in the process, the observation, or both. For example,

consider the scalar process

dxt = xtdt + xtdnt + dwt

By defining the new state vector

X
o _ 17t
Zy T _1]
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we can write

1 0 1 O 0 1
dz, = | z. dt + z,dn,. + z.dw
t 0 0 t 00 t 1t 00 t 't

which is in the form of equation (2.19).

Since a linear filter is desired, we write the estimate §t as -

t .
b - g+ [ Ktaslav, (2.21)
0

where Ve js the linear innovations process given by

| dvs = dys-H(s)xsds
(2.22)
(s)5ds+ [ M. (s) |
= H(s)X.ds + M.(s)x_dv.
ST s i
with
Xg = Xg = Xg (2.23)

and the kernel K(t,s) is to be determined.

Following Kailath's derivation of the Kalman filter [1], we invoke
the orthogonal projections theorem. In this application the theorem
basically states that the error in the minimum variance estimate of Xt

must be orthogonal to the entire innovations process up to time t. Thus

-5 LV, <t (2.24)
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or
t‘ T
K(t,s)dvs)-Jk‘dv;] (2.25)

Elxgol] = ERpul] = EL(Rg+ | 0

0

Utilizing the properties of the Ito integral given in (2.10) - (2.11) and

differentiating with respect to T, we obtain

K(t,s) = 53; E[xtv;]z;l(s) “'A(z.-zs)
where

Eldvdv.] = I (s)ds " (2.27)

An explicit expression for Zv(s) will be given shortly.

We now evaluate the expression for K(t,s) given in (2.26).

K(t,s) = g% E[xtv;]zsl(s)

S

3 r '
< E[xt.(f i&H'(u)du-#JO X 1 M{(u)dviu)]z;l(s)

0 i=1

ELx K. IH' ($)Z51(s) (2.28)

With K(t,s) known, we can write a stochastic differential equation for
,it usingv(2.21) to obtain

~

dx

t
K(t;t)dvta-fo dK(t,5)) v,

- t
P(t)H'(t)Z;l(t)dvt-+JO d(EDx, XD H' ()T (s)dv,  (2.29)

18




with P(t) = E[itiéj. Expanding the second term on the right hand side
of (2.29) gives

t t _ t .
thd(K(t,s))tdvS f d(E[xsxS-l-.J's F(u)xux&du

‘ ‘ 3 ! | 1 -1
$ L 121 Gi(U)Xuxsdwiu])tH (s)gv (s)d"__s

t ]
([ PR ()2 () v, at

0
= F(t)Redt (2.30)
Thus we can write
dX, = F(t)X dt +K(t)dv, (2.31)
K(t) = P(OH'(B)Z]1(t)  (2.32)

Variance Calculations

In order to determine a differential equation for P(t), note that

P(t) = E[X, %] = Elxpxy -R,%(]
Thus

P(t) = X(t) - Z(t) (2.33)
where

X(t) = Elxyx;] and z(t) = Eﬁitiéj (2.34)

19




First a differential equation for X(t) will be determined. We have

(from (2.19)) that the jtb element of X4 satisfies
d 7 |
Xg = ijtdt-+izl Gijxtdwi (2.35)

In-the above expression Fj and Gij denote the jtb

rows of F(t) and Gi(t)
respectively. Using the Ito differential rule, and taking expectation,
we find that the product ijk satisfies

d _ | .
5 (EDxx D) = E(xFoxe + x Fix,) +1_§1 6; X(£)61 (2.36)

Generalizing the above result to the matrix case we have

F(E)X(t) + X(2)F'(t) +

I t~1.0

X(t) IOEOEG o (2.37)
: 1

X(0) E[xoxa] (2.38)

~

The next step is to obtain a differential equation for I(t) éE[)?tx,'cj.

Note that because it satisfies the linear equation (2.31) we can write

that
t
3, = @(tfo)§0+j0 ot TIK(T)dv_ (2.39)
where ®(t,t) is the'uniqﬁe solution of
Cfe(t) = F(R)e(t,T),  a(t,t) =1 (2.40)

20




‘Thus
z(t) = E[itﬁéj = ¢(t,0)z(0)e'(t,0)

t
+ [ etk (K (et (1)
0

Differentiating with respect to t, we obtain

E(t) = F(t)z(t) +Z(e)F'(t) +K(t)Z (£)K'(¢) |

2(0) = E[%o%] | |

Now P(t) = X(t) - £(t), thus

P(t) = F(t)P(t) +P(L)F'(t) +
' - i

e~10

| & EIX(I8 () - K0T,

P(0) = X(0) - £(0) = E[xgx}] - E[xgIEx)]

Finally, an expression must be given for Zv(s). Recall that Zv(s

Expanding this expression gives

z (s)ds
v 321

= E[H(s)isi;H'(s)(ds)24-'flMi(s)xsiéH'(s)dvi ds
i= 'S

r r r
+ ) H(s)X_xM.(s)dv; ds+ M. (s)x_x'ML(
=1 S I iy gy 1S

21

E[(H(s)isd54-iilMi(s)xsdvis)(iéH'(s)ds-+ E dv

(2.41)

(2.42)

(2.42a)

t)K'(t)

(2.43)
(2.44)

)ds = E[dvsd\);] .

RUION

s)dvi dvj ]
s Vs

(2.45)



Noting that E[(dvs)z] =ds, that the vi's are mutually independent, and

keeping only first order terms in ds (as in [3], p. 113), we obtain

the result

L, (s) =

he~1-3
—

1'

Mi(s)x(s)M%(s)

)ds  (2.46)

(2.47)

In summary, the linear minimum variance filter for the system (2.19),

(2.20) is given by

dxt

K(t) = P(L)H' (£)Z]H(t)

= F(t)x dt +K(t)dv,

Gi(t.)x(t)G%(t) - K(£)Z (£)K'(t)

-
£,(t) = _zl ML (£)X(E)M3(t)
1=
X(t) = F(£)X(t) + X(t)F'(t) +
1
B(t) = F(£)P(E) +P(LIF (€)% ]

with initial conditions .

20 = E[x0]

22
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X(0) = E[xoxéj

nel
—
O
~
i

Elxgxp] - ELxgJELxT

2.3 Asymptotic Behavior

In this section the asymptotic behavior of the optimal linear fi]fer
is discussed. Specifically, the questions of the existence of a finite
steady state error covariance and the stability of the filter are con-
sidered. |

Wonham [7] and Haussmann [8] have considered the existence, unique-
ness, and asymptotic behavior of the solutions to a Riccati equation
similar to (2.43) that arise in connection with the problem of stochastic
control for linear systems with state-dependent noise; As a result of
the dual nature of filtering and control, these results are easily
adapted to the problem of linear filtering for systems with stateJi
multiplicative noise. |

For the purposes of this section, the presence of additive noise
will be explicitly included in our process model. Only additive noise
will be considered in the measurement, although the results to‘be pre-
sented here are easi]y,applicab1e to the model used in Section 2.2. We

consider the system

dx, = Fxtdt+ § 6yXydW; +det | (2.48)

and the measurement

dyt = thdt-+dvt (2.49)

23



with E[dvtdv£]==Rdt. The standard Brownian motions Wi and Wi i=1,...,9,
t

are mutually independent, and independent of Xg and the measurement

noise Vi- The matrices F, G, Gi’ i=1,...,9, H, and R are constant.

The evolution of the error covariance for this problem is given by

B(t)

FP(t)-PP(t)F'-#GG'-+n(t)-P(t)H'R'1HP(t) | (2.50)

with

q . ‘
n(t) & T 6. (£)X(£)G(t) (2.51)
The initial condition P(0Q) is assumed to be positive semidefinite.
X(t) denotes the state covariance E[xtxéj. Wonham's basic result is
given in the following theorem.
If (F,H) is detectable, and M(t) has a finite positive definite

steady state value I which satisfies

infUm o(F-KH) "ty o(F-RHTyy) 4 (2.52)
k g

then

P_ = lim P(t) : (2.53)

T

is bounded. If, in addition the pair (F,G) is controllable, then P_
exists and is positive definite. In this case, P_ is the uniqué posi-

tive definite solution of

24



1

0= FP+PF' +I_+GG' - PH'R™"HP (2.54)

and the matrix

F-P_H'R™

is stable.

Equation (2.52) expresses the requirement that there must not.be
"too much" state multiplicative noise present. Although this condition
does establish limits on the amount of multiplicative noise that can be
tolerated (and still allow a finite Pm), it appears rather difficult
to evaluate in practice. For filtering problems of very low dimension
a much simpier approach can be taken. Consider for example the following

scalar constant coefficient problem:

dxy = axtdt-+bxtdnt-+cdwt : a (2.55)

dyt hxtdt-i-dvt (2.56)

where Mys Wes and vy are independent standard Brownian motions inde-
pendent of Xg- Then the variance equations associated with the optimal

Tinear filter are given by

- 2 2
L p(t) = 2ap(t) +bBE(t) +c? - AL | (2.57)
4 8(1) = 2ax(t) +b53(t) + 2 (2.58)

It is clear from an examination of these equations that the following

25



conditions must be met in order to have a finite steady state error
variance P_.

1) The state variance xz(t) must have a finite steady state
value, thus 2a+b2 < Q.

2) The system (2.55), (2.56) must be detectable.
In addition, for P_ to be positive definite, we must have c¢#0. Thus
we see that for systems of low order we can deal with simpler conditions
on the allowable magnitude of state dependent noise than that giVen
by (2.52).

The final statement of Wonham's theorem is quite important in
applications because it provides conditions which insure the stability

of the filter. The practical significance of this result is that

~errors -in the initial conditions §0 and P0 or errors in the numerical

calculations associated with the filter are eventually forgotten.  Given
the fact that 20 and P0 are often rather arbitrarily chosen, the design

of a stable filter becomes essential.
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CHAPTER 3
TENSOR METHODS IN SUBOPTIMAL NONLINEAR FILTERING

The solution of the linear filtering problem is sometimes charac-
terized in the following manner. The optimal Tinear filtered estimate

X, of a random variable Xy is simply the projection of X¢ onto thé

2
t , .
Hilbert space spanned by the related observed process Ye» 0<s<t. Thus

the optimal linear filtered estimate can be written as

izt = P[x,| 54’1 (3.1)
where P denotes the orthogonal projection, and the Hilbert space J&%y
denotes the set of all linear combinations of the form Zaiyt;, tigzt,
and mean square limits of such combinations. k 1

As discussed in Chapter 1, in general the nonlinear filtering probliem
does not have a finite dimensional soluticn due to the coupling of
conditional moments. Thus one is forced to turn to suboptimal filters.
One approach to suboptimal nonlinear filtering is to try to obtain the
beét filter within a particular class of nonlinear filters. For examp1e,

given a scalar observable Yoo 0<s<t, one might want to obtain the

estimate

3 o Y y3
Xy = P[xtl.:#t @Jt’t ] (3.2)

27



Thus the desired estimate ﬁt is the orthogonal projection of x, onto

t
the direct sum of the Hilbert spaces spanned by Ve and yt3. In general,

it can be difficult if not impossible to obtain the best filter of the

above form for a particular nonlinear problem. As a matter of fact,

it is usually not even clear how to solve for the optimal linear fi]tef.
The following definitions will be used in the description of the

application df'tensor methods in suboptimal filtering for bilinear

systems. Let x[p] denote the ptl—1 order tensor product. That is, x[p:I

is a vector made up of all possible (suitably scaled) ptb order monomials

in the elements of x. For example, if
X = : _ (3.3)

then

<31 - Q| |® = (3.4)

where @ denotes the tensor product operation. The weights a; are chosen
so that for the Euclidean norm we have Hx[pjﬂ = |x|P. However, for the
research described in this report these weights are not essential and

will hereafter be neglected. Higher order tensor products and tensor
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products for higher dimensional vectors can be defined in a manner simi-

lar to (3.4).

3.1 Moment Calculations for Bilinear Syétems

As previously stated, conditional moments for the general non-
linear filtering problem cannot be calculated using a finite set of
differentia]vequations due to the coupling of the moments. Moredver,

for the genefa] nonlinear dynamical system

dxt = ‘F(xt,t)dt-i-G(xt,t)dBt (3.5)

even the unconditional moments (that is, not conditioned on the obser-
vation of a related process) of the state Xy cannot be calculated due

to moment coupling. However, the bilinear model of the form

: q
dx, = F(t)xdt+ ) G;(t)x,dw,

(3.6)
i=1 t v

has a ratlier special property; the evolution of the unconditional
moments is governed by a finite set of linear ordinary differential
equations. For example, if Xy satisfies the scalar stochastic dif-

ferential equation

dx, = ax-tdt-l-bxtdwt (3.7)

t

then, by the Ito differential rule, we have
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2

P _ p p b _ p
dxt apx,. dt-+bpxt dwt-+ 5 p(p l)xt dt (3.8)

Usiné the fact that the expected value of the Ito integral is zero

we obtain

. W2 |
L (el = (a+ 5 (p-1))pELx,Pldt (3.9)

Similar calculations can be made for the moments of vector proceéses
described by bilinear stochaﬁtic differential equations. This property
of the unconditional moments of bilinear processes will be essential

" for the nonlinear filters to be discussed in the remainder of this

chapter.

3.2 Tensoring of Observables

Consider the stochastic bilinear system ((3.6), repeated here) and

observation

ihe~—0

dx, = F(t)xtdt+ _

t 1 Gi(t)xtdwi ’ (3.6)

1 t

r
dy, = H(t)xtdti-iz1 M1.(1:)x,cdv1.t ; (3.10)

where the W, and.vi are Brownian motions independent of Xg If we
t t
consider the augmented state vector

_ '&t _ .
X (3.11)
Yt
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and form

~[2]
~ _ X
X[p] = : - (3.12)

Cp]

X

then for each p, i[p] satisfies a related bilinear stochastic differen-

tial equation

n .
121 Bi(t)itp]tdwt (3.13)

~ - - .
dX[p] A(t)X[p] dt
t t
- (2] (rl] L
Note that if we observe Yy we can also regard Yg o Taeees¥yo T oaS being
observed as well. These additional "pseudo-observables" can provide
for improved performance from the optimal linear filter. For example,

by using yt_ahd yt[3]

_in our estimate of Xps We then have
a oY v
Xg = P[xtldft @Jt’t ] : (3.14)

This estimate is generally superior to the estimate

A = y -
xlt P[thﬁf% ] (3.15)

because it is obtained by projecting onto a "larger" vector space than

that used to obtain iz . Notice also that because of the non-Gaussian
t _

nature of the Xy Pprocess, P[xtlgt%y ] is typically nonzero, which improves
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the performance of (3.14) relative to (3.15). Since the Xy process is
the solution of a bilinear stochastic differential equation, the ob-

served process yrp] satisfies

k | )
dy[p]t = C(t)x[p]tdt+izl Di(t)x[pjtdvit , | (3.1€)
where
_yt.-
A yt[2] _
el T | | (3.17)
yt[p]

Since both i[p] and y[p]:are solutions of bilinear stochastic dffferentia]
equations, the linear minimum variance filter described in Chapter 2
may be applied.

In general, the optimal linear estimate of the state vector for the
system (3.13) satisfied by i[p] using the observations Yis yttz],..., yt[pJ
provides a better estimate of Xy than the optimal linear estimate based
on the system satisfied by;i[p-lj using the observations Y ytEZJ,...,
yt[p'l] [9]. However, it should be noted that the highér moments in-
troduced in these x[p] setups may not always exist.

Another value of the x[p] setup is the following. Consider the
situation when we have a polynomial observation, for example, the scalar

observation
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dy, = xt3dt+dvt | (3.18)

Clearly, by using an x[p

tion to a linear cbservation. Of course this requires that the Xy

] setup we can convert this nonlinear observa-

process is the solution of a Tinear or bilinear stochastic differential
equation. An example of this approach is discussed in Chapter 5.
Although the idea of “improved filter performance through tenﬁbring
of the observable seems useful in theory, in practice several difficul-
ties were eﬁcountered; One of these difficulties was the fact that the
covariance matrix of the innqyations process associated with the ten-
sored observation is singular at t=0. This can be seen in the fol-

Towing example. Let the original scalar observable be given by

dy, = x4dt+dv, | (3.19)

Then assume that we want to use a linear filter to calculate

3
& = Y J
Xe =Plx |67 @ o€ 1. We see that

3

dy,> = (3xtyt3 +3y,)dt + 3_yt2dvt (3.20)

Now the question arises "E[y02]=‘?" The statistics of Y are not
typically specified in a filtering problem as is the case with Xg- If
one assumes that yd is known to be zero, then the yt3 measurement con-
tains no noise at t=0, and thus the innovations covariance matrix
(which‘needs to be inverted in the filtering algorithm) is singular.

When this occurs, standard techniques for dealing with singular measurement
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noise covariance matrices can be used. (See for example, Liptser and
Shiryayev [10], p. 375.) On the other hand, one could assume that g
is not precisely known, and choose E[yoz]#(J. An arbitrary choice of
E[yoz] does not seem reasonable; however, it is not clear what the
proper value should be.
The second difficu}ty encountered with the tensored observables

scheme was more significant than that described above. From equatﬁon
(2.46) we can see that the variance of the innovation associatedlwith

the yt3 measurement is équa1 to 9E[yt4]. Now the Y4 Process evolves as

t

xsds-+v (3.21)

yt=y0+f0 t

Because of the Brownian component Vi in (3.21) the variance of the in-

3 grows without bound, thus in steady state

novation assoéiated with‘yt
there is no information in the yt3 measurement that is useful in esti-
mating Xy An identical problem occurs for all higher order tensors
of the origina]_obsérvab]e in these problems. For this reason, little
effort was expended in the study of a tensored observables approach.

A brief evaluation of the tensored observable scheme was made for
a simple example. Covariance calculations were performed for a tensored
observable filter using the original measurement Y ahd the pseudo-

observable yt3. The system considered was

dx -thdt-l-xtdwt (3.22)

t

dyt xtdt-l-dvt (3.23)
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The process noise W, was assumed independent of Vis with Wy amd Ve in-

dependent of Xqs and

E[(dw,)?] = q dt (3.24)
E0(dv,)?] = r dt (3.25)
xo uniform on[-10,10] | (3.26)

The initial condition y, was assumed to be equal to zero, and the method
of [10] was used to deal wfth the singular observation at t=0. For

the case g=1, r=10, thé error variance in the estimation of Xg during
the transient period was less than one percent smaller than that ob-
tained using the optimal linear filter. For the cése g=1, r=1, the
estimation error variance was identical to five decimal places. In
addition, due to the problem explained above, the steady error variance
was identical for the tensored observable filter and the 1iﬁear filter
in each of the cases studied.

As a result of the problems associated with the tensored observable
filter, and its failure to provide a significant performance improve-
ment over the linear filter (even during the transient period), further
evaluation of this approach was considered unlikely to produce useful

results.

3.3 Nonlinear Post-Processing

Again consider the bilinear system and observation

o

dx Xy = F(t)x dt-+ 2 Gi(t)xtdw1t (3.6)
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He~1-3

d_yt = H(t)xtdt+ _

1 Mi(t)xtdvi (3.10)

1 t

One approach to improving on the best linear estimate of X¢ given Yoo
0<s<t, might be to follow the linear filtering by a nonlinear memory—'
less post-processor. Denoting this nonlinear processor as y(-), the

filter structure would be as shown in Figure 3.1.

X
: A .
Linear| t p(e) o
'Filter (memoryless) X

Yp —

Figure 3.1. Post-Processing of Linear Estimate.

The criteria for our choice of w(il ) is that it should minimize the
t .
squared error loss function E[(xt-w(ﬁl ))2]. Clearly the proper choice
t o

of w(ﬁg») is the conditional mean
' t

Wy ) = Elxyl %, ] @)

t
which is (at least in theory) computable using a Bayes rule formulation.
The approach téken in this research was to approximate the optimal

w(iz ) by the polynomial form
7t

i
t

n
o(xy ) = '21 o ()X, (3.28)
1:

t

For example, in the numerical studies to be discussed in Chapters 4 and

5, estimators of the form

+8(1)%, 3 (3.29)

X, = a(t)X
t Zt t
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were used as approximations to w(ﬁz ).
t
The values of a(t) and B8(t) are calculated off-line in the following
manner. Because the vector
- v
2, ¢ (3.30)

satisfies a bilinear stochastic differential equation, its unconditional
moments can be calculated by propagating a finite set of ordinary dif-
ferential equatiohs as discussed in Section 3.1. By solving for the

second moments of

FZ[3] = Zt . . | ; (3.31)

we have all of the fnformation necessary to choose the values of a(t)
and B(t) such that the mean square error
321

EC(x, -a(t)ﬁz‘t- B(t)ilt

(3.32)

is minimized.
This calculation is accomplished as follows. First, the above
e}pression for the mean square error in the estimation of X is dif-

ferentiated with respect to d(t) and g(t). These derivations are set
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equal to zero, and the resulting equations are used to solve for'a(t)

and B(t) in terms of the moments of x, and 21 . Using this method,
t
we obtain
rl\ 6 A A‘ 4 A 3 p
a(t) = |X X, X, =X X, X A : - (3.33)
th t'Q't Jlt t'Q't ]/
[ A 4 A A 2 ~ 3
g(t) = |- X X X, + X XX A - (3.34)
. k Rt t gt lt t lt ]///
where
= 24 6 [~ 3)2
A =X X - X , (3.35)
2y TR [‘Q‘t}

and the overbars denote unconditional expectation. Note that once we .
have solved for a(t) and B(t), we can cémpute the mean square errﬁr
in our estimate using (3.32)..

Some insight into why estimators of the form (3.29) provide better
performance than the optimal linear filter can be gained by briefly con-
sidering the standard linear filtering problem. Let Xy be a scalar

Gauss-Markov process that satisfies

and take the observation to be

dyt = xtdt+dvt v (3.37)

Assume that the observation Y is Kalman filtered to obtain the optimal
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linear estimate 22 . Now assume that we try to improve on the per-
t

formance of this estimator with a nonlinear post-processor of the form

Ele,%, 3
~ A t ~ 3
Xt = Xl + —T_G—.XQ, - (3.38)
t E[xz ] t
t
where
ey = Xp =Xy (3.39)
t
The estimate ﬁt will be an improvement over 22 if the estimation
t
error e, is correlated with il 3, that is
t
Ele,%, 3170 - (3.40)
=t lt - . v | : .
or
Elx.% 314 ex 4 (3.41)
t 'Q’t Zt v

However, due to the fact that xt,and 22 are jointly Gaussian in the
t
linear problem considered here, we can apply Gaussian moment factoring

to show that

2

ELx %, 37 = 3(Elx,%, 1) (3.42)

t “t

and that
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E[§2t4] =v3(E[22t2])2 (3.43)

By the orthogonal projections theorem

A A 2 ) °
Elx.x, ] = Elx, 7] (3.44)
t lt Zt

since the estimation error is orthogonal to the estimate. Thus the

inequality in (3.41) does not hold true, and the filter design in (3.38)

.provides no improvement over the optimal Tinear filter.

Now let us return to the bilinear filtering problem. In this case

x, and X. are not jointly Gaussian (because Xy is not Gaussian). There-

t 2
fore, Gau:sian moment factoring cannot be applied. For the bilinear
problem it seems unlikely that the condition
Elx,%, 21 = E[%, *] o (3.45)
t t

usually holds. In genera1 if appears likely that all odd powers (tensors
in the vector prob]em)_of the linear estimate are correlated with the
l1inear estimation error xt-ilt. Therefore in the bilinear problem one
might expect that nonlinear post-processors of the form (3.28) will
improve on the performance of the linear estimate. |

Unfortunately, this author has been unable to prove the above
conjecture for bilinear systems in general. However, nonlinear post-
processing was used in the applications discussed in Chapters 4 and 5

and resulted in better performance than the linear filter with a minimum

of added complexity.
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3.4 Additional Applications of‘TenSQr Methods

In Section 3.3 nonlinear post-proceésing of the state estimate
from a linear filter was considered. A particular form was chosen
for the approximation to the conditional expectation E{xtligt]. The
purpose of this section is to briefly mention some other approaches to
nonlinear filtering for bilinear systems that are made possible through
tensor methods. ‘

The first idea to be mentioned is quite closely related to the
polynomial approximation to E[xt|§2t] used in Section 3.3. The idea
here is that we can post—proces§ the best linear estimate ig with a

t
polynomial function of the form

‘to obtain an improved estimate for Xy @S previously discussed, then the
new estimate it can be updated again in a similar manner to producé an

improved estimate §£, etc., as suggested in the figure below.

Linear ta K i t R
Yt IFilter| 1-Zla1'(t)(.)’ L

Pl
o)

Figure 3.2. Multiple Stage Monlinear Post-Processing.

The only drawback to this scheme is that in order to calculate the
optimal values of the parameters di, Bi’ etc. for each additional stage

of post-processing, we must calculate higher moments of the vector
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-Zt i}
ZtEZJ
= . 3.46
2057 : ( )
_zt[pJ‘
where
X -
z, = | ¢ ’ (3.47)
t -~
2
t

Obviously, dimensionality is the curse of this scheme. For example,
in Section 3.3 we saw that a single stage cubic post-processor required

the calculation of moments up to sixth order in Xy and X In order

g
to implement a nonlinear post-processor of the ferm showntin Figure 3.2
with two stages of cubic post-processing, moments up to eighteenth order
in X4 and ilt would be needed to calculate the parameters of the second
post-processor. Of course, similar difficulties are encountered with
high order polynomial single stage post-processors.

In fairness to the post-processing schemes considered here, it
should be noted that the extensive moment calculations necessary to com-
pute the parameters of the post-processors are off-line calculations.
Therefore, the real time implementation of nonlinear post-processors is
not burdensome from the standpoint of computing capability.

Another type of nonlinear filter that might prove useful is based

on the idea of updating the innovations. Figure 3.3 illustrates the
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Tinear filter/nonlinear post-processor combination previously dis-
cussed. Observe that the linear filter makes no Qse of the improved
state estimate it in its calculation of the innovations process Gt‘ An
jdea that seems quite reasonable (but was not evaluated in this research)
wou]d be to update the innovations sequence using the nonlinear esti- |
mate Qt to produce a nonlinear filter of the form seen in Figure 3.4.
In conclusion, the nonlinear filters discussed in this chapter- -
have only utilized a few of the many different app]icafions of ténsor
methods in filtering for bilinear systems. Obviously, other ;ariations
are possible. The value of these methods is hard to predict without
considering specific applications. Chapters 4 and 5 discuss the appTi;

cation of the nonlinear post-processor of Section 3.3 to two different

example problems.
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CHAPTER 4
APPLICATION OF TENSOR METHODS TO PHASE TRACKING

As an application of the filtering algorithms presented in Chaptef 3,
we consider an important class of phase tracking problem. Speci?i;a11y
we consider the estimation of a Brownian motion phase process et given
a- nonlinear measurement corrupted by additive Gaussian white noise.‘
This type of phase estimation problem is often encountered in the areas
of navigation and communication. Section 4.1 formulates the prob1ém
precisely and describes the classical solution, the phase-lock loop.
Section 4.2 demonstrates that through a change of coordinates, this
phase tracking problem becomes a bilinear filtering problem. The -
application of tensor methods tq thé phase tracking prob1ém is dis-
cussed. Finally, the results of numerical experiments app]yfng the
Tinear filter/nonlinear post-processor combination of Section 3.3 fo

the phase tracking p}ob1em are reported in Section 4.3.

4.1 Phase-Lock Loop

In this section we describe the phase tracking problem in detail

and present the classical solution. We wish to estimate the phase

process et given the received signal

z, = s1n(wct+6t)+nt (4.1)
where ﬁt is zero mean Gaussian white noise of intensity r. It is
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assumed that et is a Brownian motion process with variance parameter a,
and that the 6 and n processes are independent.

In [11] Van Trees demonstrates that ﬁt can be decomposed into

n, = ny cosw t+n, sinut (4.2)‘

t t

where‘ﬁ1 and ﬁztaré independent zero mean white Gaussian noise processes
o« t_ . .

of intensity 2r. Then, by multiplying (heterodyning) the received

signal it'by 2c05wct and Zsinwct and then low pass filtering (to remove

the resulting "ch" frequency terms) we obtain the vector measurement

22t COSBt n2

Because the measurements have been "stepped down" from the carrier fre-
quency wc‘they are often called baseband measurements.

Similarly, the recgived signal it can be heterodyned with 2cbs(wct-bét)
and 251n(mct-+§t)_f6r any function ét to produce the in-phase and quad-

rature measurements (at baseband)

z sin(e, - 8,) n
I, R |
. . = . + : (4.4)

Van Trees also demonstrates that if ét is at least one integration re-

moved from Zi, thennI anan are zero mean Gaussian white noise processes
t t
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of intensity 2r, independent of each other and 8, .
In an Ito calculus framework, the baseband measurements (4.3) and

(4.4) are written

dz Sine "dn
1t t : 1t
= dt + (4.5)
dz coso dn -
) Zt i t I Zt
and
dz sin(e, -6.) dn
It t "t ‘ It
= _ o |dt + (4.6)

These measurements will be used as the inputs to the filters discussed
in this chapter. |

The classical solution to the phase tracking problem described above
is known as the phase-lock loop and is discussed in Van Trees [11] and
Viterbi [12]. The configuration of the PLL is illustrated in Figure 4.1.
The gain K is chosen to minimize the mean square phase-estimation error.
If the carrier frequency W, is sufficiently high so that low pass fil-
tering does not affect the Tow frequency phase error §igna1, the equi-
valent baseband model shown in Figure 4.2 is accurate. Using the linear-

izing assumption

~

sin(et-et) - et-et . (4.7)
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LOW PASS
FILTER

2cos(w t+6y)

VOLTAGE

| CONTROLLED

OSCILLATOR

Figure 4.1. Classical Phase-Lock Loop Model.

n
Iy
+ + &
61——0_—— sin (-)
3

Figure 4.2. Baseband Phase-Lock Loop Model.

[ dt

48

_f;)>-



the value of K which minimizes the mean square error is

= /L (4.8)

The resulting error variance is

Py = /2rq (4.9)
‘2’ .

where the subscript 2 refers to the linearizing assumption {(4.7). Thus,
from Figure 4.2, it can be seen that the classical phase-lock loop is

described by the Ito equation

det = K dzI (4.10)

t
with K as given in (4.8).

An_interesting feature of the classical PLL is that it is the ex-
tended Kalman filter for the phase tracking problem, as demonstrated in
Mallinckrodt [13] and Eterno [14]. In Section 4.2 an alternative approach
to phase tracking ié discussed which 1ead; to a bilinear filtering prob-

lem.

4.2 Phase Tracking in Rectangular Coordinates

The phase estimation problem posed in Section 4.1 has ]inear dynamics
and a nonlinear measurement. By changing to a rectangular coordinate
system, the problem can be transformed to one with bilinear dynamics
and a linear measurement, as observed by Gustafson [2]. This is ac-
complished in the following manner. Define the two dimensional state

vector
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= = (4.11)

Since 6, is Brownian motion, we can use the Ito differential rule to.

write the stochastic differential of Xy

“dx -q/2 0 7[x 0 I[x .
lt lt lt .
= dt + det (4.12)
dx 0 -q/2{|x -1 0flx
% | K I 2y
EC(de,)%] = q dt (4.13)

The filtering problem specification is completed by the baseband measure-

ment (4.5) (repeated here):

dz X dn
1 1y 1
= dt + (4.5)
dz X dn
%) % %
with
dn .
1t 2r 0 4
E [dn1 dn2 1t = dt ' (4.14)
dn2 t t 0 2r
. R

The goal is then to estimate X1 =sing, and X, =cosf, with the phase
‘ - Tl . ¢ .

estimate given by
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1 .
= tan-l ,\_i (4.15)

These equations represent the phase tracking problem in a form suitable
for application of the linear minimum variance filter. Furthermore,

- equations (4.12) and (4.13) are representative of a rich class of bi-
linear estimation problems in which the state evolves on an n-dimensional

sphere of radius one. That is, with probability one,

x% =1 for all t . (4.16)
1 't

ne-13

1'

Processes of this type’are sometimes called rotational processes. Esti-
mation for these systems is an interesting prob1eh in its own right,
independent of the connection with phase tracking. Further resu]tg on
estimation for rotational p}ocesses can be found in [15].

Now that our estimation problem has been transformed into a bilinear
filtering problem, the linear minimum variance filter and the tensor
methods discussed in Chapter 3 are applicable. The optimal steady state

Tinear filter is given by

dx R dz, - %, dt
1, ) 1, 1, "L, .
= %. dt + K : (4.17)

dX X dz,, - X, dt

2t 2 L

where

; ‘rqirgtl) g

K 3 ) (4.18)
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is obtained from the steady state solution of the Riccati equation (2.43).

The phase estimate is given by
8, = tan |z ' (4.19)

as previously stated. Gustafson and Speyer [16] called this filter a
linear quadrature filter (LQF). Numerical results on the performance
of the LQF are given in the above noted reference. In general, this
filter outpefformed the classical PLL at high noise-to-signal ratijos,
and performed slightly worse at very low noise-to-signal ratios.

At this stage the tensor methods discussed in Chapter 3 are appli-
cable. The approach chosen here was to operate on the lTinear éstimates

with a nonlinear post-processor of the form

X, = alt)x, +8(1)R,° (4.20)

where it denotes the linear estimate. Steady state values of a(t) and B(t)
were calculated in the following manner. The linear estimates can be

written

dx; = (‘%- K)X,dt + Kx;dt + Kdn, ' (4.21)
d&, = | %- K)%,dt + Kxodt + Kdn,, (4.22)

Combining the equation for the evolution of X1 and x, (4.12) with (4.21)
and (4.22), and defining
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dw1 = det (4.23)
dw2 = dnl (4.24)
t
dwy = dnzt (4.25)
and
) v ]
X1
x2 .
X = % (4.26)
X2
-1 -
we can write the bilinear stochastic differential equation
3
dx = Fx dt+ ] Gix dw, (4.27)

i=1

If we now write an X[p] version of (4.27) with p=3, we will have equa-
tions for all of the first, second, and third order tensors of x. Sym-
bolically, we have

3

A Tisting of the elements of,§[3] and a definition of the elements of
A, B,» By, and By for the phase fracking problem can be found in Appen-

dix A. Next, we solve for the steady state value of
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X(t) & E[>'_<[3].t §t3]£1 (4.29)

by propagating the ordinary differential equation

| 3 -
X(t) = AX(t)-+X(t)A'-+.Zl B.X(t)B}  (4.30)
1=

At this ‘point we have all of the moments necessary for the calculation

of the steady state values of a and 8, and thus to minimize
A A32
E[(x, - oX, - 8x,”)“]

This calculation is accompliished in a straightforward manner by difQ
ferentiating the above expression with respect to a and B, equating to
zero, and solving for a and 8 in terms of the moments of 5[3].' Expres-
sions for a and B in terms of these moments have been giveh in Section 3.3.
After estimates of the form §t==a§t-+s§t3 are obtained for x; and

Xps @ New phase estimate is generated using

3, = tan”l| L (4.31)

just as was done wifh the linear estimates in (4.15).

This completes the description of one approach to the design of a
nonlinear post-processor for use in thg phase tracking problem. Quan-
titative rgsultsvcomparing the performance of this linear fi1ter/nqn1inear
post-processor algorithm with the LQF and the classical phase—lock loop

can be found in Section 4.3.
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4.3 Numerical Results

The first step in the numerical calculations necessary to simulate
the linear filter/nonlinear post-processor combination was to determine
the optimal values of o and 8. The method used was described in the
previous section. A byproduct of the calculation for o and B was the '
mean square error in the estimation of X = sing and x2==cose. The mean
square error was obtained directly by using the ca]cu]ated value$~6f o
and 8 in the expression |

E[(x; - ok, - 8521-3)2]
(Note that a1] moments necessary for this calculation were already com-
. puted in order to select the optimal values of o and B.)

Thé results of these covariance calculations are illustrated in
Figure 4.3. 1In this figﬁre the reduction in mean square'error obtained
by nonlinear post-processing (with the performance of the linear filter

as a feference) is plotted versus Pe . Pe ijs a useful (and commonly
2 '3

used) noise-to-signal ratio type parameter (see equation (4.9)). At
this stage several comments should be made. First, note that the
reduction in filtering error brought about by nonlinear post-processing
varies with noise-to-signal ratio. At very law noise-to-signal ratios,
the performance of the linear filter is nearly optimal, so the nonlinear
filter has 1itt1e room for improvemgnt. On the other hand, in very

high noise situations, there is just not much information about the
state in thg measurgment, and thus the mean square error of both thg

linear and nonlinear filters approaches the a priori value.
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PERCENT REDUCTION IN MEAN SQUARE ERROR

.01

Figure 4.3. Reduction in Mean Square Error Using
Monlinear Post-Processor.
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An encouraging aspect of the results given in Figure 4.3 is that
at Pel'= .129, the nonlinear post-processor reduced the mean sguare es-
timation error by over 9%. Improvements in filter performance of this
order could be significant in some applications.

A plot of the steady state Values of the parameters o and 8 for
the nonlinear post-processor is given in Figure 4.4. It is not surprising
that the filter makes very little use of the cube of the linear esfimate
(18] is small) at low values of Pez’ because the Tinear filter ié nearly
optimal in low noise situations as previously noted. |

Because the value Pez= .129 represented the point of maximum improve-
ment by the nonlinear post-processor over the linear filter in the
estimation of Xq and X5 this value was chosen for a filter comparison
using a digital computer simulation. In the comparison, we shall de-
noté the linear filter/nonlinear post-proéessor combination as a tensor
filter. The phase-lock loop (PLL), linear quadrature filter (LQF), and
the tensor filter (TF) were simulated using identical pseudo-noise
sequences for each. . Following Eterno [14], a fourth order.Runge—Kutta
integration routine with an integration step size of one percent of
the PLL time constant (1/K) was used. 1900 effective degrees of freedom
were obtained by running the filters for four runs of 500 time con-
stants and discarding the data from the first 25 time constants in
each run. This gives a three percent predicted standard deviation in
the computed error variancgs, as demonstrated in [16].

The results of the simulation are given in Table 4.1. Several

comments are appropriate. The PLL slightly outperformed the LQF as
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TABLE 4.1: Suboptimal Filter Comparison at Pe =.129
2

 Phase Estimation Error €=06-8
_ E[sz] (radZ).‘.. . RMS Error (deg) E[1-cose]
“PLL .1401 21.4 .068
. LQF L1477 : 22.0 .071
' TF L1511 22.2 073
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- expected. However, the fact that the tensor filter did not outperform
the LQF in the estimation of the phase angle et was disappointing. In
trying to determine the cause of the difficulty, two things became
apparent. First, the tensor filter was performing as expected in the.‘
estimation of Xq and X5 The computed reduction in mean square error
(relative to the linear filter) in estimating X, was 7.3%, which agrees
fairly well with the 9.2% figure determined during the off-line co- -
variance calculations.

The secénd item discovered in the search for an explanation of the
tensor filter's poor performance in estimating et is that both the LQF
and the TF produced biased phase estimates. In fact, in both cases
the biases were large enough to account for the degradation in perfor-
mance relative to the PLL. It should also be noted that the observed
difference in performance (in estimating et) between the LQF and the
TF is well within the 3% sampling error on the computed error variances,
and thus the significance of the observed performance difference is
questionable.

In conclusion, it must be stated that the performance of the tensor
filter was disappointing when applied to the phase tracking problem.
However, as noted eaf]ier, the tensor filter did provide up to 9% re-
duction in mean square error (compared to the 0pt1ma1v1inear filter)
in the estimation of Xq and Xg . Thus, the tensor filter performed quite
well for a class of estimation problem that has occupied many rgsgarchers--

the problem of state estimation for processes evolving on the circle.
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CHAPTER 5
THE CUBIC SENSOR PROBLEM

In Chapter 4 it was found that nonlinear post-processing of Tinear
estimates was qufte useful for the class of bilinear estimation problems
in which the state evolves on a circle. However, the question of the
applicabifify of this method to bilinear problems in general reméins
unanswered. As a small first step toward answering this question, we
consider the usefulness of nonlinear pos?—processing in another estima-
tion problem, commonly known as the cubic sensor. |

Section 5.1 introduces the problem, and demonstrates that the .
cubic sensor can easily be formulated as a bi1ine§r problem. The ap-
p]fcation.of a tensor method, in particu1ar‘the nonlinear post-processor,
is discussed in Section 5.2. Numerical results are presented in Sec-

tion 5.3.

5.1 Formu]ation as_a Bilinear Filtering Problem

Consider the stationary Gauss-Markov process described as the

steady state solution of

dxt = -xtdt-l-dwt (5.1)

We shall consider the nonlinear filtering problem with observation

3

dyt = Xy dt-l-dvt (5.2)
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The Brownian motions w

with

and vy are independent, and independent of x

E(dw,)?] = q dt

E[(dvt)z] = r dt

0,

(5.3)

(5.4)

Note that if the Ito differential rule is used to write stochastic

differential equations for x

tion problem given below.

dyt =[0 0 1 0]

2

3

dt +

dt + dvt

dw

t and Xy, we obtain the bilinear estima-

(5.5)

(5.6)

This problem is suitable for application of the optimal linear filter

of Chapter 2. Furthermore, the nonlinear post-processor of Section 3.3

may be applied, as will be discussed in the next section.
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5.2 Application of Nonlinear Post-Processor

Given the Ito equations for the dynamical model (5.5) and obser-

vation (5.6), equations can be written for the linear state estimate

N\
Xy and signal estimate xt3. We now define a new state vector

)_(t - (5.7)

Using the Itb differential rule, we can write a bilinear stochastic
differential equation for 5[3] which consists of all first, second, and

third order tensors of Xy+ We shall write this equation as

2
d[3] = Axpaydtt 1 Bixpaydn; (5.8)
where
dny = dw, (5.9)
dny = dvg | (5.10)

The elements of Xr37? A, By, and B, are given in Appendix B.
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At this point we can follow a procedure identical to that used in
the phase tracking problem to solve for the values of a(t) and 8(t)

to produce estimators of the form

R, = o (6)%, + 8, (118, - (5.11)
A |
% 33

R az(t)x/,c\?+ 8,(t) (x, ) (5.12) -

where it and Xy~ are the linear estimates. We note that the performance
of the estimators (5.11) and (5.12) can be calculated off-line, in a
procedure similar to the performance calculations associated with the

Kalman filter. The results of these calculations are given in Section 5.3.

5.3 Numerical Results

By propagating the second moments of (5.8) using

2 B
AX(t) + X(t)A"+ ) B.X(t)B; (5.13)
. i=1

X(t)

with
X(t) = 5[5[3] 5f3]] | -(5.14)_

the optimal values of the a(t) and B(t) parameters in the estimates
(5.11) and (5.12) and the mean square errors associated with these
estimates can be calculated. The steady state mean square gstimation
errors for the state xg and the signé1 xt3 are given in Tables 5.1 and

5.2. The linear filter/nonlinear post?processor combination, denoted
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the tensor filter, is compared with the optimal 1inear filter. Data
for the case q=2, r=1 is provided in Table 5.1; data for g=r=1 is
found in Table 5.2. Numbers in parentheses in the tables denote the
percent improvement of the tensor filter over the linear filter.

The steady state value of the Cramer-Rao based Bobrovsky-Zakai
Tower bound [18] for the estimation of Xy is included in the table.
However, the bound is so loose (in comparison to the mean square.error
of the tensor and linear filters) that it is of little value in judging
the performance of the tensor filter relative to the optimal nonlinear
filter.

The imbrovements in performance by the tensor filter over the
linear filter shown in Tables 5.1 and 5.2 are not startling. However,
from the experience gained in studying the phase tracking problem‘(see
Figure 4.3), it seems safe to conjecture that the tensor filter cdqu
be moreAva1uab1e at noise-to-signal ratios lower than the values used
here; Attempts to collect this performance data at Tower noise-to-
signal ratios were frustrated by exceedingly high computational costs.
The causes of these high costs were the large linear filter gains
associated with low noise-to-signal ratio cases. These large gains
forced the use of very small time steps in order to accuratehy.integrate
the high dimensional differential equation (5.13) unf%T steady state
was reached. Nevertheless, because these large computational costs
are encountered off-line (only in filter design, not implementation), it
would be beneficial to gxaming thg performance of nonlingar pqst-processing

algorithms in a Tow noise-to-signal ratio environment.
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TABLE 5.1: Suboptimal Filter Comparison; q=2, r=1

‘Steady State Mean Square Error
A\ 2 3 T2
'EE(xt'xt)'] : : E[(xt ’Xt ) J
Bobrovsky-Zakai :
Lower Bound 238 T
Linear Filter .540 (ref.) 5.63 (ref.)
Tensor Filter .522 (3.3%) 5.49 (2.5%)

TABLE 5.2: Suboptimal Filter Comparison; g=r=1

Steady State Mean Square Error

NG O

Bobrovsky-Zakai L
Lower Bound o f264 A

Linear Filter. | .378 (vef.). | 1.33 (ref.)
Tensor Filter .|  .371 (1.9%) .. .1.31 (1.5%) .
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CHAPTER 6
CONCLUSTONS

" The problem of filtering for bilinear systems has been considered:
in this report. Bilinear filtering problems are important for a variety .
of reasons. Many physical processes are naturally described by bilinear
models. In addition, many problems that do not appear to be bi1fnear
‘at first inspection can be easily transformed to this type (for example,
the cubic sensor problem of Chapter 5). Another reason for studying
bilinear models is that their close relationship with linear models
provides many insights’ into their behavior. In a sense, filtering for
bilinear systems can be considered the "simpiest" of nonlinear filtering
problems, and thus aniimportant first step in this area of study.
| Because the optimal filter for bilinear systems is infinite dimen-
sional and therefore cannot be realized, suboptimal filters are the
only alternative. One such filter is the optimal linear filter derived
in Chapter 2. In addition to the derivation, asymptotic behavior of
the filter was discussed. Conditions for filter stability and the
existence of a finite steady state error covariance were given based
on some results of Wonham [7] for the stochastic coht?o] problem.

One of the useful properties of bilinear systems is that the un-

conditional moments of the state vector can be propagated by a finite
system of ordinary differential equations. This property distinguishes

bilinear systems from the general nonlinear system, and makes possible
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the use of tensor methods in the design of suboptimal nonlinear fil-
ters. In Chapter 3 several applications of tensor methods were dis-
cussed, including tensoring of the original observable to create addi-
tional "pseudo-observables." Although this method originally seemed
promising, it was rejected for sevéra] reasons. The most significant
flaw with this approach was that in steady state there was no improve-
ment in performaqce over the optimal Tinear filter. |
‘Better results were obtained using another tensor method, iﬁ
which the optimal 1ine$r filter was followed by a nonlinear post-
processor. Basically the purpose of the nonlinear post-processor was
to make use of correlations between the linear estimation error and
higher order tensors of the linear estimate. Numerical results were
obtained using this approach for the phase tracking problem and the
cubic sensor problem. Results were4somewhat disappointing for the
phase tracking problem. However, in the related problem of estimation
for bilinear processes evolving on the circle, the nonlinear post-processor
provided up to 9 percent reduction in mean square error relative to the ‘
optimal linear filter. Thislimprovement in performance is significant,
and to the best of the author's knowledge is a new result. Performance
improvements were not as substantial-for the cubic sensor problem.
Approximately 3 percent reduction in mean square errbf was obtained for
~one of the‘cases studied. From the experience gained in the phase track-
ing problem, it appears that nonlinear post-processing for the cubic

sensor problem might prove more useful at lower noise-to-signal ratios.



Recommendations for Future Research

An important issue that was not resclved in this thesis is the
question of when the tensor methods considered here will be useful. It
cannot yet be concluded that these methods will be worthwhile for all
bilinear systems. Furthermore, it appears that tensor methods (at
least thé nonlinear post-processor) provide significant performance
gains over a limited range of noise-to-signal ratios. Additiona}-@ork
in this area 1is wafranted. '

- Only the nbn1inear post-processor approach to nonlinear filtering
was numerically evaluated in this research. It would be quite interesting
to evaluate some of the many other possible approaches to the use of
tensor methods, in particular the updated innovations scheme illustrated
in Figure 3.4. _

'In order to facilitate future research in the aforementioned'areas,
the first step should be the automation of the various moment calcula-
tions involved in the tensor methods. The calculations can be quite
tedious even for low order tensor methods such as the cubic nonlinear
post-processor eva]uatéd in this research. For example, a computer
program could be written to implement the Ito differential rﬁ]e for
high order tensors of bilinear processes. This type of automation would
prove inva]uab]e'in any future research into the use of tensor methods.

Some possible areas for future research might be the following.
First, it appears that it would be fairly straightforward to extend the
use of tensor methods to the discrete time bilinear filtering problem.

Second, the application of these methods to smoothing problems (both in
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continuous and discrete time) could be considered. Finally, as pre-
viously noted, the question of the general applicability and useful-
ness of tensor methods in bilinear estimation problems should be

addressed.
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APPENDIX A

- EQUATIONS FOR 5[ 1 VERSION OF PLL

3

For the nonlinear post-processor used in the phase trackihg probiem
(Section 4.2), it is necessary to solve for the second moments of §[3],

where

The vector X[3] is made up of all first, second, and third order tensors
of x. In Section 4.2 it was noted that Xr37 satisfied a bilinear sto-

chastic differential equation of the form

3
d[3] = Axpapdtt L BiXpay ™y __ (A.2)
with
dwy = de, . (A.3)
dw2 = dn1t (.4)
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~ (A.5)

The purpose of this appendix is to define the elements of §F3]’

and the matrices A, Bl’ 82, and B3. The remainder of the appendix. sup-

plies this information.

in Section 4.2.

The symbols K, g, and r used here are as defined

The elements of X[3] in numerical order are:

1. Xq
2 Xo
3. X%
4. %,
5. xl2
6. X22
7. X1Xo
8. %,°
9. Ry

11.
12.
13.
14.
15.
16.
17.

18.

19. xlxz2
20. 3,
21, xRy
22, XXX
23. X1x2§2'

24. xlxlx2

3
25. Xo

2A
26. Xo Xy
27. Xp Xo
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28.
29.
30.
31,
32.
33,
3.
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The nonzero elements of A are:

A(1,1) = -q/2
A(2,2) = -q/2
A(3,1) = K
A(3,3) = -3-x
A(4,2) =K
A(4,4) = -F-K
A(5,5) = -q
A(5,6) = q
A(6,5) = q
A(6,6) = -q
A7) = -2
A(8,8) = -q-2K
A(8,11) = 2K
A(8,35) = Kér

A(9,9) = -g-2K

A(9,14) = 2K
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- -A(10,13) =

A(9,35) = Kor

A(10,10)

-q - 2K

A(10,12)

n
~

\
<

A(11,5) = K

SA(11,11) = -q-2K

A{12,7) = K

A(12,12) = -q- 2K

A(13,7) = K

A(13,13) = -g-2K

A(14,6) = K
A(14,14) = -q - 2K
. _ 3
A(15,15) = -5q

A(15,19) = 3q

- 7
A(16,16) = -5q
A(16,25) = q



A(17,15)

A(17,17)

A(17,26)

A(18,16)

A(18,18)

A(18,27)

A(19,15)

A(19,19)

A(20,1) =

A(20,17)

A(20,20)

A(21,1) =

A(21,21)

A(21,23)

A(22,16)

A(22,22)

A(23,19)
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A(23,23) = -3q - K
A(24,18) = K
A(28,22) = K.
A(24,24) ='-g-q-2K
A(25,16) = 3q
A(25,25) = -3
A(26,17) = q
A(26,19) = K
A(26,26) = -3q-K
A(27,18) = q
A(27,25) = K
A(27,27) = -3q-K
A(28,2) = Kor
A(28,22) = 2K
A(28,28) = -3.q - 2K
A(29,2) = Kor

A(29,27) = 2K



A(29,29) = -3q- K
A(30,23) = K
A(30,26) = K

3
A(30,30) = -3q-2K

a2
A(31,3) = 3K%r
A(31,20) = 3K

o3
A(31,31) = -3q- 3K
A(32,4) = Kor

A(32,24) = 2K

Bl(1,2) =1
5,(2,1) = 1
31(5,7) =2
B1(6,7) = =2
81(7,5) = -1
Bl(7,6) =1

0 8,(11,13) = 1

The nonzero elements of Bl are:
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A(32,28)
A(32,32)
A(33,3) =
A(33,21)
Aksa,so)
A(33,33)
A(34,4) =
A(34,29)
A(34,34)

B,(12,14)

1
B,(13,11)
B,(14,12)

B,(15,16)

1

Bl(16,15) =

81(16,19) =

81(17,22)

-79-3

n
—

[l]
]
}—

1)
]
—

[}
w.
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~n

n
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1}
n

B,(18,23) 31(23,27) =1
B,(19,16) = -2 B,(24,30) = 1
B,(19,25) = 1 B,(25,19) = -3
B,(20,28) = 1 B,(26,22) = -2
B,(21,29) = 1 B,(27,23) = -2
B,(22,17) = -1 B,(28,20) = -1
B,(22,26) = 1 B,(29,21) = -1
B,(23,18) = -1 B,(30,24) = -1
The nonzero elements of B2 are:
B,(3,35) = K B,(24,12) = K
| B,(8,3) = 2K | B,(26,6) = K
B,(10,4) - K '8,(28,13) = 2K
B,(11,1) = K B,(30,14) = K
B,(13,2) = K B,(31,8) = 3K
B,(17,5) = K B,(32,10) = 2K
B,(20,11) = 2K B,(33,9) = K
B,(22,7) = K
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The nonzero elements of B3 are:

B3(4,35) = K
B3(9,4) = 2K
B3(10,3) = K
B3(12,1) = K
B3(14,2) = K
B3(18,5) = K

B3(21,12) = 2K

B5(23,7) = K
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B3(24,11) = K

B3(27,6) =K

B3(29,14) 2K

1]
~

B,(30,13)
B5(32,8) = K
B5(33,10) = 2K



APPENDIX B
EQUATIONS FOR Xr3] VERSION OF CUBIC SENSOR

For the design of a nonlinear post-processor for the cubic sensor'
problem (Section 5.2), it is necessary to solve for the second moments

of X[3]’ where

The vector Xr3] is made up of all first, second, and third order tensors
of x. In Section 5.2 it was noted that Xr3] satisfied a bilinear sto-

chastic differential equation of the form

2
with
dn1 = dwt (B.3)
dn, = dv, (B.4)
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The remainder of the appendix is used to define §F3]’ A, Bl,-and
BZ' The symbols q and r used here are defined in Section 5.1. The
symbols K1 and K2 are the 1inear filter gains for the cubic sensor

problem, that is

S

N A 3
dxt = xtdt-*-Kl(dyt--xt dt) (B.5)
dx,” = (3q>’it'-3xt )dt+K2(dyt'--xt dt) (B.6)

The elenents of the state vector 5[3] in numerical order are:

1. x . % L. &3 31. &

2. x8 12. x% 22. x%° 2. 3
3. 13, x% 23. x%%% 33. R
4. 'x4 14. %% 28, x3%° 34, 2;3\
5. x° 15, 8% 2. x(x3)2 5. ()2
6. x° 16. xis\ 6. (D2 1w B
7. X 17. xZ:}' 27. x3(;§32 T 2203
8. 18, 33 28. X% 8. x(x?
9. x° 1. &3 29. %0 39. ()3
10. xR 20. x50 0. 3ud 40. 1
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The nonzero elements of A are given by

A(1,1)
A(2,2)
A(2,40)
A(3,1)
A(3,3)
A(4,2)
A(4,4)
A(5,3)
A(5,5)
A(6,4)
A(6,6)
A(7,5)
A(7,7)
A(8,6)
A(8,8)

A(9,7)

-1

-2
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A(9,9) = -
A(10,8) = K,
A(10,10) = -2
A(10,16) = -K;
A(11,5) = K,
A(11,11) = -3
A(11,17) = =,
A(11,31) = q
A(12,6) = K,
A(12,10) = 3q
A(12,12) = -4
A(12,18) = =K,
A13.7) = K,
A(13,11) = 6q
A(13,13) = -5
A(13,19) = -K,



A(14,8) = K

1
A(14,12) = 10q
A(14,14) = -6
A(14,20) = -K1
A(15,9) = Ky
A(15,13) = 15q
A(15,15) = -7
A(15,21) = -K1
A(16,4) = K2
A(16,10) = 3q
A(16,16) = -4--K2
A(17,5) = K,
A(17,11) = 3q
A(17,17) = -5-K2
A(17,32) = q
A(18,6) = Ko

A(18,12) = 3q
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A(18,16)
A(18,18)
A(19,7) =
A(19,13)
A(19,17)
A(19,19)
A(20,8) =
A(20,14)
A(20,18)
A(20,20)
A(21,9) =
A(21,15)
A(21,19)
A(21,21)
A(22,1) =
A(22,13)

A(22,22)



A(22,28) = -2K, A(26,26) = -8 - 2K,
A23,2) = K, °r A(26,29) = 6q
A(23,14) = 2K A(26,35) = q
A(23,23) = -4 A(27,3) = KyPr
A(23,29) = -2K, A27,21) = 2K,
A(23,33) = q A(27,25) = 3q
A(24,3) = K,°r A(27,27) = -9 - 2K,
A(24,15) = 2K, A(27,30) = 6q
A(28,22) = 3q A(28,1) = K;Kor
A(24,24) = -5 A(28,13) = K,
A(28,30) = -2K, A(28,19) = Ky
A(25,1) =:K12r A(28,22) = 3q
A(25,19) = 2K, A(28,25) = =K,
A(25,25) = -7 - 2K, A(28,28) = -5-K,
A(25,28) = 6q A(29,2) = KiKor
A(26,2) = K,r ' A(29,14) = K,
A(26,20) = 2K, A(29,20) = K
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A(29,23)
A(29,26)
A(29,29)
A(29,34)
A(30,3) =
A(30,15)
A(30,21)
A(30,24)
A(30,27)

A(30,28)

A(30,30) =

A(31,3) =
A(31,31)
A(31,32)
A(32,3) =
A(32,31)

A(32,32)
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A(33,12)

A(33,33)

A(33,34)

A(33,40)

A(34,12)

A(34,18) =

A(34,33)

A(34,34)

A(34,40)
A(35,18)
A(35,34)
A(35,35)
A(35,40)

A(36,24)

A(36,31) =

A(36,36)

FA(34935) =

i " " n M " M ] " W ! n M " " "
w w = ] o o ~ ) 1 w =< = ! ' B
~ e N [o)] 0 < ~ = e [AS) no ~

' n T~ f =~

<
) 5 =
~ ~
'\

il
[}
w




A(36,37)

[[]

A(37,24)

A(37,30)

A(37,31)

A(37,32)

A(37,36)

A(37,37)

A(37,38)

A(38,27)

A(38,30)

The nonzero elements

31(1,40) =

Bl(Z,l) =2
B,(3,2) =3
31(4,3) =4
Bl(5,4) =5
'81(6,5) =6

2K . K,r

of B1 are:

1
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A(38,31)
A(38,32)
A(38,37)
A(38,38)
A(38,39)
A(39,27)
A(39,32)
A(39,38)

A(39,39)

B,(7,6)

1(

Bl(8,7)

B,(9,8)

1

81(10,31)

Bl(11,10)

-81(12,11)

2K1K2r

64

'7 - 2K2

2
3K2 r
9q

’9 - 3K2



81(13,12)

B,(14,13)

1

81(15’14)

B,(16,32)

X
Bl(17,16)
31(18,17)
Bl(19,18)
8,(20,19)

B,(21,20)

1

The nonzero elements of B2 are:

6

82(21,6) =K

82(22,10)

82(23,11)
32(24,12)
82(25,16)

B,(26,17)

82(27,18)

ZK1

2K1

2K1

2%
2

2K2

87

B,(22,33)

X
Bl(23,22)
Bl(24,23)
81(25,35)
81(26,25)
81(27,26)

81(28,34)

81(29,28)

.Bl(30,29)

B, (28,10)
B,(28,16)
B,(29,11)
B,(29,17)

82(30,12)

82(30,18) =

82(31,40)




B,(32,40)

o

B,(33,31)

X
82(34,31)
32(34,32)
82(35;3é)

B,(36,33)

o
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82(37,33)
32(37,34)
82(38,34)
82(38,35)

82(39,35)

2K

2K,

3K



